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Abstract. Time delay inevitably exists in active control systems, and it may cause the degradation of
control efficiency or instability of the systems. So time delay needs to be compensated in control design
in order to eliminate its negative effect on control efficiency. Today time delay in linear systems has been
more studied and some treating methods had been worked out. However, there are few treating methods
for time delay in nonlinear systems. In this paper, an active controller for a nonlinear and hysteretic
building structure with time delay is studied. The nonlinear and hysteretic behavior of the system is
illustrated by the Bouc-Wen model. By specific transformation and augmentation of state parameters, the
motion equation of the system with explicit time delay is transformed into the standard state space
representation without any explicit time delay. Then the fourth-order Runge-Kutta method and
instantaneous optimal control method are applied to the controller design with time delay. Finally,
numerical simulations and comparisons of an eight-story building using the proposed time-delay controller
are carried out. Simulation results indicate that the control performance will deteriorate if time delay is
not taken into account in the control design. The simulations also prove the proposed time delay
controller in this paper can not only effectively compensate time delay to get better control effectiveness,
but also work well with both small and large time delay problems.
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1. Introduction

During recent decades, time delay in structural vibration control has been a hot research topic.

Various research results indicate that even a small time delay may cause actuators to apply energy

to the control system when energy is actually not needed, which may cause degradation of control

efficiency and even make the system unstable (Hu and Wang 2002, Cai et al. 2003, Chen 2009).

Time delay has been also studied in many other research areas, such as information and

communication technology, nonlinear dynamics etc, and is getting more and more attention.

So far some methods have been proposed to handle time delay problem in linear systems, such as

Taylor series expansion (Abdel-Rohman 1987), phase shift technique (Chung et al. 1988), state pre-

estimation (Greery et al. 1988) and two direct design methods for time-delay controller (Cai et al.

2003, Cai and Huang 2002). The first three methods work well with some small time delay
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problems, but can not deal with large time delay ones. Two direct design methods (Cai et al. 2003,

Cai and Huang 2002) are to design time-delay controller directly from time-delay differential

equation and no assumption is made in the entire design process, and they are suitable for both

small and large time delays. Chen (2009) and Chen et al. (2009) verified these two methods by

experiment using several flexible structures as research objects. However, nonlinearity exists

inevitably in practical engineering structures. Strictly speaking, all the structures in practice are

nonlinear, and they can be grouped into weak nonlinear systems and strong nonlinear systems.

Weak nonlinear systems could be changed into equivalent linear systems since the response caused

by nonlinear factor of the structure is trivial, so the traditional linear system theory could be applied

to the research of control of weak nonlinear systems, and the methods to handle time delay for

linear systems could also be applicable for the time delay problem in weak nonlinear systems.

Strong nonlinear systems, on the other hand, can not be equaled to linear ones because the response

caused by nonlinear factor of the structure is significant. The linear system theory is not applicable

for the analysis of strong nonlinear systems, and the nonlinear system theory should be considered.

However, the nonlinear system theory scheme is not mature and there is not a universal analysis

method applicable for all nonlinear systems up to now. Different nonlinear systems usually need

different methods for the analysis.

Nowadays the time delay problem in nonlinear systems has come to many researchers’ attention.

For example, Ge el al. (2004) studied the adaptive neural control of a class of strict-feedback

nonlinear systems with unknown time delays, Lyapunov-Krasovskii function is combined with the

young's inequality to eliminate the unknown time delay in the upper bounding function of the

Lyapunov functional derivative. Ge and Tee (2007) developed an approximation-based control

method for multi-input/multi-output (MIMO) nonlinear systems with unknown state delays. By

using Lyapunov-Krasovskii functions and adaptive neural network backstepping, the control method

guarantees that all closed-loop signals remain bounded and the outputs converge to the proximity of

the desired trajectories. Zhang et al. (2008) discussed the robust stability criteria for a class of

uncertain neural systems with time-varying delays and nonlinear uncertainties, and by Lyapunov

method, put forward a new delay-dependent stability criteria. Tian and Peng (2006), by Takagi-

Sugeno fuzzy modeling and Lyapunov-Krasovskii functional method, worked on the delay-

dependent stability and controller design of uncertain nonlinear time-varying delay systems, and

suggested the sufficient conditions for stabilizing the uncertain systems. For the time delay problem

in the controller design of nonlinear structures, to our knowledge, there are seldom any studies up to

now.

This paper studies the active control of a nonlinear and hysteretic building structure with time

delay and proposes a method to deal with the time delay. The proposed method works well with

both small and large time delays. Numerical simulations prove the effectiveness of the proposed

method. This paper is organized as follows. Section 2 briefly introduces nonlinear hysteretic model

for inelastic systems, motion equation of the structural system with explicit time delay, and specific

transformation and augmentation for standard state space representation without any explicit time

delay. Instantaneous optimal controller design with time delay is given in Section 3, including the

controller design and control implementation. Numerical simulations and comparisons of an eight-

story building using the proposed time-delay controller are carried out in Section 4. Finally,

concluding remarks are given in Section 5.
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2. System nonlinear motion equation

2.1 Nonlinear hysteretic model for inelastic systems

Today, many hysteretic models have been developed to describe the restoring force of inelastic

systems. In this paper, the Bouc-Wen model will be used for the structure. The stiffness restoring

force based on the Bouc-Wen model can be written as (Ikhouane et al. 2007, Yang and Liu 1992)

(1)

where the subscript i represents the ith story unit; αi is the ratio of postyielding with respect to

preyielding stiffness; ki represents the elastic stiffness; xi is the interstory drift of the ith story unit;

Di is the yield constant displacement of the ith story unit; vi is a nondimensional variable introduced

to describe the hysteretic component of the deformation, with , where

(2)

where , βi and γi are parameters that describe the scale and general shape of the hysteresis loop

and  is the parameter that describes the smoothness of the force-deformation curve.

2.2 Motion equation

Fig. 1 shows the structural model of an n-story building with a rubber bearing isolation system.

The rubber bearing isolation system is connected by an active tuned mass damper (ATMD). The

structure undergoes an one-dimensional earthquake ground acceleration .

Considering time delay  in control, the motion equation of the structural system is written as

(3)
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Fig. 1 Structural model of an n-story building equipped with a rubber bearing isolation system and (a) an
active tuned mass damper (ATMD), (b) an actuator
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where  is an  vector of interstory drift, xd and xb are the interstory

drift of ATMD and of rubber bearing isolation system, respectively,  are the interstory drift

of each story unit of upper building structure, repectively; n is the degree of freedom of upper

building structure. The parameter M is an  mass matrix, all elements of M are zero

except ,  and  for  and .

The parameter C is an  damping matrix, all elements of C are zero except

, ,  for  and

 for . The parameter M0 is an  vector whose

elements are the mass of each story unit. H is an  vector denoting the location of the

active control force;  is the active control force.  in Eq. (3) is the restoring force

matrix, it can be written as

(4)

where K1 is an  elastic stiffness matrix, all elements of K1 are zero except

, , , for 

 and  for ; K2 is an  hysteretic

stiffness matrix, all elements of K2 are zero except ; αb is the ratio of

postyielding stiffness with respect to preyielding stiffness of the rubber bearing isolation system; Db

is the yield constant displacement of the rubber bearing isolation system; V is an  vector

denoting the hysteretic variable of each story unit, . According to Eq. (2), V

can be described as follows

(5)

The ith element of  can be written as

(6)

It should be noted that for the control system consisting of either only a rubber bearing isolation

system or a rubber bearing isolation system plus an actuator, matrices in motion Eq. (3) should be

modified accordingly.

In the state space representation, Eq. (3) becomes

(7)

where
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By the following transformation of Eq. (7) (Cai and Huang 2003)

(8)

then Eq. (7) becomes

(9)

where .

Augmenting the state variables in Eq. (9) and defining a new state vector as , Eq. (9)

then can be expressed as follows

(10)

where  and  .  can be written as

(11)

Thus, by the transformation and augmentation described above, Eq. (7) changes to Eq. (10) in the

state space representation without any explicit time delay, which can be solved numerically step by

step using the fourth-order Runge-Kutta method. The algorithm is described as follows

(12)

where  is the integration step of time; A0, A1, A2 and A3 can be written as

(13)

Substituting Eq. (13) into Eq. (12), one can obtain

(14)

where

(15)
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3. Instantaneous optimal control

In last section, the motion equation of the structural system is changed into the state space

representation without any explicit time delay by specific transformation and augmentation. In this

section, the instantaneous optimal control method, proposed by Yang and Liu (1992), is applied for

the control of the above-mentioned hysteretic system with time delay.

3.1 Design of controller

The time dependent quadratic objective function  can be describe as follows (Yang and Liu

1992)

(16)

where Q is non-negative definite symmetric matrix and R is a positive constant. Now the task is to

design an optimal controller for the hysteretic system by minimizing the objective function 

subjected to the constraint given by Eq. (14) at every time instant t.

The Hamiltonian Y is constructed by introducing a -dimensional Lagrangian multiplier

vector 

(17)

The necessary conditions for minimizing the objective function  subjected to the constraint

given by Eq. (14) can be written as

(18)

Substituting Eq. (17) into the first two expressions of Eq. (18), we have

(19)

From Eq. (19), the expression of optimal controller can be described as follows

(20)

It is observed from Eqs. (10) and (8) that,  in Eq. (20) is composed of  and , and

 contains the integral term .
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From Eqs. (14) and (20), when there is no time delay in the system, namely , the controller

 at time instant t depends on the following parameters: the external excitation at time instant t;

the controller and the external excitation at time instant ; the state vector, the controller and

the external excitation at time instant . When time delay exists in the system, namely

, the controller  at time instant t is not only related to those mentioned above, but also to

the integral term  in Eq. (8). The computing of this integral term is given below.

3.2 Control Implementation

The data sampling period  is chosen to be identical with the computing time step ∆t, i.e.,

. Assuming that time delay can be written as

(21)

where l is a positive integral number, , . It is pointed out in (Sun 1989) that time

delay has small effect on control performance and can be ignored in control design if time delay is

smaller than data sampling period , time delay affects control system only when it is larger than

. So this paper only considers the situation of  with the condition of , i.e., time delay

is integer times of sampling period. For the case of , refer to (Cai and Huang 2002, Sun

1989).

Between any two adjoining sampling points, the control force exerted on the structure can be

considered as a constant if the data sampling period is small enough, that is

(22)

Since numerical computation for the control system is carried out on every sampling point only,

when  , the integral term  in Eq. (8) can be written as (Cai and Huang 2003)

(23)

where

(24)

We can observe from Eq. (23) that, when time delay exists in the system, every step of numerical

computation for the controller given by Eq. (20), contains not only the state term of current step but

also a linear combination of the former l steps of control.

 and  can be determined by the following equations (Cai and Huang 2002, Sun 1989)
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(25)

When  is given,  and  will both converge to constant matrices in limited steps of

iterative computation.

4. Numerical simulations

In order to verify the effectiveness of the mentioned optimal control method, numerical

simulations are carried out in this section. An eight-story building adopted in (Yang and Liu 1992)

is considered as the structural model. The Tianjin earthquake (in China) with a maximum ground

acceleration of 0.4 g, as shown in Fig. 2, is used as the external excitation and the earthquake

episode is 10 s.

The mass, elastic stiffness, damping coefficient and yield constant displacement of each story unit

are shown in Table 1. Parameters of the hysteretic model are given as follows: ,

 and  for . The natural frequencies of the unyielded structure are

5.24, 14.0, 22.55, 30.22, 36.89, 43.06, 49.54 and 55.96 rad/s, respectively. The data sampling period

 

ξ F ξ( ) G ξ( )

αi 0.1, ai 1.0= =

βi 0.5 ni, 95= = γi 0.5= i 1~8=

Fig. 2 Time history of the Tianjin earthquake

Table 1 The mass mi, elastic stiffness ki, damping coefficient ci and yield constant displacement Di of each
story unit

Story 1 2 3 4 5 6 7 8

mi (t) 345.6 345.6 345.6 345.6 345.6 345.6 345.6 345.6

ki (105  kN/m) 3.4 3.26 2.85 2.69 2.43 2.07 1.69 1.37

ci (kN s/m) 490 467 410 386 348 298 243 196

Di (cm) 2.4 2.3 2.2 2.1 2.0 1.9 1.7 1.5
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 and the computation time step ∆t are both taken by 10−3 s, that is  = ∆t = 10−3 s. The initial

value of vectors Z and V are zero.

With the eight-story building structure described above and the Tianjin earthquake excitation

shown in Fig. 2, the maximum interstory drift xi and the maximum absolute acceleration ai of each

story unit without control are shown in columns 3 and 4 of Table 2. Fig. 3 shows the comparison of

the yield constant displacement and the maximum interstory drift of each story unit without control.

As observed from Table 2 and Fig. 3, for every story unit of the building structure without control,

the deformation is excessive and yielding takes place in each story unit.

In order to reduce the structural response, a rubber bearing isolation system (RBIS) is

implemented to the building structure, denoted by ‘RBIS’ in Table 3. The restoring force of the

T T

Table 2 maximum interstory drift xi and maximum absolute acceleration ai of each story unit
(xi: cm, ai: cm/s2, Di: cm)

Story
(1)

Di

(2)

No control With RBIS
ACTCON ATMDCON

xi
(3)

ai

(4)
xi

(5)
ai

(6)
xi

(7)
ai

(8)
xi

(9)
ai

(10)

B 4 - - 25.15 110 16.87 103 16.83 106

1 2.4 2.54 421 0.77 118 0.65 102 0.62 101

2 2.3 2.81 446 0.73 124 0.64 92 0.63 88

3 2.2 3.91 481 0.79 123 0.66 111 0.68 94

4 2.1 3.36 624 0.78 115 0.61 113 0.66 92

5 2.0 3.49 516 0.78 111 0.57 109 0.65 99

6 1.9 3.69 635 0.78 129 0.58 104 0.65 110

7 1.7 4.18 646 0.71 163 0.55 129 0.59 136

8 1.5 2.09 620 0.47 185 0.41 162 0.38 153

Umax 692 kN= Umax 224 kN=

Fig. 3 Comparison of the yield constant displacement and the maximum interstory drift of each story unit
without control
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RBIS is given in Eq. (1) with . The mass, elastic stiffness and damping coefficient of the

RBIS are ,  and , respectively. The yield constant

displacement and the ratio of postyielding stiffness with respect to preyielding stiffness of the RBIS

are  and , respectively. Parameters that describe the scale and general shape of

the hysteresis loop of the RBIS are chosen as , ,  and . After

adding the RBIS to the building structure, the natural frequencies of the entire building are 2.21,

9.31, 17.29, 25.18, 32.19, 38.29, 44.12, 50.37 and 56.74 rad/s, respectively.

The maximum responses of the building equipped with the RBIS are shown in columns 5 and 6

of Table 2. As observed from Table 2, the interstory drift and the absolute acceleration are evidently

reduced. The interstory drift of each story unit of the upper structure is very small compared to that

of the RBIS, and the upper structure tends to behave like a rigid body. However, as shown in

column 5 of Table 2, the deformation of the RBIS may be excessive.

4.1 Optimal control with no time delay

In order to keep the safety and integrity of the RBIS, two measures are considered: (1) an actuator

is connected to the RBIS as shown in Fig. 1(b), denoted by ‘ACTCON’ in Table 3; (2) an active

tuned mass damper (ATMD) is connected to the RBIS as shown in Fig. 1(a), denoted by

‘ATMDCON’ in Table 3. Parameters of the ATMD are chosen as follows: The mass of the ATMD

is ; the natural frequency of the ATMD is chosen to be the same as the first natural

frequency of the building with the rubber bearing isolation system, namely ; the

damping ratio of the ATMD is , so the elastic stiffness and damping coefficient of the

ATMD are  and kN·s/m, respectively.

Firstly, we consider the case with no time delay in the control system, i.e., . The weighting

matrix Q and scalar R in ACTCON and ATMDCON are chosen as follows

(26)

where n = 8, M' and  are  submatrices of M and K1, respectively, and they can

be obtained by eliminating the first row and the first column of M and K1.  is an 

matrix, and all elements of  are zero except  for  and

.

i b=

mb 450 t= kb 18050 kN/m= cb 26.17 kN·s/m=

Db 4 cm= αb 0.6=

ab 1.0= βb 0.5= nb 3= γb 0.5=

md 172.8 t=

ωd 2.21 rad/s=

ξd 10%=

kd 844 kN/m= cd 76.38=

λ 0=

 

K1′ n 1+( ) n 1+( )×

T n 1+( ) n 1+( )×

T T p s,( ) 1= p 1 … n 1+( ), ,=

s 1 2 … p, , ,=

Table 3 Three kinds of control strategies

RBIS Rubber bearing isolation system only

ACTCON Rubber bearing isolation system connected by an actuator

ATMDCON Rubber bearing isolation system connected by an ATMD
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(27)

where , Q21 and Q22 are  matrices. All elements of Q21 and Q22 are zero

except , , , .

Using the optimal controller with no time delay, the maximum interstory drift xi and the

maximum absolute acceleration ai of each story unit with ACTCON and ATMDCON are shown in

columns 7-10 of Table 2. The maximum active control forces with ACTCON and ATMDCON are

also listed in Table 2. As observed from Table 2, after an actuator (ACTCON) or an ATMD

(ATMDCON) being connected to the RBIS, the system is getting better control performance than

with RBIS only. The deformations of the RBIS in ACTCON and ATMDCON are evidently reduced

and the maximum response quantities of the upper building structure are further reduced than those

in RBIS. It is also observed from Table 2 that the maximum responses of the building structure in

ACTCON and ATMDCON are very close to each other, while the maximum active force in

ATMDCON is much smaller than that in ACTCON. This is because the mass damper of ATMD in

ATMDCON contributes to dissipate some energy generated by the strong earthquake, which

explains the active control force generated by the actuator in ATMDCON is much smaller than that

in ACTCON.

Figs. 4(a)-(c) show the results against time of the interstory drift and the absolute acceleration of

the RBIS, the first story unit and the eighth story unit with ATMDCON, denoted by the solid line.

The results of cases of no control, RBIS and ACTCON are also shown in Fig. 4 for comparison,

and they are denoted by the dotted line, dashed line and dot-dashed line, respectively. Fig. 4(d)

shows the active control force against time under ACTCON and ATMDCON.

4.2 Optimal control with time delay

Here we consider the case with time delay. Firstly, the effect of time delay on control performance

is checked. Fig. 5 shows, against time delay, the maximum interstory drift and the maximum

absolute acceleration of the RBIS and the first story unit, as well as the maximum active control

forces under ACTCON and ATMDCON control. The results of the ACTCON and ATMDCON

using the proposed time-delay controller are denoted by the dotted line and solid line in Fig. 5,

respectively. For comparison, the results of the ACTCON and ATMDCON using the controller

designed for the case with no time delay to control the system with time delay are also shown in

Fig. 5, denoted by the dashed line and dot-dashed line, respectively. It is observed from Fig. 5 that

the dashed line in ACTCON and dot-dashed line in ATMDCON appear to be in a rapid rise as time

delay increases, which means that the control performance becomes worse and worse with the

increase of time delay if time delay is neglected in control design. It is also observed that, when the

proposed time-delay controller is used, the controlled structure still remains stable even when time

delay increases to a relative large value. Furthermore, it is also observed from Fig. 5 that, when

using the controller designed for the case with no time delay to control the system with time delay,

the maximum responses in ATMDCON rise much slower than those that in ACTCON.

 

n 8= n 2+( ) n 2+( )×

Q21 1 1,( ) 102= Q21 1 2,( ) 2363–= Q22 1 1,( ) 67= Q22 1 2,( ) 731=
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Fig. 4 Time histories of system response (a) the RBIS, (b) the first story unit, (c) the eighth story unit, (d)
active control forces with ACTCON and ATMDCON
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Fig. 5 The maximum response quantity and the maximum control force varying with time delay when using
the controller with and without time delay to control the system with time delay (a) the RBIS, (b) the
first story unit, (c) maximum active control force with ACTCON and ATMDCON
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Secondly, the effectiveness of the designed time-delay controller is verified. Two cases are

considered:  and . The results against time of the proposed time-delay

controller are shown in Fig. 6 to Fig. 9. When , the interstory drift of the RBIS and the

first story unit, the absolute acceleration of the RBIS and the first story unit, and the active control

force, denoted by solid line are shown in Fig. 6 and Fig. 7, with respect to ACTCON and

λ 0.01 s= λ 0.6 s=

λ 0.01 s=

Fig. 6 Time histories of system response with ACTCON when time delay is 0.01 s (a) the RBIS, (b) the first
story unit, (c) active control forces with ACTCON
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ATMDCON accordingly. Figs. 8 and 9 are the same idea as Fig. 6 and Fig. 7 except for .

The results of both the no-delay controller from Section 4.1 to control the system without time

delay and the RBIS control are also shown in Figs. 6-9 for comparison purpose, which are denoted

by dotted line and dashed line, respectively. It is observed from Figs. 6-9 that, for both ACTCON

and ATMDCON, time delay is compensated effectively by the proposed time-delay controller and

λ 0.6 s=

Fig. 7 Time histories of system response with ATMDCON when time delay is 0.01 s (a) the RBIS, (b) the
first story unit, (c) active control forces with ATMDCON
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excellent effectiveness can be obtained, which proves the proposed controller works well for both

small and large time delay situations.

Our extensive simulation results indicate that the maximum responses of certain story units of the

structure when using the time-delay controller are smaller than those when using the no-delay

controller for some specific time delay, meanwhile the maximum active control force when using

Fig. 8 Time histories of system response with ACTCON when time delay is 0.6 s (a) the RBIS, (b) the first
story unit, (c) active control forces with ACTCON
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the time-delay controller is also smaller than that when using the no-delay controller. Fig. 10 shows

the maximum responses of the structure for  under ACTCON and  under

ATMDCON, respectively. The maximum active control forces under ACTCON with no time delay

and  are 692 kN and 584 kN, respectively, and those that under ATMDCON with no time

delay and  are 224 kN and 148 kN. The results in Fig. 10 imply a possible utilization of

λ 0.6 s= λ 1 s=

λ 0.6 s=

λ 1 s=

Fig. 9 Time histories of system response with ATMDCON when time delay is 0.6 s (a) the RBIS, (b) the first
story unit, (c) active control forces with ATMDCON



448 Kun Liu, Long-Xiang Chen and Guo-Ping Cai

time delay for better control effectiveness. Even for a non-time-delay control system, a proper time

delay for the system may be assumed and then a time-delay controller for better control

effectiveness can be designed. Recent studies in some fields have shown that voluntary introduction

of delays can also benefit the control. For example, in nonlinear dynamics area, achievement is

remarkable when using time delay to control chaos motion (Ge et al. 2005, Xiao and Cao 2007). In

structural control area, Hosek and Olgac (2002) developed a time-delay resonator that may be used

for vibration control of structures. The main idea of time-delay resonator is to add a delayed

feedback loop into control systems to reduce structural vibration by adjusting control weighting

coefficient and the magnitude of time delay. In robotics area, Cai and Lim (2006) designed a time-

delay controller for a flexible manipulator. Their results show that delayed feedback control design

may possibly achieve much better control efficiency than the control design without time delay. In

control system of pipeline transport, time delay may be utilized to enhance steady critical speed of

flowing liquid (Yuan 2008). Time delay could be also used to improve system stability (Wang and

Fig. 10 Comparison of the maximum response quantity of each story unit when using the no-delay and time-
delay controller (a) ACTCON control with , (b) ATMDCON control with λ 0.6 s= λ 1 s=
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Hu 2006, Xu et al. 2007). Those researches above which involve the active utilization of time delay

is so-called time-delay utilization technology or delayed feedback control method, which assumes

time delay as a design parameter to obtain good control performance. Delayed feedback control is a

novel control strategy and has been getting more and more attention. Many problems remain for

extensive investigation.

Time-delay problems in the active structural control involve multiple disciplines like structure

dynamics, control theory and mathematics. A sound solution to these problems is up to an effective

synthesization of all these fields and will make significance to engineering applications. The authors

believe more efforts should be put on the following areas.

(1) Time-delay identification: Current studies on time delay are almost all based on an assumption

of a given/known certain amount of time delay, bypassing a very fundamental question of how

much the delay is, that is how to identify the delay within the system. Time-delay identification is

one of fundamentals of dynamic control and also the hardest part of the topic, especially when

doing the experiment research. However, research on this topic makes theoretical importance with

application potentials. Furthermore, when converting the problem of time-delay identification into

the problem of optimization, the algorithm makes the most critical part. Current optimum-seeking

algorithm turns out good within certain boundary conditions but fails to get a global optimal

solution to the system. Although the stochastic optimization algorithm projects a brighter future,

developing an algorism with higher efficiency and reliability still makes a topic which needs

further study.

(2) Research on robust time-delay controller: In actual control system, the magnitude of time

delay tends to be not significant, and might be varying within a limited range as well. Even for

the control system with significant delay such as space-craft controller, the delay also appears to

be in a small range. It surely will make a difference if a robust controller over time delay varying

within a small range could be developed.

(3) Time-delay utilization: As stated in the above, current achievements on time delay show that

the delay has some potential benefits. The utilization of time delay remains one of the important

topics worth further study.

(4) Time-delay experiments: It means a lot to have more experiments on time delay to verify the

theoretical results. However researches on experiments are very limited and theoretical results are

always obtained under some ideal premises and not all the factors are taken into account, which

means the theoretical results might not reflect in actual tests. As shown in (Cai and Lim 2006),

the more the time delay, the better the control effectiveness, however this prediction does not

prove in our experiment (Chen 2009, Chen et al. 2009).

(5) In recent years, the research achievements on time delay in the area of automation are worth

attention, such as time-delay filter which can filter out the exponentially decaying sine vibrating

signals; time-delay observer which can observe the uncertainty and external disturbance of the

system and thus to get the robust control of the system; time-delay learning controller which can

be used to non-differentially track the arbitrary periodic signals. How to apply above

achievements to the actual control of flexible structures deserves further exploration.

5. Conclusions

By using the instantaneous optimal control method, this paper studies the aseismic active control
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of a nonlinear and hysteretic building structure with time delay. The Bouc-Wen hysteretic model is

applied to describe the stiffness restoring force of the nonlinear and inelastic structural system. The

hysteretic components of the system are included in the motion equation to design the optimal time-

delay controller. Simulation results indicate that, when no time delay exists in the control system,

optimal controller can effectively reduce the responses of the building structure. When time delay

exists, the control performance becomes worse if time delay is not compensated in control design.

The time-delay controller proposed in this paper can effectively deal with the time delay in the

system, and is applicable for both small and large time delay problems.
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