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Bifurcations of non-semi-simple eigenvalues and the 
zero-order approximations of responses at critical 

points of Hopf bifurcation in nonlinear systems
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Abstract. This paper deals with the bifurcations of non-semi-simple eigenvalues at critical point of
Hopf bifurcation to understand the dynamic behavior of the system. By using the Puiseux expansion, the
expression of the bifurcation of non-semi-simple eigenvalues and the corresponding topological structure
in the parameter space are obtained. The zero-order approximate solutions in the vicinity of the critical
points at which the multiple Hopf bifurcation may occur are developed. A numerical example, the flutter
problem of an airfoil in simplified model, is given to illustrate the application of the proposed method.
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1. Introduction

An emerging research area that has become very stimulating is the bifurcation control which aims

at modifying the dynamical behavior of a system around critical points, delaying the onset of an

inherent bifurcation, or stabilizing a bifurcation solution (Chen et al. 2000). For example, the

control of the Hopf bifurcation in a class of nonlinear systems whose linear approximation has two

distinct eigenvalues on the imaginary axis, was discussed without assuming the system is

controllable (Verduzco and Alvarez 2006). An analytical method for the analysis and control of

oscillations in non-linear control systems, whose linearization around the origin has k zero

eigenvalues was presented (Verduzco 2007). The bifurcation and instability behavior are studied for

the case, k = 3 (Yu 2003, 2004), and the normal forms are calculated for the case, k = 2 and k = 3

(Bi and Yu 1998). An efficient method for computing the normal forms for general semi-simple

eigenvalues was presented (Yu and Leung 2003). The order of retarded nonlinear systems was

studies (Nayfeh 2008). Modal interactions in contract-mode atomic force microscopes were

discussed (Arafat et al. 2008). The steady-state dynamics of a linear structure weakly coupled to an
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essentially nonlinear oscillator was presented (Malatkar and Nayfeh 2007). Multi-stage design

procedure for modal controller of multi-input defective systems was given (Chen 2007).

It should be noted that the previous studies mainly involve the control problems of the nonlinear

system, whose linearization in the origin has non-semi-simple zero eigenvalues and the

corresponding static bifurcation occurs. However, in actual engineering problems, the linearization

of flutter analysis of aeroelasticity, the dynamic analysis of mobility and graspability of general

manipulation systems may have non-semi-simple purely imaginary eigenvalues at a critical point,

giving rise to multiple Hopf bifurcations (Chen et al. 2001). The case that the linear system has two

pairs of purely imaginary eigenvalues at critical point giving rise to double Hopf bifurcations, and

concerned with only the effect of time delayed feedbacks in a nonlinear systems with external

forcing was developed (Yu et al. 2002).

One of the objectives of the bifurcation control is to modify the dynamical behavior of a system

around critical point. Thus it is important to study the dynamical behavior of the nonlinear system

for the bifurcation control (Chen et al. 2000). However, the responses at the Hopf bifurcation points

in most published papers are obtained numerically which gives little physical insight of the dynamic

behavior of the system. To this end, this paper is dedicated to find approximate analytical solutions

for the bifurcations of non-semi-simple eigenvalues at critical point of Hopf bifurcation to

understand the dynamic behavior of the system around the critical points. By using the Puiseux

expansion, the expression for the bifurcations of non-semi-simple eigenvalues and the corresponding

topological structure in the parameter space are obtained. The zero-order approximation solutions in

the vicinity of the critical points at which the multiple Hopf bifurcation may occur are developed to

show the instability behavior of the nonlinear system.

The paper is organized as follows. In the section 2, the basic equation for the nonlinear systems

whose linear approximation has non-semi-simple eigenvalues are presented. By using the Puiseux

expansion, the section 3 presents the bifurcations of the non-semi-simple eigenvalues and

corresponding topological structure in the parameter space. The section 4 develops the zero-order

approximation solutions at critical point to study the stability of the nonlinear system. In the section

5, a numerical example, the flutter analysis of an airfoil, is given to illustrate the application and

validity of the presented method.

2. Technical background

Consider the following nonlinear system

(1)

where the variable  is the state, p is the parameter. Assume that , and the system

can be linearized at  with

(2)

As we know, the eigenvalues of  are the functions of the parameter p, and denoted as

, .

This study discusses the case where the linearization system, , has multiple eigenvalues,

x· f x p,( )=

x R
n∈ f 0 0,( ) 0=
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that is  are mi multiple eigenvalues, and , 

, respectively. Assume that Am is used to denote the algebra multiplicity of the

eigenvalue , and Gm is the number of the linearly independent eigenvectors corresponding to .

If ,  is a non-semi-simple eigenvalue and the system is unstable which describes the

critical point  of Hopf bifurcation.

In the following, we give the basic equations of the linearization system which has multiple non-

semi-simple eigenvalues at the critical points. From the algebra theory, there exist non-singular

matrix U, such that

(3)

where U is the generalized modal matrix of A, J is the Jordan block of A, given by

, (4)

where

, (5)

Eq. (3) can be written in the following manner

(6)

The conjugate transpose of A is called adjoined system, i.e., for  the generalized modes satisfy

the following equation

(7)

where , JH are the conjugate transpose of A and J, respectively, V is the generalized modal

matrix of the adjoined system.

Eq. (7) can be also written as the following form

(8)

where  are the conjugate of . In general,  are known as the right eigenvectors,

 the left eigenvectors,  and  are the right and left
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generalized eigenvectors of , respectively.

The right and left generalized modal matrices U and V satisfy the following orthogonal condition

 (9)

Using the modal transformation

(10)

we obtain the linearization system of Eq. (1) in the Jordan form

(11)

3. Bifurcations of eigenvalues at crucial points

In this section, we use the Puiseux expansion to discuss the bifurcations of non-semi-simple

eigenvalues at the critical points.

Assume that at critical value , λ is a non-semi-simple eigenvalue of , and seek the

change of the eigenvalue λ depending on a change of the parameter vector p. To this end, suppose

the parameter vector is given a change, i.e., , where ε is a small number, p1

is a real vector, then the eigenvalue problem  is perturbed into

(12)

and  is given by

 (13)

where L is the number of the parameters.

Due to the λ is an m-multiple non-semi-simple eigenvalue, the small parameter expansion for

semi-simple eigenvalue can not be used and we have to use the Puiseux expansion[11]. The

perturbed eigenvalue and eigenvector,  and , are as follows

(14)

 (15)

where . Substituting Eqs. (14) and (15) into Eq. (12), yields

(16)

By grouping the same power of δ, we get
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(17)

From the above equations, it can be seen that in order to calculate , we first need to calculate

, to calculate , we need to know ,   and and so on.

The perturbed eigenvalue  is given (Deif 1991, Chen 2007)

(18)

and

, (19)

where u1 and um can be obtained from Eqs. (6) and (8).

Now we turn to calculate the perturbation of the generalized modes, , corresponding to non-

semi-simple eigenvalue λ. The second equation of Eq. (17) can be rewritten as

, (20)

Using the definitions of the generalized modes, i.e., Eq. (3), we have

that is

(21)

Hence, we get

(22)

where u2 is the generalized mode.

Therefore, the perturbed eigenvectors  corresponding to eigenvalues  can be approximated by

, (23)

From the above discussion, it is clear that if the non-semi-simple matrix has a small perturbation

, the m-multiple eigenvalue can be separated into m distinct eigenvalues, which is known as the

bifurcations of the multiple eigenvalues.

In the following, we give the geometric interpretation of the bifurcation of the m-multiple
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eigenvalue. To this end, we rewrite the Eq. (18) in the following form

, (24)

where

, (25)

Thus, we have

, (26)

If , we have

, (27)

By considering one parameter case and taking , from Eq. (27), we obtain

(28)

where . Using Eq. (28), we obtain that  are at the points 1, 2, 3 and 4 placed on the

circle of radius , which is shown in Fig. 1.

From Eq. (28) and Fig. 1, it also can be seen that when the parameter p is increased for p > p0,

the increment of eigenvalues,  and , diverge along the line 1-2; and for p < p0, the

increment of eigenvalues,  and , approach to zero along the line 3-4, which is perpendicular

to the line 1-2. The arrows in the Fig. 1 show the movement of the eigenvalue λ, when the

parameter p is changed.

Now we turn to discuss the bifurcations of eigenvalues at the critical point. Assume that the

eigenvalue λ is a 2-multiple non-semi-simple eigenvalue, and , . By using

Eq. (28), we have
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(29)

From Eq. (29) and Fig. 2, it can be seen that when the parameter p is increased for p > p0, the

second eigenvalue with positive real part diverges from the point 2; the first eigenvalue with

negative real part diverges from the point 1; the eigenvalue 3 and 4 approach to original point (the

critical point). Thus, we conclude that the system is unstable which is characterized by the second

eigenvalue at the point 2 (Fig. 2). In this case, , , which describe the

flutter occurs and  is the corresponding flutter frequency. This is the mechanism of the

instability of Hopf bifurcation with non-semi-simple eigenvalues.

In the following section, we will discuss the zero-order approximate solution at critical point to

illustrate the instability behavior of the nonlinear system.
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Fig. 2 Eigenvalue bifurcation at the critical point for the example
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4. The zero-order approximate solutions at crucial point of the nonlinear system

with non-semi-simple eigenvalues

Assume that the linearization system of Eq. (1) in the Jordan form is

 (30)

in which we assume that λ is an m-multiple non-semi-simple eigenvalue. Eq. (30) can be written as

the following form

 (31)

Solving the Eq. (31), and using the modal transformation (10), the solutions ξ and  can be

obtained in the following forms

(32)

and

(33)

where c1, c2, ..., cm are arbitrary constants depending on the initial conditions. From Eq. (33), we

can see that although  have no real part, the solution depends on t, , ..., which

means that solution  is unbound, i.e., , when , and the system is unstable.

5. Numerical example

In order to illustrate the application of the present procedure, we consider the flutter problem of

an airfoil in simplified formulation. The airfoil is replaced by a rigid rectangular panel with two

degrees of freedom, the vertical displacement h and the rotation α. It is assumed that aerodynamic

lift force is proportional to the angle of attack α and to the square of the velocity v of flight. The

nonlinear differential equations of motion are (Chen 2007)
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(34)

where m is the mass of the panel, s the static moment of the cross section area of the penal, Jα the

moment of inertia, Kh the bending stiffness, Kα the torsional stiffness, ε is a small parameter,

respectively, and ,  are the nonlinear force.

If the parameters are given as , , , ,

,  and , then the linearized equations become

 (35)

where

, (36)

Assuming the parameter , the state matrix has the following form

 (37)

where M is the mass matrix, K the stiffness matrix, H the asymmetric aerodynamic matrix.

The flutter of the airfoil is characterized by the conditions that if Re(λ) = 0, Im(λ) ≠ 0, which

describe the critical state of the flutter, and if Re(λ) > 0, Im(λ) ≠ 0, which describe the flutter

occurs, and eigenvalue is also the corresponding flutter frequency.

The eigenvalues of A are

λ1 = 0.67318887j, λ2 = 0.67318887j

λ3 = −0.67318887j, λ4 = −0.67318887j  (38)

where , λ1, λ2 and λ3, λ4 are two pairs of 2-multiple non-semi-simple eigenvalues. Because

Re(λ) = 0, Im(λ) ≠ 0, the system is in the critical state of the flutter, and the Hopf bifurcation

occurs at the critical points .

The Jordan matrix of the system is

(39)

The right and left modal matrices U and V can be computed as follows
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(40)

In the following, we discuss the bifurcations of eigenvalues λ1 and λ3. For the first Jordan block,

if , by using Eq. (29), we obtain the eigenvalues of

the perturbed system

 (41)

and if , we obtain

(42)

For the second Jordan block, we have the eigenvalues of the perturbed system by the same way

(43)

The above results given by Eqs. (41), (42) and (43), are also shown in Fig. 2.

Now we turn to compute the responses of the zero-order approximations at the critical points
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(45)

The solutions are plotted in Fig. 3 in which curves (a) and (b) are in amplitude-time plane, curves

(c) and (d) in the state plane.

The results given by Eqs. (41) and (42) describe the bifurcation of the eigenvalue λ1, and the

results given by Eq. (43) the bifurcation of the eigenvalue λ3, they are also shown in Fig. 2. From

the above results and Fig. 2, it can be seen that if the parameter has a change, , the

perturbed eigenvalues,  and , have positive real part, as the ε goes up, the  and 

diverge, thus leading to the instability of the system. This conclusions are also illustrated by the

curves in the amplitude-time plane (Fig. 3(a), (b)) and the state plane (Fig. 3(c), (d))

6. Conclusions

The expression for bifurcations of the non-semi-simple eigenvalues at the critical points for the

nonlinear system is developed by using the Puiseux expansion. The geometric interpretation of the

 

ε p p0–=

λ̃12 λ̃32 λ̃12 λ̃32

Fig. 3 Zero-order solutions at the critical point
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bifurcations of the eigenvalues has been given. The results indicate that if the parameter has a small

change ε, the perturbed eigenvalues may have positive real part and as the ε goes up, they diverge,

thus leading to instability of the nonlinear system. The explicit approximate solutions of responses

of the system at the critical points with non-semi-simple eigenvalues are developed. Because the

solution depends on , the solution is unbound which also indicates the system is unstable.

These results provide good physical insight of the dynamic behavior. The proposed method has

been applied to the flutter problem of the airfoil and the results support the conclusions.
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