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Post-buckling analysis of Timoshenko beams with various 
boundary conditions under non-uniform thermal loading
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Abstract. This paper focuses on post-buckling analysis of Timoshenko beams with various boundary
conditions subjected to a non-uniform thermal loading by using the total Lagrangian Timoshenko beam
element approximation. Six types of support conditions for the beams are considered. The considered
highly non-linear problem is solved by using incremental displacement-based finite element method in
conjunction with Newton-Raphson iteration method. As far as the authors know, there is no study on the
post-buckling analysis of Timoshenko beams under uniform and non-uniform thermal loading considering
full geometric non-linearity investigated by using finite element method. The convergence studies are
made and the obtained results are compared with the published results. In the study, the relationships
between deflections, end rotational angles, end constraint forces, thermal buckling configuration, stress
distributions through the thickness of the beams and temperature rising are illustrated in detail in post-
buckling case. 

Keywords: geometrical non-linearity; post-buckling analysis; total lagrangian finite element model;
Timoshenko beam; non-uniform temperature rise 

 

 

1. Introduction

 

Aerospace vehicles, nuclear power plants, thermal power plants etc. are subject to thermal

loadings. In the case of beams with immovable ends, temperature rise causes compressible forces

end therefore buckling phenomena occurs. In recent years, much more attention has been given to

the thermal buckling of beam structures. Rao and Raju (1984) investigated thermal postbuckling of

columns. 

Global descriptions of the properties of buckled states of nonlinearly thermoelastic beams and

plates when heated at their ends and edges is investigated by Gauss and Antman (1984). Jekot

(1996) investigated the thermal postbuckling of a beam made of physically nonlinear thermoelastic

material by using the geometric equations in the von-Karman strain-displacement approximation. Li

(2000) examined Thermal Post-Buckling of Rods with Pinned-Fixed Ends using the shooting

method. Coffin and Bloom (1999) gave an elliptic integral solution for the symmetric post-buckling

response of a linear elastic and hygrothermal beam with the two ends pinned. On the basis of exact
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nonlinear geometric theory of extensible beam and by using a shooting method, computational

analysis for thermal post buckling behavior of beams with pinned-pinned, fixed-fixed and pinned-

fixed ends were presented by Li and Cheng (2000), Li et al. (2002) and Li and Zhou (2001).

Thermal post-buckling responses of an elastic beam, with immovably simply supported ends and

subjected to a transversely non-uniformly distributed temperature rising, were investigated by Li et

al. (2003). Thermal post-buckling response of an immovably pinned-fixed Timoshenko beam

subjected to a static transversely nonuniform temperature rise is numerically analyzed by using a

shooting method by Li and Zhou (2003).

Based on the finite element method, the analysis of heat conduction and structural stress and

buckling are considered at the same time in the design optimization procedure by Chen et al.

(2003). Vaz and Solano (2003, 2004) investigated thermal post-buckling of rods and came up with a

closed form solution via uncoupled elliptical integrals. Large thermal deflections for Timoshenko

beams subjected to transversely non-uniform temperature rise and with pinned-pinned as well as

fixed-fixed ends are numerically analyzed by Li and Song (2006). Aristizabal-Ochao (2007)

developed a new set of slope deflection equations for Timoshenko beam-columns which includes

the combined effects of shear and bending deformations, and second-order axial load effects in a

classical manner and emphasized the great importance of shear effects on static, tension and

compression stability and dynamic behavior of elastomeric bearings used for seismic isolation. Both

thermal buckling and post-buckling of pinned-fixed beams resting on an elastic foundation are

investigated by Song and Li (2007). Vaz et al. (2007) examined a perturbation solution for the

initial post-buckling of beams that were supported on an elastic foundation under uniform thermal

load. The large-deflection analysis and post-buckling behavior of laterally braced or unbraced

slender beam-columns of symmetrical cross section subjected to end loads (forces and moments)

with both ends partially restrained against rotation, including the effects of out-of-plumbness and a

new set of slope-deflection equations for Timoshenko beam-columns of symmetrical cross section

with semi-rigid connections that include the combined effects of shear and bending deformations,

and second-order axial load effects are developed in a classical manner by Aristizabal-Ochao

(2008). Evandro and Joao (2008) investigated a simple and efficient methodology for sensitivity

analysis of geometrically nonlinear structures subjected to thermo-mechanical loading in regular and

critical states. Thermal post-buckling analysis of uniform, isotropic, slender and shear flexible

columns is presented using a rigorous finite element formulation and a much simpler intuitive

formulation by Gupta et al. (2009). Gupta et al. (2010) investigated simple, elegant, and accurate

closed-form expressions for predicting the post-buckling behavior of composite beams with axially

immovable ends using the Rayleigh-Ritz method. Thermal post-buckling analysis of columns with

axially immovable ends is studied using the Rayleigh-Ritz method by Gupta et al. (2010). Vaz et al.

(2010) examined a perturbation solution for the initial post-buckling behavior of slender beams that

were assumed to be double-hinged with fixed ends, preventing thermal expansion. Akba  and

Kocatürk (2011) investigated post-buckling analysis of a simply supported beam subjected to a

uniform thermal loading by using total Lagrangian finite element model of two dimensional

continuum for an eight-node quadratic element.

As far as the authors know, there is no study on the post-buckling analysis of Timoshenko beams

under uniform and non-uniform thermal loading considering full geometric non-linearity

investigated by using finite element method: Gupta et al. (2009) investigated the post-buckling

analysis of beams under thermal loading by using finite element method and von-Karman strain-

displacement approximation in which full geometric non-linearity cannot be considered. In von
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Karman nonlinear strain approximation, because of neglect of some components of strain,

satisfactory results can be obtained only for large displacements but moderate rotations. In the

present study, the post buckling analysis of Timoshenko beams under non-uniform thermal loading

with various boundary conditions is considered by using total Lagrangian finite element method in

which full geometric nonlinearity can be considered as distinct from the study of Gupta et al.

(2009).

The development of the formulations of general solution procedure of nonlinear problems follows

the general outline of the derivation given by Zienkiewichz and Taylor (2000). The related

formulations of post-buckling analysis of Timoshenko beams with various boundary conditions

subjected to a non-uniform thermal loading are obtained by using the total Lagrangian finite

element model of Timoshenko beam. Convergence studies are performed for various numbers of

elements. In deriving the formulations for post buckling analysis under non-uniform thermal

loading, the total Lagrangian Timoshenko beam element formulations given by Felippa (2010) are

used. There is no retstriction on the magnitudes of deflections and rotations in contradistinction to

von-Karman strain displacement relations of the beam. The relationships between deflections, end

rotational angles, end constraint forces, thermal buckling configuration, stress distributions through

the thickness of the beams and temperature rising are illustrated in detail in post-buckling case.

Convergence study is performed for various numbers of elements.

 

2. Theory and formulations

 

 The various beam configurations, made of isotropic, elastic material, with co-ordinate system

O(XYZ), considered in the present study are shown in Fig. 1 and their boundary conditions are

given in Table 1.

While the derivation of the governing equations for most problems is not unduly difficult, their

solution by exact methods of analysis is a formidable task. In such cases, numerical methods of

analysis provide an alternative means of finding solutions. Numerical methods typically transform

differential equations to algebraic equations that are to be solved by using computers. The

considered problem is a nonlinear one. Even linear problems may not admit exact solutions due to

geometric and material complexities, but it is relatively easy to obtain approximate solutions using

numerical methods (Reddy 2004). There are some solutions for the special cases of boundary and

loading conditions for large displacements of beams in the framework of Euler-Bernoulli beam

theory. For the solution of the total Lagrangian formulations of TL plane beam problem, small-step

incremental approaches from known solutions are used. In this study, the TL Timoshenko beam

element is used and the related formulations are developed by using the formulations given by

Felippa (2010). In the present study, finite element model of Timoshenko beam element is

developed by using a two-node beam element shown in Fig. 2. Each node has three degrees of

freedom: Two node displacements uxi and uyi, and one rotation  about Z axis. 

A particle originally located at  moves to  in the current configuration, as shown

in Fig. 3. The projections of P0 and P along the cross sections at  and C upon the neutral axis

are called  and , respectively. It will be assumed that the cross section of the

beam dimensions do not change, and that the shear distortion γ << 1 so that cosγ can be replaced by

1. Then Felippa (2010)

 

θi

P0 X Y,( ) P x y,( )
C0

C0 X 0,( ) C xc yc,( )
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Fig. 1 Beams with various boundary conditions 

Table 1 Boundary conditions of the beams

 Boundary configurations  Boundary conditions

 P-P

 C-C

 P-C

 P-G2

 C-G1

 C-G2

uX 0( ) uX L( ) uY 0( ) uY L( ) 0= = = =

uX 0( ) uX L( ) uY 0( ) uY L( ) θ 0( ) θ L( ) 0= = = = = =

uX 0( ) uX L( ) uY 0( ) uY L( ) θ L( ) 0= = = = =

uX 0( ) uX L( ) uY 0( ) θ L( ) 0= = = =

uX 0( ) uX L( ) uY 0( ) θ 0( ) 0= = = =

uX 0( ) uX L( ) uY 0( ) θ 0( ) θ L( ) 0= = = = =
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(1)

  (2)

 
where  and . Consequently,  and . From

now on we shall call uXC and uYC simply uX and uY, respectively, so that the Lagrangian

representation of the motion is

x xc Y sinψ sinγcosψ+( )– xc Y sin ψ γ+( ) 1 cosγ–( )sinψ+[ ] xc Ysinθ–=–= =

y yc Y cosψ sinγsinψ–( )+ yc Y cos ψ γ+( ) 1 cosγ–( )cosψ+[ ] yc Ycosθ+=+= =

xc X uXC+= yc uXC= x X uXC Ysinθ–+= y uYC Ycosθ+=

 Fig. 2 A two-node C0 beam element

Fig. 3 Lagrangian kinematics of the C0 beam element with X-aligned reference configuration: (a) plane beam
moving as a two-dimensional body, (b) reduction of motion description to one dimension measured by
coordinate X. This Fig. is given by Felippa (2010)
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in which uX, uY and θ are functions of X only. This concludes the reduction to a one-dimensional

model, as sketched in Fig. 3(b). For a two-node C0 element, it is natural to express the

displacements and rotation functions as linear in the node displacements

 

 (4)

 

in which  is the isoparametric coordinate that varies from  at node 1 to

 at node 2. 

The Green-Lagrange strain-displacement relations are given by Felippa (2010) as follows 

(5)

 

(6)

 

where e is the axial strain, γ is the shear strain, κ is curvature of the beam, ,

, . The second Piola-Kirchhoff stresses with a non-uniform temperature

rise can be expressed as follows 

(7)

 

where  are initial stresses, E is the modulus of elasticity, G is the shear modulus, αX is

coefficient of thermal expansion in the X direction, T is the temperature. Variation of the

temperature along the beam height can be expressed as

 

(8)

 

where TT and TB are the temperature rise of the top and the bottom surfaces of the beam,

 is the average value of the top and bottom temperature rising,  is the

difference value of the top and bottom temperature rise. In this study, . 

Using constitutive equations, axial force N, shear force V and bending moment M can be obtained

as

 

 (9)

  

x

y

X ux Ysinθ–+

uy Ycosθ+
=

 

ξ 2X/L0( ) 1–= ξ 1–=

ξ 1=

 

 

uX′ uX/ Xdd=

uY′ uY/ Xdd= θ ′ θ/ Xdd=

 

s1
0

s2
0,

T
TT TB+

2
----------------

TT TB–( )
h

---------------------Y+ TM

TD

h
------Y+= = 0.5h– Y 0.5h≤ ≤

TM TT TB/2+= TD TT TB–( )=

TD 0≥

N s1 Ad
A
∫ s1

0
E e1 αXT–( )+[ ] Ad

A
∫ N

0
EeA EαX

TT TB+

2
----------------⎝ ⎠
⎛ ⎞A–+= = =
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(10)

(11)

 

where

 

, ,  (12)

 
The element tangent stiffness matrix for the total Lagrangian Timoshenko plane beam element is

as follows which is given by Felippa (2010)

 

 (13)

 

where KG is the geometric stiffness matrix, and KM is the material stiffness matrix given as follows

by Felippa (2010)

 

 (14)

 

After integration of Eq. (14), KM can be expressed as follows

 

  (15)

 

where  is the axial stiffness matrix,  is the bending stiffness matrix,  is the shearing

stiffness matrix and Bm is

 

(16)

 

where m stands for beam midpoint, ξ = 0, and , , ,

, , and  (See Fig. 4 for symbols). The

axis of the considered beam initially is taken as horizontal, therefore ϕ = 0. The matrix S is defined

as follows 

 

  (17)

 

Performing the integral in Eq. (14) gives

V s2 Ad
A
∫ s2

0
Ge2+[ ] Ad

A
∫ V

0
A0γ+= = =

M Ys1– Ad
A
∫ Y s1

0
E e1 αXT–( )+[ ]– Ad

A
∫ M

0
EI0 κ αX

TT TB–( )
h

---------------------+⎝ ⎠
⎛ ⎞+= = =

N
0

s1
0

Ad
A
0

∫= V
0

s2
0

Ad
A
0

∫= M
0

Ys1
0

– Ad
A
0

∫=

KT KM KG+=

KM Bm

T
SBm Xd

L
0

∫=

KM KM

a
KM

b
KM

s
+ +=

KM

a
KM

b
KM

s

Bm B
ξ 0=

1

L0

-----

cm  – sm  –
1

2
---L0γm  – cm  sm  

1

2
---L0γm–

sm  cm  –
1

2
---L0 1 em+( ) sm cm  –

1

2
---L0 1 em+( )

0 0 1  – 0 0 1

= =

θm θ1 θ2+( )/2= ωm θm ϕ+= cm cosωm=

sm sinωm= em Lcos θm ψ–( )/L0 1–= γm Lsin ψ θm–( )/L0=

S

EA0  0  0

0  GA0  0

0  0  EI0

=
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(18)

(19)

  

 

 

 

Fig. 4 Plane beam element with arbitrarily oriented reference configuration. This figure is given by Felippa
(2010) 
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(20)

where . The geometric stiffness matrix KG remains the same as follows as obtained by

Felippa (2010)

 

 

(21)

in which Nm and Vm are the axial and shear forces which are evaluated at the midpoint. The internal

nodal force vector is as follows as obtained by Felippa (2010)

 

 (22)

where . The external nodal force vector can be expressed as follows

 

α1 1 em+=

KG

Nm

2
------

0  0  sm  0  0  sm

0  0  cm  – 0  0  cm–

sm  cm  –
1

2
---L0 1 em+( )  – sm  – cm  

1

2
---L0 1 em+( )–

0  0  sm  – 0  0  sm–

0  0  cm  0  0  cm

sm  cm  –
1

2
---L0 1 em+( )–   sm  – cm  

1

2
---L0 1 em+( )–

=

 
Vm

2
------

0  0  cm  0  0  cm

0  0  sm  0  0  sm

cm  sm  
1

2
---L0γm  – cm  – sm  –

1

2
---L0γm–

0  0  cm  – 0  0  cm–

0  0  sm  – 0  0  sm–

cm  sm  
1

2
---L0γm–   cm  – sm  

1

2
---L0γm–

+

p L0Bm

T
z

cm  – sm  –
1

2
---L0γm  cm  sm  

1

2
---L0γm

sm  cm  –
1

2
---– L0 1 em+( ) sm cm  –

1

2
---– L0 1 em+( )

0 0 1  – 0 0 1

T

N

V

M

= =

z
T

N  V  M[ ]=
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 (23)

 

where  are the body forces, , mZ are the surface loads in the X, Y directions and about the

Z axis, he is the thickness, h is the height. In the study, body forces, the surface loads tX in the X

direction and mZ about the Z axis are taken as zero. For the solution of the total Lagrangian

formulations of TL Timoshenko beam element, small-step incremental approaches from known

solutions with Newton-Raphson iteration method are used in which the solution for n+1th load

increment and ith iteration is obtained in the following form

 

  (24)

 

where  is the system stiffness matrix corresponding to a tangent direction at the ith iteration,

 is the solution increment vector at the ith iteration and n+1th load increment,  is the

system residual vector at the ith iteration and n+1th load increment. This iteration procedure is

continued until the difference between two successive solution vectors is less than a selected

tolerance criterion in Euclidean norm given by

 

  (25)

 

A series of successive approximations gives

 

  (26)

 

where

 

  (27)

 

The tangent stiffness matrix  for a finite element which are to be used in Eq. (24) at the ith

iteration for the total Lagrangian finite element model of TL Timoshenko plane beam element is

separated into two parts as follows

 (28)

 

where KM is the material stiffness matrix given in explicit form by Eqs. (18)-(20), KG is the

geometric stiffness matrix given in explicit form by Eq. (21) for the total Lagrangian plane beam

element. The residual vector  for a finite element is as follows

f he

1 ξ1  – 0  0

0 1 ξ1  – 0

0 0 1 ξ1–

1 ξ2– 0 0

0 1 ξ2  – 0

0 0 1 ξ2–

fX

fY

0

X Ydd he

1 ξ1  – 0  0

0 1 ξ1  – 0

0 0 1 ξ1–

1 ξ2– 0 0

0 1 ξ2  – 0

0 0 1 ξ2–

tX

tY

mZ

Xd
L
0

∫+
L
0

∫
h
∫=

fX fY, tX tY,

un

i
d KT

i( )S
1–

Rn 1+

i( )S=

KT

i( )S
un

i
d Rn 1+

i( )S

un

i 1+
d un

i
d–( )

T
un

i 1+
d un

i
d–( )[ ]

2

un

i 1+
d( )

T
un

i 1+
d( )[ ]

2
----------------------------------------------------------------------- ζtol≤

un 1+

i 1+
un 1+

i
un 1+

i
d+ un un

i∆+= =

un

i∆ un

k
d

k 1=

i

∑=

KT

i( )e

KT KM KG+=

Rn 1+

i
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  (29)

where f is the vector of external forces given by Eq. (23) and p is the vector of internal forces

given by Eq. (22).

After obtaining the displacements of nodes, the second Piola-Kirchhoff stress tensor components

 can be obtained by using Eq. (7). It is known that the relation between the Cauchy

stress tensor components  and the second Piola-Kirchhoff stress tensor components

 can be written as follows

 

  (30a)

 (30b)

 (30c)

where 0ρ and ρ represent the mass densities of the material in configurations C0 and C, respectively.

The relations between the Lagrange coordinates X, Y and Euler coordinates x, y are given by

Eqs. (1), (2). The relation between 0ρ and ρ is as follows 

 (31)

where J is the determinant of the deformation gradient tensor F (or the Jacobian of the

transformation) and defined as follows

  (32)

 

In this study, it is assumed that 0ρ = ρ.

The beams considered in numerical examples are elastic, with undeformed length L, rectangular

cross-section of width b and thickness h (see Fig. 1). 

The dimensionless quantities can be expressed as

 

,

, ,

, (33)

 

Rn 1+

i
f p–=

Sxx Sxy Syy, ,
σxx σxy σyy, ,

Sxx Sxy Syy, ,

σxx
ρ
2

ρ
0
-----

∂x

∂X
------

∂x

∂X
------Sxx 2

∂x

∂X
------

∂x

∂Y
------Sxy

∂x

∂Y
------

∂x

∂Y
------Syy+ +⎝ ⎠

⎛ ⎞=

σyy
ρ
2

ρ
0
-----

∂y

∂X
------

∂y

∂X
------Sxx 2

∂y

∂X
------

∂y

∂Y
------Sxy

∂y

∂Y
------

∂y

∂Y
------Syy+ +⎝ ⎠

⎛ ⎞=

σxy
ρ
2

ρ
0
-----

∂x

∂X
------

∂x

∂X
------Sxx 2

∂X

∂X
------

∂y

∂Y
------Sxy

∂x

∂Y
------

∂y

∂Y
------Syy+ +⎝ ⎠

⎛ ⎞=

ρ
0

ρJ=

J det F( )

∂x

∂X
------  

∂x

∂Y
------  

∂x

∂Z
------

∂y

∂X
------  

∂y

∂Y
------  

∂y
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------
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∂X
------  

∂z

∂Y
------  

∂z
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------

= =

ξ
X
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---, η

Y

L
---, U

ux

L
----, V

uy
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----= = = =

τM 12δ
2
αxTM= τD 12δ
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αxTD=
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2

EI
-----------= PV
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2

EI
-----------= M
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-------=

σXX

σXX
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Where PH is dimensionless constraint force in the horizontal direction, PV is dimensionless

constraint force in the vertical direction, M is dimensionless constraint moment,  is

dimensionless Cauchy normal stress,  is dimensionless shear stress and δ is the ratio of L/h

(lenght/height). 

When τD = 0, then the temperature rise is uniform.

 

 

3. Numerical results

In the numerical examples, the geometrically non-linear static deflections as well as the Cauchy

normal and the Cauchy shear stresses are calculated and presented in figures. To this end, by use of

usual assembly process, the system tangent stiffness matrix and the system residual vector are

obtained by using the element stiffness matrixes and element residual vectors for the total

Lagrangian Timoshenko plane beam element. After that, the solution process outlined in the

previous section is used for obtaining the related solutions for the total Lagrangian finite element

model of Timoshenko plane beam element. The beams considered in numerical examples are made

of lower-carbon steel: Coefficient of thermal expansion is taken as , Young’s

modulus is taken as E = 210 GPa, Poisson’s ratio is taken as ν = 0.2875. Convergence and

comparison studies are also performed. In the geometrically non-linear case, the Cauchy stresses

(true stresses) can be obtained by using Eqs. (30a-c) after obtaining the second Piola-Kirchhoff

stresses by using Eq. (7).

In Table 2, the dimensionless central deflections f = V(0.5) of the beam with various boundary

conditions under dimensionless non-uniform temperature loading are calculated for various numbers

of finite elements for various boundary conditions and number of finite element m for L/h = 5. It is

seen from Table 2 that, when the number of finite elements is m = 60, the considered displacements

converge perfectly. Therefore, in the numerical calculations, the number of finite elements is taken

as m = 60.

σXX

σXY

αX 12 12
6–
 1/ C

o×=

Table 2 Convergence analysis for the dimensionless central deflections f = V(0.5) of the beam with various
boundary conditions and number of finite elements m for L/h = 5

The dimensionless central deflections f = V(0.5) of the beam

m
P-P

τM = 70
τD = 40

C-C

τM = 80
τD = 60

P-C

τM = 50
τD = 40

P-G2

τM = 40
τD = 30

C-G1

τM = 40
τD = 30

C-G2

τM = 40
τD = 30

6 0.3108 0.3243 0.2227 0.3121 0.1282 0.2195

10 0.3085 0.3177 0.2207 0.3114 0.1278 0.2184

20 0.3075 0.3149 0.2199 0.3112 0.1277 0.2180

30 0.3073 0.3144 0.2197 0.3111 0.1277 0.2179

40 0.3073 0.3142 0.2197 0.3111 0.1277 0.2178

50 0.3072 0.3142 0.2196 0.3111 0.1277 0.2178

60 0.3072 0.3141 0.2196 0.3111 0.1277 0.2178

70 0.3072 0.3141 0.2196 0.3111 0.1277 0.2178

80 0.3072 0.3141 0.2196 0.3111 0.1277 0.2178
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In order to establish the accuracy of the present formulation and the computer program developed

by the authors, the results obtained from the present study are compared with the available results in

the literature. For this purpose, the dimensionless specified deflections f = V(0.4) and left-end

rotational angle  (degree) with various dimensionless non-uniform temperature parameter

τD for L/h = 20 and E/G = 5 at pinned-fixed (P-C) beam are calculated and compared with those of

Li and Zhou (2003). It is clearly seen that Fig. 5 and Fig. 6 of the present study are the same as

Fig. 6(b) and Fig. 7(b) of Li and Zhou (2003).

θ θ 0( )=

Fig. 5 Dimensionless deflection f = V(0.4) versus
mean temperature rise τM for given some non-
uniform temperature parameter τD at L/h = 20
and E/G = 5 (pinned-fixed).

 τD = 0,  τD = 10, 
τD = 20,  τD = 30
       ( ) _ _ _( ) ……( )

_._._( )

Fig. 6 Left-end rotational angle θ = θ(0) (degree)
versus mean temperature rise τM for given
some non-uniform temperature parameter τD
at L/h = 20 and E/G = 5 (pinned-fixed).

 τD = 0,  τD = 10, 
τD = 20,  τD = 30  
       ( ) _ _ _( ) ……( )

_._._( )

Fig. 7 Dimensionless deflection f = V(0.5) versus
mean temperature rise τM for some given
ratios of L/h for pinned-pinned beam.

 L/h = 20,  L/h = 15, 
L/h = 10,  L/h = 5

       ( ) _ _ _( ) ……( )
_._._( )

Fig. 8 Left-end rotational angle θ = θ(0) (degree)
versus mean temperature rise τM for some
given ratios of  L/h for pinned-pinned beam.

 L/h = 20,  L/h = 15, 
L/h = 10,  L/h = 5 

       ( ) _ _ _( ) ……( )
_._._( )
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To further verify the present results, the dimensionless central deflections f = V(0.5) and left-end

rotational angle  (degree) versus mean temperature rise τM for some given ratio of L/h at

pinned-pinned beam are calculated and compared with those of Li and Song (2006) by using the

material properties used in Li and Song (2006) under uniform temperature rising. In the study of Li

and Song (2006), the ratio of the elasticity modulus and shear modulus is taken as E/G = 206/80.

Comparisons of Fig. 7, Fig. 8 with Fig. 1(a), Fig. 2 of Li and Song (2006) show that there is a

perfect harmony between the present results and those of Li and Song (2006).

In Fig. 9, the thermal buckled configurations of the beam with various boundary conditions are

shown for L/h = 20, τM = 50, τD = 0, and τM = 80, τD = 30.

In Table 3, dimensionless central deflections f = W(0.5) and the left-end rotational angle φ = ϕ(0)

(degree) are calculated, respectively, for various dimensionless non-uniform temperature rise τD and

geometric parameter L/h with various boundary conditions. It is seen from Table 3 that, with

increase in the ratio L/h, central dimensionless deflections and rotational angles decrease gradually.

In Table 4, dimensionless end constraint force PH in the horizontal direction, PV in the vertical

direction and end constraint moment M is calculated, respectively, for various dimensionless non-

uniform temperature rise τD and geometric parameter L/h for various boundary conditions. It is

known that the thermal buckling occurs when the temperature is greater than the critical temperature

value, namely when . The dimensionless critical buckling temperatures for mean temperature

rise τM with various boundary conditions for L/h = 20 are obtained and given in Table 5. The values

of temperatures given in Table 4 are higher than critical buckling temperatures ( ).

From the mechanical viewpoint, it is evident that PV = 0 for P-P, C-C, C-G1, C-G2 and P-G2

support conditions. This situation can also be seen from Table 4. It can also be seen from Table 4

that increase in the dimensionless non uniform temperature rise τD, causes gradual decrease in the

magnitude of dimensionless end constraint forces PH for all support conditions and PV for P-C

support condition.

Investigation of Table 4 and Figs. 11(a) and 15(a) reveals an interesting result: It is seen from

Table 4 that horizontal end constraint force PH is the same for all the values of τD for C-C and C-

θ θ 0( )=

τ τcr>

τ τcr>

Fig. 9 Thermal buckling configuration of the beam with various boundary conditions for L/h = 20 for (a)
τM = 50, τD = 0, (b) τM = 80, τD = 30
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Table 3 Variation of the dimensionless central deflections f = W(0.5) and the left-end rotational angle φ = ϕ(0)
(degree) for τD = 50 with dimensionless non-uniform temperature rise τD and geometric parameter L/h
for various boundary conditions 

τM = 50 L/h

τD
Boundary 
conditions

10 15 20

f = W(0.5) θ = θ(0) f = W(0.5) θ = θ(0) f = W(0.5) θ = θ(0)

10

P-P 0.1196 20.5378 0.0789 14.0849 0.0590 10.6796

C-C 0.0800 0 0.0471 0 0.0332 0

P-C 0.0976 22.3298 0.0630 15.2101 0.0466 11.5110

P-G2 0.1816 23.2539 0.1208 15.7202 0.0905 11.8503

C-G1 0.0781 0 0.0515 0 0.0384 0

C-G2 0.1188 0 0.0783 0 0.0585 0

15

P-P 0.1199 20.9193 0.0792 14.3290 0.0592 10.8594

C-C 0.0800 0 0.0471 0 0.0332 0

P-C 0.0977 22.7393 0.0631 15.4754 0.0467 11.7077

P-G2 0.1824 23.7923 0.1213 16.0699 0.0909 12.1099

C-G1 0.0793 0 0.0522 0 0.0390 0

C-G2 0.1188 0 0.0783 0 0.0585 0

20

P-P 0.1203 21.2976 0.0794 14.5707 0.0594 11.0373

C-C 0.0800 0 0.0471 0 0.0332 0

P-C 0.0978 23.1452 0.0632 15.7379 0.0468 11.9023

P-G2 0.1831 24.3228 0.1218 16.4141 0.0913 12.3654

C-G1 0.0805 0 0.0530 0 0.0396 0

C-G2 0.1188 0 0.0783 0 0.0585 0

30

P-P 0.1210 22.0452 0.0799 15.0472 0.0598 11.3878

C-C 0.0800 0 0.0471 0 0.0332 0

P-C 0.0980 23.9465 0.0634 16.2551 0.0469 12.2854

P-G2 0.1844 25.3617 0.1227 17.0876 0.0920 12.8650

C-G1 0.0831 0 0.0546 0 0.0408 0

C-G2 0.1188 0 0.0783 0 0.0585 0

50

P-P 0.1222 23.5075 0.0809 15.9750 0.0605 12.0691

C-C 0.0800 0 0.0471 0 0.0332 0

P-C 0.0984 25.5119 0.0637 17.2610 0.0472 13.0293

P-G2 0.1868 27.3598 0.1244 18.3796 0.0932 13.8227

C-G1 0.0884 0 0.0581 0 0.0434 0

C-G2 0.1188 0 0.0783 0 0.0585 0
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Table 4 Variation of the dimensionless end constraint force PH in the horizontal direction, PV in the vertical
direction and end constraint moment M with dimensionless non-uniform temperature rise τD and
geometric parameter L/h for τD = 50 for various boundary conditions 

τM = 50 L/h

Boundary 
conditions

10 15 20

PH PV M PH PV M PH PV M

10

P-P 8.3103 0 0 8.6563 0 0 8.7912 0 0

C-C 32.1678 0 13.6988 35.5897 0 13.4035 37.1609 0 13.1528

P-C 16.9707 1.3913 0 18.2592 0.9658 0 18.7977 0.7362 0

P-G2 1.9748 0 0 2.0159 0 0 2.0310 0 0

C-G1 2.7927 0 0.7159 2.8445 0 0.4834 2.8635 0 0.3643

C-G2 9.1458 0 1.0036 9.5238 0 0.8017 9.6717 0 0.6077

15

P-P 7.8969 0 0 8.2273 0 0 8.3560 0 0

C-C 32.1678 0 14.1154 35.5897 0 13.8202 37.1609 0 13.5694

P-C 16.6852 1.4340 0 17.9569 0.9946 0 18.4877 0.7579 0

P-G2 1.7721 0 0 1.8107 0 0 1.8249 0 0

C-G1 2.9995 0 0.7696 3.0541 0 0.5194 3.0742 0 0.3913

C-G2 9.1458 0 0.9619 9.5238 0 0.8295 9.6717 0 0.6285

20

P-P 7.4871 0 0 7.8023 0 0 7.9250 0 0

C-C 32.1678 0 14.5321 35.5897 0 14.2369 37.1609 0 13.9861

P-C 16.4018 1.4768 0 17.6572 1.0234 0 18.1806 0.7796 0

P-G2 1.5700 0 0 1.6061 0 0 1.6194 0 0

C-G1 3.2075 0 0.8236 3.2649 0 0.5556 3.2861 0 0.4185

C-G2 9.1458 0 0.9203 9.5238 0 0.8572 9.6717 0 0.6493

30

P-P 6.6780 0 0 6.9640 0 0 7.0750 0 0

C-C 32.1678 0 15.3654 35.5897 0 15.0702 37.1609 0 14.8194

P-C 15.8408 1.5624 0 17.0650 1.0812 0 17.5741 0.8231 0

P-G2 1.1672 0 0 1.1986 0 0 1.2101 0 0

C-G1 3.6275 0 0.9326 3.6908 0 0.6287 3.7141 0 0.4734

C-G2 9.1458 0 0.8369 9.5238 0 0.9128 9.6717 0 0.6910

50

P-P 5.0975 0 0 5.3287 0 0 5.4180 0 0

C-C 32.1678 0 17.0321 35.5897 0 16.7369 37.1609 0 16.4861

P-C 14.7400 1.7341 0 15.9067 1.1968 0 16.3896 0.9101 0

P-G2 0.1868 0 0 0.3882 0 0 0.3964 0 0

C-G1 4.4895 0 1.1552 4.5649 0 0.7777 4.5927 0 0.5854

C-G2 9.1458 0 0.6703 9.5238 0 1.0239 9.6717 0 0.7743
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Fig. 10 Dimensionless central deflections f = W(0.5), left-end rotational angle φ = ϕ(0) (degree) and
dimensionless end constraint force PH in the horizontal direction versus mean temperature rise τM for
some given non-uniform temperature parameter τD for P-P boundary condition at L/h = 20. (a) f =
W(0.5) (b) φ = ϕ(0), (c) PH

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )

Table 5 The dimensionless critical buckling temperatures for mean temperature
 rise τM with various boundary conditions for L/h = 20

L/h = 20

Boundary conditions

P-P 9.704

C-C 37.14

P-C 19.45

P-G2 2.45

C-G1 2.45

C-G2 9.701

τM τcr=

G2 support conditions. It is also seen from Figs. 11(a) and 15(a) that central deflections of the beam

are the same for all values of τD for C-C and C-G2 support conditions. As far as the authors know,

this is a new result. However, it is seen from Table 4 and Figs. 11(b), 15(b) that, the end constraint

moment is not the same for C-C and C-G2 support conditions.
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Fig. 11 Dimensionless central deflections f = W(0.5) and dimensionless end constraint moment M versus
mean temperature rise τM for some given non-uniform temperature parameter τD for C-C boundary
condition for L/h = 20. (a) f = W(0.5), (b) M

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )

Fig. 12 Dimensionless central deflections f = W(0.5), the left-end rotational angle φ = ϕ(0) (degree) and
dimensionless end constraint force PH in the horizontal direction versus mean temperature rise τM for
some given non-uniform temperature parameter τD for P-C boundary condition for L/h = 20. (a) f =
W(0.5), (b) φ = ϕ(0), (c) PH 

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )
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Fig. 14 Dimensionless central deflections f = W(0.5) and dimensionless end constraint moment M versus
mean temperature rise τM for some given non-uniform temperature parameter τD for C-G1 boundary
condition for L/h = 20. (a) f = W(0.5), (b) M

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )

Fig. 13 Dimensionless central deflections f = W(0.5), the left-end rotational angle φ = ϕ(0) (degree) and
dimensionless end constraint force PH in the horizontal direction versus mean temperature rise τM for
some given non-uniform temperature parameter τD for P-G2 boundary condition for L/h = 20. (a) f =
W(0.5), (b) φ = ϕ(0), (c) PH 

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )
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It is seen from Figs. 12, 13 and 14 that central deflections, end constraint forces and end

constraint moments varies with variation of τD for P-C, P-G2, C-G1 boundary conditions.

The superiority or advantage of the finite element method to the other methods is that in the finite

element method, all the boundary conditions can be taken into consideration without any difficulty.

In Figs. 16-21, dimensionless Cauchy normal stresses and dimensionless Cauchy shear stresses are

Fig. 15 Dimensionless central deflections f = W(0.5) and dimensionless end constraint moment M versus
mean temperature rise τM for some given non-uniform temperature parameter τD for C-G2 boundary
condition for L/h = 20. (a) f = W(0.5), (b) M

 τD = 0,  τD = 10,  τD = 20,  τD = 30         ( ) _ _ _( ) ……( ) _._._( )

Fig. 16 Stress distributions versus mean temperature rise τM for some given non-uniform temperature
parameter τD at central section, ξ = 0.5, for L/h = 20 for P-P. (a) Dimensionless Cauchy normal stress
(b) Dimensionless Cauchy shear stress

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )
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given at the central section, ξ = 0.5, for L/h = 20 for various support conditions. As it is expected,

the Cauchy normal stresses are not zero at Y = 0  in the case of temperature rise

as seen from Figs. 16(a)-21(a). It is known that the shear stress distribution for the Timoshenko

beam in the geometrically linear case is constant along the Y axis. However, the shear stress

distribution for the Timoshenko beam is not constant along the Y axis in the geometrically nonlinear

case and changes linearly along the Y axis as seen from Figs. 16(b)-21(b).

σxx 0 at Y 0=≠( )

Fig. 18 Stress distributions versus mean temperature rise τM for some given non-uniform temperature
parameter τD at central section, ξ = 0.5, for L/h = 20 for P-C. (a) Dimensionless Cauchy normal
stress, (b) Dimensionless Cauchy shear stress

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )

Fig. 17 Stress distributions versus mean temperature rise τM for some given non-uniform temperature
parameter τD at central section, ξ = 0.5, for L/h = 20 for C-C. (a) Dimensionless Cauchy normal
stress (b) Dimensionless Cauchy shear stress

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )
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When the beam is in a bent configuration with negative displacements and when the temperature

rise of the top side of the beam is greater than the temperature rise of the bottom side of the beam,

then increase in τD causes decrease in the absolute values of Cauchy normal stresses and Cauchy

shear stresses. If the beam was in a bent configuration with positive displacements and when the

temperature rise of the top side of the beam was greater than the temperature rise of the bottom side

of the beam, then increase in τD would cause increase in the absolute values of Cauchy normal

Fig. 20 Stress distributions versus mean temperature rise τM for some given non-uniform temperature
parameter τD at central section, ξ = 0.5, for L/h = 20 for C-G1. (a) Dimensionless Cauchy normal
stress, (b) Dimensionless Cauchy shear stress

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )

Fig. 19 Stress distributions versus mean temperature rise τM for some given non-uniform temperature
parameter τD at central section, ξ = 0.5, for L/h = 20 for P-G2. (a) Dimensionless Cauchy normal
stress (b) Dimensionless Cauchy shear stress

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )
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stresses and Cauchy shear stresses.

 4. Conclusions

 

This paper focuses on post-buckling analysis of Timoshenko beams with various boundary

conditions subjected to a non-uniform thermal loading by using the total Lagrangian Timoshenko

beam element approximation. Six type of support conditions for the beams are considered. The

considered highly non-linear problem is solved by using incremental displacement-based finite

element method in conjunction with Newton-Raphson iteration method. The convergence studies are

made and the obtained results are compared with the published results. 

 As far as the authors know, there is no study on the post-buckling analysis of Timoshenko beams

under uniform and non-uniform thermal loading considering full geometric non-linearity

investigated by using finite element method: Gupta et al. (2009) investigated the post-buckling

analysis of beams under thermal loading by using finite element method and von-Karman strain-

displacement approximation in which full geometric non-linearity can not be considered. In this

study, the post buckling analysis of Timoshenko beams under non-uniform thermal loading with

various boundary conditions is considered by using total Lagrangian finite element method in which

full geometric nonlinearity can be considered as distinct from the study of Gupta et al. (2009). The

support reactions, displacements of the midpoint of the beam and the rotations of the left end

supports are calculated. It is found that non-uniformity of temperature rise does not affect the

horizontal and vertical support reactions in some support conditions. Also, Cauchy normal stresses

and Cauchy shear stresses are calculated.

The superiority or advantage of the finite element method to the other methods is that in the finite

element method, all the boundary conditions can be taken into consideration without any difficulty.

Fig. 21 Stress distributions versus mean temperature rise τD for some given non-uniform temperature
parameter τM at central section, ξ = 0.5, for L/h = 20 for C-G2. (a) Dimensionless Cauchy normal
stress, (b) Dimensionless Cauchy shear stress

 τD = 0,  τD = 10,  τD = 20,  τD = 30        ( ) _ _ _( ) ……( ) _._._( )
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