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Vibration attenuation in periodic composite Timoshenko 
beams on Pasternak foundation
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Abstract. Periodic and quasi-periodic Timoshenko beams on Pasternak foundation are investigated
using the differential quadrature method. Not only band gaps in the beams but also the dynamic response
of them is analyzed. Numerical results show that vibration in periodic beams can be dramatically
attenuated when the exciting frequency falls into band gaps. Different from the band structures of periodic
beams without foundation, the so-called critical frequency was found because of the Pasternak foundation.
Its physical meaning was explained in detail and a useful formula was given to calculate the critical
frequency. Additionally, a comprehensive parameter study is conducted to highlight the influence of
foundation modulus on the band gaps.
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1. Introduction

The propagation of elastic waves in composite materials or structures with periodic material

properties or periodic geometrical shapes has received considerable attention in recent years. These

materials or structures are called periodic materials or structures. By nature, they exhibit unique

dynamic characteristics that make them act as mechanical filters for wave propagation in a special

frequency range called ‘band gaps’. Recently, inspired by the band gap of periodic structures, Jia

and Shi (2010) fabricated a finite quasi-periodic foundation to reduce the effect of earthquake waves

on structures. It is found that 1) frequency band gap also exists in the periodic foundation; 2) the

foundation can be fabricated to realize a low frequency gap which can be smaller than 20 Hz.

Therefore, the periodic foundation lends a new insight into seismic isolation in civil engineering.

A lot of works have been done on periodic materials or structures. An extensive review of the

earlier research in periodic structures can be found by Mead (1996). The theory of periodic

structures was originally developed for solid state applications and extended, in the early seventies,

to the design of mechanical structures. Since then, the theory has been applied extensively to a wide

variety of structures such as spring-mass systems (Faulkner and Hong 1985), periodically supported

beams (Lin et al. 1990), stiffened plates (Mead 1986), cylindrical shells (Pany et al. 2003) and

lattice structures (Fan et al. 2007). Most of these studies concerned structures with periodically
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distributed geometrical characters such as shape or supports. On the other hand, Kushwaha et al.

(1993) presented a novel concept of phononic crystals (PCs) of which the material properties are

periodic distribution. Since then, analytical, numerical, and experimental studies have been

conducted to analyze the band gap behavior of periodic materials (Kushwaha 1996). 

As far as the analytical or numerical method is concerned, many methods have been proposed to

determine the band gaps in periodic materials, such as the plane-wave expansion method (Yao et al.

2009), the multiple scattering theory (Sainidou et al. 2005), the finite difference time-domain

method (Hsieh et al. 2006), the lumped mass method (Wang et al. 2004), and the finite element

method (Khelif et al. 2006). Despite the benefits of them, these methods encounter some difficulties

(Xiang and Shi 2009). For example, the PWE method encounters convergence problems when the

periodic material has a large elastic mismatch; and the MST method has a limitation in studying

periodic materials with overlap scatters. In recent years, the differential quadrature method (DQM)

has been proven adequately procient coupled with various beam or plate theories (Shu and Richards

1992, Bert and Malik 1996). Recently, Xiang and Shi (2009) first applied the DQM to the band gap

analysis in periodic structures and shown that the method is very accurate and simple.

It is also noted that most of the previous studies dealt with band gaps in geometrical periodic

structures or infinite periodic composite materials. Investigations on quasi-periodic composite

structures are scarce. Moreover, other two important factors should be considered if we want to

apply the concept of periodic structures in engineering. One is that engineering structures are finite

dimensional, so further study on finite dimensional structures, such as plates and beams, is of

importance. Another one is the soil-structure interaction (SSI) which is one of the structural

engineering problems of theoretical and practical interest. In order to model soil behavior, several

models have been developed in the past. Two important examples are the Winkler model and the

Pasternak model. The Winkler model assumes the soil to be made up of continuously distributed,

non-connected discrete springs. Thanks to its simplicity, a number of studies in the area of soil-

structure interaction have been conducted. However, the soil represented by Winkler model cannot

sustain shear stresses because of the discrete springs and hence no spread of load to parts of mass

that are not directly loaded occur (Celep and Demir 2007, Coskun 2010). Its discontinuous nature

gives rise to the development of the Pasternak model in which the existence of shear interaction

among the spring elements is assumed by connecting the ends of the springs to a shear layer. The

Pasternak model describes soil behavior more accurately and yet remains simple enough for

practical purposes.

In consideration of the aspects above, different types of periodic or quasi-periodic composite

Timoshenko beams on Pasternak foundations are fabricated in this work. We focus on the effect of

the foundation on the band gaps and vibration attenuation in the beams. The organization of this

paper is as follows. Based the Bloch-Floquet theorem (Kittel 2005), the Timoshenko beam theory is

adopt to analyze the periodic beam in Section 2. In Section 3, the DQM is introduced to solve the

dynamic equations of periodic beams. The accuracy and flexibility of the methods are validated in

Section 4 by way of comparison to existing solutions available in previous studies of homogeneous

beams. In Section 5, the band gaps in the beams, the harmonic frequency response and the transient

response of the beams are studied. Additionally, a comprehensive parameter study is conducted to

highlight the effect of elastic foundation on band gaps in periodic beams. Finally, Section 6 provides

a short conclusion.
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2. Timoshenko periodic beam theory

A periodic composite beam consisting of alternating beam sections A and B of lengths a1 and a2,

respectively, is shown in Fig. 1(a).

2.1 Basic equations

The entire beam is divided into Ne elements based on the discontinuities in geometry, boundary

constraints and materials properties. Each element is an isotropic uniform beam section. The length

of the element n is equal to ln as shown in Fig. 1(b). Based on the Timoshenko beam theory, for a

given element of the periodic beam on a Pasternak foundation, the equation of motion can be

written as follows (Wang et al. 1998)

(1)

(2)

where E is the Young’s Modulus, G the Shear modulus, A the cross-section area, ρ the beam

density, I the second area moment of inertia about the neutral axis, Kw the Winkler foundation

modulus, KG the shear foundation modulus, ks the shear correction factor (ks = 5/6 for rectangle

cross-section), w the transverse deflection, ψ the bending slope, t the time and x the local coordinate

 

 

Fig. 1 Configuration of a periodic composite beam on elastic foundation (a) composite beam consisting of an
infinite repetition of alternating sections A and B, (b) one element, and (c) Wigner-Seitz cell
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( ), respectively. The superscript (n) indicates the n-th element. The moment M and the

generalized shear force Q are 

(3)

The second term in the shear force Q is the contribution from foundation (Zhaohua and Cook

1983). The compatibility of deflection, slope, moment and shear force at the junction of two

adjacent elements ‘n’ and ‘n + 1’ can be expressed as

(4)

An infinite periodic beam may be created as a regular repetition of a substructure in space.

Therefore, the infinite periodic beam can be simplified to a unit substructure (or cell) using Bloch-

Floquet theorem (Kittel 2005) as shown in Fig. 1(c). Herein, the well-known Wigner-Seitz cell

(Kittel 2005) containing three elements (Ne = 3) with length l1, l2, l3 (  and )

will be adopted in the present paper. According to Bloch-Floquet theorem, the deflection, slope,

moment and shear force obey a periodic law (Yu et al. 2008, Xiang and Shi 2009) as follows

(5)

where kx is a Floquet wave number in the x direction (Lee and Ke 1992), which counts the number

of wavelength over 2π distance, and a is the length of the cell a = a1 + a2. Eq. (5) contain four

boundary conditions for an infinite periodic beam. Eqs. (1)-(5) can be considered as a typical

boundary value problem.

The structure itself may be finite, i.e., at the both ends usual boundary conditions can be applied.

To model the finite quasi-periodic beam, the four periodic boundary conditions (5) should be

replaced by its specific boundary conditions. The beam may be simply supported (S), clamped (C)

or free (F) at its ends. If the boundary element of the beam is numbered as m, for example, the

boundary conditions are expressed as follows

Simply supported (S): (6)

Clamped (C): (7)

Free (F): (8)

where  are the given displacement, rotation, moment and shear force, respectively, at

the boundary. Each end has two boundary conditions. Thus there are four boundary conditions for a

finite quasi-periodic beam. Eqs. (1)-(4) together with these four conditions represent another

boundary value problem.

The DQM will be adopted to solve above mentioned two types of boundary value problems. In
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order to apply the DQM conveniently and to avoid a singular coefficient matrix involved in DQM,

i.e., to get a robust numerical result, all equations should be normalized.

2.2 Dimensionless form of the basic equations

By introducing the following dimensionless quantities

(9)

where  are the reference length, modulus of elasticity, modulus of rigidity, cross-

section area, second area moment of inertia, density of a specific element, the governing Eq. (1)-(2)

can be expressed in dimensionless form as

(10)

(11)

where  and the dimensionless quantities αij and βij are listed in Appendix

A. With Eq. (3) in mind, the continuous Eq. (4) can be rewritten as

(12)

(13)

(14)

(15)

and the periodic boundary conditions (5) are rewritten as

(16)

(17)

 (18)
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where  is the dimensionless wave number. Similarly, for a finite quasi-periodic beam, the

dimensionless end support conditions can be rewritten as follows.

Simply supported (S) 

(20)

Clamped (C)  

(21)

Free (F) 

(22)

The dimensionless quantities γij in Eqs. (14)-(22) are listed in Appendix A.

3. Solution method

The DQM is used to solve Eqs. (10), (11) and the associated continuous and boundary conditions.

The fundamental idea behind the DQM is to approximate an unknown function and its derivative at

any discrete point as the linear weighted sums of its values at all of the discrete points chosen in the

solution domain. The functions  and their r-th derivatives with respect to η are

approximated by

(23)

(24)

where , , N is the total number of nodes distributed along the η-axis,

lj(η) are the Lagrange interpolation polynomials, and  are the weighting coefficients for which

the explicit recursive formula can be found in Refs (Shu and Richards 1992, Xiang and Yang 2008).

The sampling points will be generated by the so-called Gauss-Lobatto-Chebyshev points

, (25)

The two end points are included as  and . Applying the relationships (23) and

(24) to Eqs. (10) and (11), a total number of  equations are obtained

(26)

(27)
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for  and . Two dots over a variable denote the second derivative of

that variable with respect to time. The continuous conditions (12)-(15), periodic boundary conditions

(16)-(19) or boundary conditions (20)-(22) can be changed in a similar way.

For an infinite periodic beam, together with  continuous conditions, four periodic

boundary conditions and  equations from governing equations (26)-(27), a total

number of  equations are obtained. The total number of independent unknown variables

 and  is also equal to . Thus, the problem can be solved numerically.

For a finite quasi-periodic beam, comparing with the periodic beam, the only change is to replace

the periodic boundary conditions by four specific boundary conditions. For example, substituting the

DQM rule (23) and (24) to Eqs. (21) and (22), four boundary conditions for a cantilever beam can

be approximated as

(28)

at the clamped end, and

(29)

at the free end.

Therefore, we obtained  equations whether an infinite periodic beam or a finite quasi-

periodic beam is considered. These equations can be expressed in a matrix form

(30)

where  and  are coefficient matrices,  are two load vectors and

Subscripts ‘d’ and ‘b’ refer to the values at the domain and the boundary grid points, respectively.

Eq. (30) can be reduced to the following equation.

(31)

(32)

where  and . Eqs. (31)-(32) can be used to solve

several subset problems, including the band gap in an infinite periodic beam and the free vibration,

harmonic frequency response and transient response of a finite quasi-periodic beam.

For a transient response problem, Eq. (31) can be solved by the Newmark β method, the Wilson θ

method, or others (Chopra 2006). In the present work, the Newmark β method is adopted and the

parameters for Newmark scheme are chosen as  and .

If a harmonic frequency response analysis is considered, the excitation force  is assumed to be

a harmonic time function as  where  represents the dimensionless
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frequency, Ω the imposed circular frequency, p0 the force amplitude. The steady-state vibration

should be in the form of  where δmax is the amplitude of displacement vector.

Substituting δd and  into Eq. (31), the steady-state solution can be obtained as follows

(33)

For a free vibration problem, neglecting the dynamic load vector , expanding the dynamic

vector  where  represents the dimensionless frequency, ω the natural

circular frequency, and δ0 the vibration mode shape vector, and then substituting this expansion into

Eq. (31), we obtain the following eigenvalue equation

 (34)

from which the natural frequencies and associated mode shapes of the beam can be calculated.

Analogously to the above case of free vibration, the eigenvalue equation for an infinite periodic

beam can be obtained using the periodic boundary condition instead of the boundary conditions for

a finite beam. As indicated in Eqs. (16)-(19), the matrix  is a matrix function of the wave

number k, so the eigenvalue equation for an infinite periodic beam can be written as 

 (35)

The eigenvalue of the Eq. (35) can be determined if the value of k is specified. Though the wave

number k is unrestricted, it is only necessary to consider k limited to the first Brillouin zone (Kittel

2005), i.e., . In fact, if we chose a wave number k0 different from the original k in the

first Brillouin zone by a reciprocal lattice vector, for example  where n is an integer, we

would have obtained the same set of periodic boundary conditions because .

4. Validation study

Before carrying out the dynamic analysis of periodic or quasi-periodic beams, the accuracy and

flexibility of the present method are validated through comparisons with existing solutions available

in previous studies of homogeneous beams without elastic foundations. Using the differential

quadrature method, the band gaps in infinite periodic beams and the dispersion relationship for

infinite homogeneous beams were obtained and validated in our previous study (Xiang and Shi

2009). Hence, in present work, we will focus our efforts on the natural frequencies, harmonic

frequency response and transient response of the finite periodic beams. The material properties are

listed in Table 1. A rectangular cross-section, 0.5 m wide by 0.8 m high, is considered in this
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Table 1 Material properties

Materials
Young’s Modulus 

E (GPa)
Shear modulus

 G (GPa)
Density

ρ (kg/m3)

Steel 210 78.95 7850

Concrete 25 9.40 2300
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section for all beams.

Based on the Euler-Bernoulli beam theory (EBT), Timoshenko (1937) presented an analytical

formula for calculating the natural frequency of finite beams. Huang (1961) obtained the frequency

equation for flexural vibrations of finite beams based on Timoshenko beam theory (TBT). Solving

these frequency equations, the exact natural frequencies of Timoshenko beams can be obtained

easily. Table 2 lists the first three frequencies of common types of concrete beams with length 2 m

or 20 m. Our results, either for the slender beam or the short deep beam, are very close to Huang’s

analytical solutions (Huang 1961). Table 2 also shows that the results obtained by EBT are larger

than present results, especially for a deep beam of which the total length is 2 m. This observation is

rational, since the shear deformation is neglected in the Euler-Bernoulli formulations and it makes

the beam behavior invalidly stiffer than the reality.

Table 2 Comparison of the first three frequencies of concrete beams with different boundary conditions and
length (Hz)

Boundary condition
and mode

Length = 20 m Length = 2 m

EBTa TBTb Present EBTa TBTb Present

CF

1 1.0650 1.0638 1.0638 106.5045 95.1900 95.1900

2 6.6750 6.6157 6.6157 667.5002 399.1341 399.1341

3 18.6921 18.3016 18.3021 1869.2080 853.0115 853.0120

SS

1 2.9900 2.9818 2.9818 298.9957 242.9095 242.9095

2 11.9598 11.8305 11.8306 1195.9829 702.1181 702.1181

3 26.9096 26.2709 26.2713 2690.9616 1193.5004 1193.5068

CC

1 6.7778 6.7023 6.7023 677.7781 379.2692 379.2692

2 18.6826 18.2131 18.2131 1868.2563 763.2160 763.2160

3 36.6298 35.0501 35.0500 3662.9814 1217.4782 1217.4782

aTimoshenko 1937;
bHuang 1961.

Fig. 2 Frequency response of a homogeneous concrete cantilever beam
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Fig. 2 depicts the frequency response of tip deflections δtip of a concrete cantilever beam with

length 2 m subjected to a harmonic load at the free end. The load amplitude is 1000 kN. A finite

element model was built in ANSYS using the BEAM188 element which is based on Timoshenko

beam theory. In the present example, linear shape functions are used. This element produces a

stiffer response as is evident in Fig. 2 by the slight offset to the right.

Fig. 3 shows the tip deflection time history by the present method and the ANSYS model for the

cantilever beam subjected to a harmonic force  kN at the free end. When

an impact load is applied at the free end, the transient tip displacement responses are shown are

shown in Fig. 4. The impact load is assumed as

The integration time step (ITS) should be small enough to resolve the motion (response) of the

beam and to “follow” the loading function. The ITS is specified as 0.01 s for the harmonic load

F t( ) 1000 sint sin20t+( )=

F t( )
1000 kN,  0 t 10

5–
s≤ ≤

0,              t 10
5–

s>⎩
⎨
⎧

=

Fig. 3 Tip displacement history of a homogeneous concrete cantilever beam subject to a tip force F(t) =
1000(sint + sin20t) kN

Fig. 4 Tip displacement history of a homogeneous concrete cantilever beam subject to an impact force at the
free end
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case and 10−5 s for the impact load case. The results for both the harmonic load and the impact

load, match well with the FEM results obtained by ANSYS.

5. Numerical results

In this section, we will investigate the band gap in periodic beams on a Pasternak foundation and

study the frequency response and the transient response of the quasi-periodic beams. As shown in

Fig. 1, material A is concrete and material B is steel. Unless otherwise stated, the shear foundation

modulus KG = 3000 kN and the Winker modulus  are considered for both

sections. The total length of substructure AB is . The length of beam section A is

equal to that of B, i.e., . In order to show the effect of geometrical parameters on flexural

vibration, two cases, I and II, are considered. For the case I, the cross sections of both sections A

and B are rectangle 0.5 m wide and 0.8 m deep. For the case II, the sections A and B are the

rectangle and a wide flanged H-section, respectively. The geometrical parameters of the wide

flanged H section are I = m4, A = 0.0314 m2 and the shear correction factor ks = 0.3564

(Cowper 1966). In what follows, the dimensionless frequency is defined as , where

ρ0, A0 and E0 are the density, the cross-section area and the modulus of elasticity of the beam

section A, respectively. The number of sampling points is denoted by N. Experience with the

analysis method shows good convergence when N ≥ 10, thus the present analysis utilizes N = 13.

5.1 Band gap in infinite periodic beams

The band structures of the infinite beams for the case I and the case II are depicted in Figs. 5(a)

and 5(b), respectively. Two frequency ban gaps are found in both cases, which are shaded. For the

case I, the first band gap is very narrow (0.2835-0.3114). The second band gap starts from 0.7313

and ends at 1.0402. On the other hand, by comparison with the case I, a wider first band gap

(0.3077-0.5269) is obtained for the case II. However, the second band gap for this case is relative

narrow (0.7841-1.0413). After performing many numerical tests, we found that the greater the

Kw 6 10
8

N/m
2×=

a a1 a2+ 2 m= =

a1 a2=

3.5914 10
3–×

ω ω ρ0A0/E0=

Fig. 5 Band structures of two cases of infinite periodic beams on elastic foundation
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difference in the value of  between sections A and B, the wider the first band gaps.

Herein, ,  and  are the velocity of bending wave, the velocity of

shear wave and the radius of gyration, respectively. This is similar to the dynamic behavioral

characteristics of composite materials observed in previous works. For example, Kafesaki and

Economou (1995) studied the band structures of acoustic waves in composites. They observed that

the higher the velocity ratio between the components of the composite, the more favorable the

condition for gaps. However, this is only a qualitative conclusion without a strict derivation.

For comparison purpose, the band structure of the beam without elastic foundation is also plotted

for the case I in Fig. 6. We can find that the frequency in the first branch is zero at .

However, as shown in Fig. 5, no curve appears in the band structure when the frequency is lower

than the critical frequency that is defined as the frequency in the first branch when . The

dimensionless critical frequencies for the case I and the case II are 0.1041 and 0.1932, respectively.

Both of them are positive numbers instead of zero. This phenomenon can be explained by the well-

known Rayleigh’s theorem, which may be stated as follows (Wittrick and Williams 1971).

If one constraint is imposed upon a linearly elastic structure, the natural frequencies of the

constrained structure remains unchanged or increase. If the unconstrained structure has no

coincident natural frequencies, and if none of its natural modes has a node coinciding with the

constraint, then the natural frequencies of the constrained structure will increase.

The word constraint may be understood to imply the addition of a simple spring, attached to the

structure at an arbitrary point and in an arbitrary direction. In the present example, the foundation,

which is severed as a continuous constraint, leads to a shift of the critical frequency from zero to a

positive number. In order to get a formula to calculate the critical frequency, we consider a

homogenous beam at first. It is assumed that the beam undergoes harmonic wave (w, ψ) =

 where W and Φ are the amplitude of transverse deflection and the amplitude of the

bending slope, respectively. Substituting this expression into Eqs. (1) and (2), and letting the wave

number , one can get two solutions as follows

, (36)

which the frequencies ω1 and ω2 are related to the bending and the shear mode, respectively.

Usually, ω2 > ω1 unless the Winkler foundation modulus is very large. Therefore, the frequencies ω1

c1/a( )2 c2/r( )2+

c1 E/ρ= c2 ksG/ρ= r I/A=

k 0=

k 0=

W Φ,( )ei k
x
x ω t–( )

kx 0=

ω1

Kw

ρA
-------= ω2

ksGA

ρI
------------=

Fig. 6 Band structures of an infinite periodic beam without elastic foundation
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is the critical frequency for the homogenous beam on a Pasternak foundation. It is noted that, for

ω1, the motion is associated to a long-wave with transverse deflection without shear, i.e., a

translational motion . The continuous system degenerates to a single degree

system. Thus, the physical meaning of the critical frequency can be explained through the vibration

of a unit length of the beam. The total mass of the unit length is ρA and the transverse stiffness is

Kw, so the circular frequency is  for the single degree of freedom system. In this

manner, similarly, we can also get a formula to calculate the critical frequency for periodic beams

through the vibration of a unit cell. The total mass of a cell of the periodic beam, as shown in

Fig. 1, is . When the transverse deflection is a unit, the total ground reaction

force (or stiffness) is , and then the critical frequency for periodic beams can be

expressed as

(37)

or in dimensionless form as

(38)

where the subscripts ‘‘c’’ stands for critical frequency. The dimensionless critical frequencies of

periodic beams with different Winkler modulus are plotted in Fig. 7. The ratio  and

N/m2. Excellent agreement is observed between the results obtained by DQM and the

analytical results by Eq. (38). Moreover, as mentioned above, the critical frequency is zero if a

periodic beam without foundation is considered. As a special case, this result can be calculated from

Eq. (38), i.e.,  and then .

5.2 Harmonic frequency response

To illustrate the vibration attenuation in periodic beams, a finite quasi-periodic cantilever beam

was examined. The cantilever beam is composed of eight sections A and eight sanctions B and
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Fig. 7 Critical frequencies v.s. Winker foundation modulus
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subjected to a harmonic dynamic support displacement  at the clamed end. The cross-section

is the same as that of the case II. The harmonic dynamic support displacement with amplitude  is

taken as  where  is the imposed frequency. The tip displacement amplitude

δtip at the free end is calculated by the present method. Instead of the band structure for an infinite

structure, the transmitting frequency response function (FRF) is a primary representation of the

dynamic property for the finite periodic beam. The FRF is defined as . Note that if

the displacement  and the tip displacement δtip are the same then the value of FRF will be 0.

Therefore, a negative number in FRF indicates a very effective reduction. It is found that the tip

displacement is strongly reduced when the frequency of support excitation is located within the

band gaps given in Section 5.1. Note that the dimensionless critical frequency  is 0.1932 in this

example. While , the vibration is also attenuated but in a different way. The essential

difference of the two types of attenuations is that the former is caused by the periodicity of

materials and the latter is due to the exiting of foundation.

In order to facilitate a direct comparison of the vibration characteristics, the tip displacements of a

homogeneous uniform concrete beam of the same length and loading input as the periodic beam

discussed above are also calculated. The dimensionless critical frequency for the concrete beam is

0.1549. The results are shown in Fig. 8(b). It is found that homogeneous beams do not exhibit

vibration attenuation while , because there are no band gaps in homogeneous beams as

stated previously. This research also produced results for a steel beam. Although both types of

homogeneous beams have been analyzed, only the results for the concrete beam are presented, as

the results for these two types are quite similar.

As shown in Fig. 8(a), the minimum value of frequency response function (MFRF) indicates the

maximum attenuation. It is a further interesting to study the effect of the foundation on MFRF. The

shear foundation modulus is kept constant but the Winker foundation modulus is varied such that

the ratio  changes from 0 to 50. On contrast, the Winker foundation modulus remains

unchanged but the shear foundation modulus is changed from 0 to 50KG0 ( ).

Figs. 9(a) and 9(b) compare the effect of Kw and KG on MFRF when the imposed frequency falls

into the first band gap and the second band gaps, respectively. Herein,  and

N. It is found that the MFRF is decreased in both band gaps as the increasing of Kw,

w0 τ( )
δ0

w0 τ( ) δ0sin Ω τ,( )= Ω

20log δtip/δ0( )
δ0

ωc

Ω ωc<

Ω ωc>

χ Kw/Kw0=

KG λKG0= λ 0 50,[ ]∈,

Kw0 2 10
7

N/m
2×=

KG0 3 10
6×=

Fig. 8 Frequency response of the tip displacement of finite cantilever beams (a) periodic beam and (b)
homogenous beam. δ0 = 1 mm 
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whereas the MFRF is increased in the first band and, however, decreased in the second band when

the shear modulus KG is changed from 0 to 50KG0.

5.3 Transient response

As an example, the quasi-periodic cantilever described in Section 5.2 is considered but without

elastic foundation. A dynamic support displacement is applied at the fixed end. The support

displacement is assumed to be a sinus function damped by a symmetric exponential function:

 mm, which is plotted in Fig. 10(a). Note that the excitation is

similar to an earthquake motion and the frequency 300 Hz falls into the band gap (214.5 Hz-

391.9 Hz). The tip displacements of the quasi-periodic beam are also illustrated in Fig. 10(a). The

ITS in this example is 0.0001 s. Again, vibration attenuation is observed. However, the dynamic

response at the free end of a homogeneous concrete (or steel) cantilever is enlarged as shown in

Fig. 10(b).

w0 t( ) e 1000 t 0.05–( )
2

– sin 2π 300 t⋅ ⋅( )=

Fig. 9 Effect of elastic foundation on MFRF in the first two band gaps

Fig. 10 Tip displacements history: (a) response of a periodic beam and the support excitation and (b)
response of homogenous beams
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5.4 Effect of foundations on band gaps

In what follows, numerical studies are presented to highlight the effect of elastic foundations on

the first band gap. The ratio  and  N/m2. The shear modulus KG of the

foundation is taken as a constant 3000 kN because both the start frequency and width of the first

band gap in periodic beams are much less sensitive to the changes of shear modulus of the

foundation.

For both cases, I and II, three types of beams with different cell lengths, a = 2 m, 10 m, and

20 m, were analyzed. Figs. 11(a) and 11(b) show the effect of the Winker modulus Kw on the band

width of the first band gap. Figs. 12(a) and 12(b) show the effect of Winkler modulus on start

frequency (lower bound frequency). Both figures are plotted in the domain of χ from 0 to 50. For

the beam of short cell (a = 2 m), both the band width and start frequency increase approximately

linearly. For the beams of longer cell (a = 10 m, a = 20 m), the gap bandwidth shows an initial

rapid increase or sensitivity to increasing Winkler modulus but then levels off or begins to decrease.

χ Kw/Kw0= Kw0 2 10
7×=

Fig. 12 Effect of elastic foundation on start frequencies of the first band gap: (a) uniform cross-section and
(b) variable cross section (section A – rectangle and section B – H section)

Fig. 11 Effect of elastic foundation on the band width of the first band gap (a) uniform cross-section and (b)
variable cross section (section A – rectangle and section B – H section)
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The gap start frequency for the long beams also shows an initial rapid increase with increasing

Winkler modulus ratio, but then increases only constantly. Obviously, the Winker foundation

modulus increment enhances the beam stiffness and thus increases the start frequency of band gaps.

Figs. 13(a) and 13(b) show the effect of length a on the band width of the first band gap in

periodic beams for the two case I and II with χ = 0, 1 and 5. A significant effect of the length a is

observed, especially as the value of a gets smaller and smaller. A regular trend is not observable for

bandwidth for either type of beams with long length values of a. However, it is noted that as the

length a becomes larger and larger, the beam becomes a beam with two semi-infinite homogeneous

beam sections. As previously mentioned, homogeneous beams do not exhibit frequency band gaps.

The band width should tend to zero as . To explain this more clearly, Table 3 lists the

dimensionless start frequencies of the first band gap with different length a and Winker foundation

modulus (Kw = 0, Kw0 and 5Kw0). This research has shown that the start frequencies decrease as the

length a increases. Furthermore, the effect of Winker foundation modulus on the start frequencies

a +∞→

Fig. 13 Effect of the length a on the band width of the first band gap: (a) uniform cross-section and (b)
variable cross section (section A – rectangle and section B – H section)

Table 3 Dimensionless start frequency of the first band gap in periodic composite beams

a (m)
Uniform cross section Variable cross section

K
w
 = 0 K

w
 = K

w0 K
w
 = 5K

w0 K
w
 = 0 K

w
 = K

w0 K
w
 = 5K

w0

1.5 0.3980 0.3983 0.3998 0.3841 0.3853 0.3901 

2 0.2682 0.2687 0.2708 0.2592 0.2609 0.2679 

2.5 0.1922 0.1929 0.1958 0.1860 0.1885 0.1979 

3 0.1381 0.1400 0.1474 0.1394 0.1427 0.1549 

3.5 0.1035 0.1060 0.1157 0.1080 0.1122 0.1274 

4 0.0803 0.0836 0.0958 0.0859 0.0911 0.1093 

4.5 0.0641 0.0683 0.0810 0.0699 0.0760 0.0971 

5 0.0523 0.0574 0.0702 0.0578 0.0652 0.0889 

10 0.0136 0.0233 0.0409 0.0159 0.0341 0.0689 

20 0.0036 0.0172 0.0364 0.0043 0.0300 0.0650 
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becomes more and more significant as the length a increase. The start frequencies with different Kw

are almost equal when a = 1.5 m. However, the start frequency for Kw = 5Kw0 is almost ten times of

that for Kw = 0 when a = 20 m. Therefore, a periodic beam can be designed to isolate vibrations for

a specified or desired frequency.

6. Conclusions

Based on the Timoshenko beam theory, the differential quadrature method was introduced to

analyze the free vibration, frequency response, time history response and frequency band gaps of

periodic and quasi-periodic beams on Pasternak foundation. The following conclusions may be

drawn from the present analysis:

1) Vibration attenuation for exciting frequency located at band gaps was observed, which can

form the basis of new techniques for the vibration isolation of structures.

2) The so-called critical frequency is found because of the foundation. Theory analysis shows that

the critical frequency is highly dependent on the Winkler foundation modulus Kw instead of the

shear foundation modulus KG..

3) The effect of foundation and the cell length a on band gaps in periodic beams is non-negligible.

For beams with shorter cell, the band width decreases dramatically as the cell length increases,

which means the cell length plays more important role on the band gaps. On the other side, the

larger value of length a, the effect of foundation on the band gaps are more sensitive. Therefore,

we can adjust the cell length to get a appreciate band gap for a certain foundation or soil

condition.

Although we only demonstrate the DQM for periodic beams, it is firmly believed that the method

can be extended to two or three dimensional periodic structures. Further effort can be done on

higher dimensional periodic structures and their applications in, for example, civil engineering.
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