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Large deflection analysis of laminated composite plates 
using layerwise displacement model
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Abstract. In this paper the geometrically nonlinear continuum plate finite element model, hitherto not
reported in the literature, is developed using the total Lagrange formulation. With the layerwise
displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the
von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity
equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By
performing the linearization on nonlinear integral form and then the discretization on linearized integral
form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared
to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with
internal force vector are then utilized in Newton Raphson’s method for the numerical solution of nonlinear
incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature,
the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or
aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The
originally coded MATLAB computer program for the finite element solution is used to verify the
accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical
properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate
thickness, different boundary conditions and different load direction (unloading/loading). The obtained
results are compared with available results from the literature and the linear solutions from the author’s
previous papers.
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1. Introduction

The low mass density (ρ) and the high tensile strength (σu), usually expressed through the specific

modulus of elasticity (E/ρ) and the specific strength (σu/ρ) (Altenbach et al. 2004), have made

composite materials lighter and stronger compared with most traditional materials (such as steel,

concrete, wood, etc.) and have increased their application not only for secondary, but during the last

two decades also for primarily structural members in aerospace and automotive industry, ship

building industry and bridge design. The advanced mechanical properties of composite materials,

which are resulted in large weight savings, have given designers more flexibility in finding efficient

solution for specific problem, but have also required formulation of mathematical model able to
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present their complex anisotropic nature. Although weight saving has eliminated constrain of

slenderness and thickness and has made possible use of very thin plate elements, they have become

susceptible to large deflections (Polat 2007, Zhang and Kim 2006). In such cases, the geometry of

structures is continually changing during the deformation and nonlinear analysis should be adopted.

The geometrically nonlinear analysis seems also to be necessary for obtaining the structural

response of unsymmetrical laminated composite materials (Zhang et al. 2003). Namely, the

nonlinear response of these laminates is present even for small displacements, due to complex

coupling between in-plane and out-of plane deformation. 

A considerable amount of research work has been carried out so far on the nonlinear analysis of

laminated plates. Among the published works, the von Karman plate theory of plates undergoing

large deflections has attracted outstanding attention and a number of papers have been published.

The first authors investigating the nonlinear response using the von Karman nonlinear theory

(Tanriover and Senocak 2004, Reddy and Chao 1983) were: Leissa, Bennett, Bert, Chandra and

Raju, Zaghloul and Kennedy, Chia and Prabhakara, Noor and Hartley, and in the last decades Han,

Tabiei and Park, Singh, Lal and Kumar, Reddy and Chao, Zhang Kim and others.

Mechanical response of laminated composite material is generally 3D problem of nonlinear

mechanics. However, due to its mathematical complexity, analytical solutions using 3D theory of

elasticity are usually difficult and some times even impossible to achieve, while numerical solutions

are computationally inefficient and constrained to very specific domains. Thus, whenever possible,

refined simplified mathematical models, with acceptable accuracy in a field of applications, should

be used. It is shown that the Equivalent Single Layer theories (ESL) may give acceptable results

when analyzing global response, such as gross deflections and gross stresses, critical buckling loads

and fundamental frequencies of thin to moderate thick laminated composite plates (Vuksanovic

2000, Naserian-Nik and Tahani 2010). However, a continuous displacement function in ESL is not

able to accurately present the discontinuous zigzag variation of displacements in highly anisotropic

plates and give adequate stress distribution at local or ply level ( etkovi  and Vuksanovi  2009). A

compromise between 3D theory of elasticity and ESL theories is then achieved with the use of

Layer Wise theories (LW). In LW theories the in-plane displacement field, assumed for each layer,

is interpolated through the thickness by appropriate layerwise Lagrange interpolation function or

Heaviside step function (Reddy 2004), thus replacing 3D laminated element with N+1 2D plate

elements (N is number of layers), which fulfills the continuity of displacement functions at the

interfaces between adjacent layers. 

From the continuum mechanics it is known that two different level of geometrical nonlinearity

may be modeled, which are: geometrically nonlinear models with small strain and large

displacements (von Karman theory) and geometrically nonlinear models with large strains. In the

first case, the geometry of the structure before deformation remains unchanged after the

deformation. However, the structure is subjected to large displacements and the equilibrium is

achieved on the configuration displaced from the undeformed one. In the second case the geometry

of the structure is changing during the deformation and the equilibrium is achieved on the deformed

configuration. In both cases equilibrium equations are nonlinear.

In order to formulate nonlinear finite element model of laminated structures, which will be able to

represent two above mentioned levels of geometrical nonlinearity, two distinct approaches have

been reported in the literature (Reddy 2004). The first approach is based on laminate theory, in

which 3D elasticity equations are reduced to 2D equations through certain kinematical assumptions

and homogenization through the thickness. In this approach only first type of nonlinearity or small
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strain, large displacement assumption may be included. The finite elements based on such an

assumptions are named the laminated elements. The second approach is based on 3D continuum

formulation (total and updated Lagrange formulation) and both types on nonlinearity may be

included. Finite elements based on this approach are called the continuum elements.

The aim of the author’s research on composite materials so far was to implement Layerwise theory

of Reddy or Generalized Layerwise Plate Theory-GLPT (Reddy et al. 1989) on different levels of

analysis of laminated composite plates. The previous work has been concerned with the linear

analysis ( etkovi  and Vuksanovi  2009), and the linear laminated plate element of GLPT has been

formulated, while in the present paper the GLPT nonlinear continuum plate element with von

Karman geometrical nonlinearity is presented. It may be seen from the literature that Reddy’s or

other researches have not reported any papers on nonlinear analysis using the continuum element

approach based on GLPT. Only the laminated plate element based on GLPT (Barbero and Reddy

1990) continuum shell element based on FSDT and HSDT (Arciniega and Reddy 2007, Lee et al.

2006), or continuum plate element based on other laminated theories (CLPT, FSDT, HSDT)

(Kuppusamy et al. 1984, Praveen and Reddy 1998, Laulusa and Reddy 2004, Reddy and Haung

1981, Reddy and Chao 1981, Kuppusamy and Reddy 1984, Reddy 1984, Putcha and Reddy 1986)

have been reported so far. Two main reasons have driven the present authors to formulate continuum

element based on GLPT. The first reason was to formulate general numerical model capable to

include different levels nonlinearity, like large strain geometrical nonlinearity or material nonlinearity,

in the future. The second reason was to represent the more sophisticated way to derive the tangent

stiffness matrix (with less computational cost), from the one using laminate element approach.

The aim of this paper is to present the mathematical and numerical model for geometrically

nonlinear, small strain, large displacements problem of laminated composite plates. The 3D

elasticity equations are reduced to 2D problem using kinematical assumptions based on layerwise

displacement field of Reddy (GLPT). With the assumed displacement field, nonlinear Green-

Lagrange small strain large displacements relations and linear orthotropic material properties for

each lamina, the total Lagrangian formulation is used to derive the weak form of the problem. The

weak form or nonlinear integral equilibrium equations are discretized using isoparametric finite

element approximation. The obtained nonlinear incremental algebric equilibrium equations are

solved using the Newton Raphson’s method. The originally coded MATLAB computer program for

the finite element solution is used to investigate the effects of geometrical nonlinearity on

displacement and stress field of thin and thick, isotropic, orthotropic and anisotropic laminated

composite plates with various boundary conditions and loading direction (loading/unloading). The

accuracy of the numerical model is verified by being compared with available results from the

literature and the linear solutions from the previous paper ( etkovi  and Vuksanovi  2009). The

appropriate conclusions are derived.

2. Theoretical formulation

2.1 Displacement field

In the LW theory of Reddy (Reddy et al. 1989), or Generalized Layerwise Plate Theory (GLPT),

in-plane displacements components (u, v) are interpolated through the thickness using 1D linear

Lagrangian interpolation function , while transverse displacement component ω is assumed to
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be constant through the plate thickness.

(1)

2.2 Strain-displacement relations

The Green Lagrange strain tensor associated with the displacement field (1) can be computed

using von Karman strain-displacement relation to include geometric nonlinearities as follows 

(2)

2.3 Constitutive equations

For Hook’s elastic material, the stress-strain relations for k-th orthotropic lamina have the

following form 

(3)

where  and  are stress and strain

components respectively, and  are transformed elastic coefficients, of k-th lamina in global

coordinates. 
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2.4 Incremental equilibrium equations

The geometrically nonlinear problem of laminated composite plates subjected to external loading

may be obtained using incremental continuum formulation. In incremental continuum formulation

geometry of the structure is continually changing and all quantities are referred to unknown

deformed configuration C2 (Reddy 2008). Equilibrium equations may be obtained from the Principle

of Virtual Displacements (PVD), in which sum of external virtual work done on the body and

internal virtual work stored in the body should be equal zero (Malvern 1969)

(4)

The previous equation can not be solved directly, while all quantities are given with respect to

unknown configuration C2. Therefore, all quantities should be expressed with respect to previously

known configuration introducing appropriate stress and strain measures. If initial configuration C0 is

used as reference configuration, with respect to which all quantities are measured, it is called the

total Lagrangian description, and if previous configuration C1 is adopted as reference configuration,

it is called the updated Lagrangian formulation. In this paper the total Lagrangian formulation is

adopted and PVD, Eq. (4), has the following form 

(5)

The virtual Green Lagrange strain tensor  is

(6)

where  because it is not function of unknown displacements, while linear  and

nonlinear  parts of Green Lagrange strain incremental tensor  are 

(7)

(8)

The Second Piola-Kirchhoff stress tensor  in configuration C2 is given in terms of Second

Piola-Kirchhoff stress tensor  in configuration C1 and Kirchhoff stress incremental tensor 

(9)

The body and boundary stress (or traction) vectors are  and , δu is virtual displacement

vector, while d0V and d0S are volume and area, respectively, which body occupies in the

configuration C0.

Substituting Eq. (6) for  and Eq. (9) for  into Eq. (5), one arrives at

(10)
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where the virtual strain energy stored in the body at configuration C1 is

(11)

and virtual work done by applied forces is

(12)

The first term of Eq. (10) represents the change in virtual strain energy due to virtual incremental

displacements ui between configurations C1 and C2. The second term represents virtual work done

due to initial stresses . The last two terms together denote the change in virtual work done by

applied body forces and surface tractions in moving from C1 to C2. In mathematical sense, first term

makes Eq. (10) nonlinear in displacement increments. To make it computationally tractable, one can

assume that displacements ui are small (which is provided with small load steps) in moving from C1

to C2, so that the following approximation holds 

and (13)

Then Eq. (10) can be simplified to

(14)

Eq. (14) is the weak form used for the development of nonlinear finite element model based on

total Lagrangian formulation. The total stress components  from Eq. (14) may be evaluated

using the constitutive relation 

(15)

where  is Green Lagrange strain tensor defined in Eq. (2) and  is material elasticity tensor. 

3. Finite element model

3.1 Displacement field

The GLPT finite element consists of middle surface plane and I = 1, N + 1 planes through the
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plate thickness Fig. 1. The element requires only the C0 continuity of major unknowns, thus in each

node only displacement components are adopted, that are  in the middle surface element

nodes and  in the I-th plane element nodes. The generalized displacements over element 

can be expressed as

 (16)

where ,  are displacement vectors, in the middle plane and

I-th plane, respectively,  are interpolation functions, while  are interpolation function

matrix for the j-th node of the element Ωe, given in ( etkovi  and Vuksanovi  2009).

3.2 Strain field

With the known element displacement field, strain field over the element may be expressed in

terms of element nodal displacements using the strain displacement relations Eq. (2). Then, the

linear and non linear parts of strain-displacement relations in middle and I-the plane of the plate

have the following form

(17)

where

(18)
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3.3 Equilibrium equations

Discretization of the weak form Eq. (14) with the assumed displacement field Eq. (16), and the

use of fundamental Lemma of calculus of variations (i.e., variations of displacement vector

increments in middle surface and I-th plane element nodes  are arbitrary), give the

following nonlinear incremental finite element GLPT model associated with the total Lagrangian

formulation 

 (19)

The stiffness matrix for the element Ωe is 

(20)

where

(21)1,2,3,4

The Geometric stiffness matrix for the element Ωe is

(22)

where 

(23)1,2,3

The internal and external (body force and traction) force vectors are 

(24)

δd{ } δd
I

{ },
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(25)

The Kirchhoff stress resultant vector is 

(26)

and sub vectors

(27)1

(27)2

The total strain components  and  from Eqs. (27), (28) are given in Eq. (18),

constitutive matrix  are given as

(28)1

(28)2

(28)3

(28)4

 (28)5

while

(29)

The stiffness matrix Eq. (21) and the geometric stiffness matrix Eq. (23) together denote the

tangential stiffness 

matrix,  is the incremental displacement vector, while the difference between two vectors

Eqs. (24), (25) on the right side of Eq. (19) together denotes the incremental change in load vector

during the deformation process. The obtained finite element incremental equations Eq. (19) may

then be assembled into system incremental equations and after imposing appropriate boundary

conditions may be solved using the Newton Rapson°Øs method for unknown incremental

displacements (Bathe 1996, Hughes 1987).
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3.4 Stress field

With the known displacement field, the stress field over the element may be obtained as a part of

a postprocessor, using strain displacement and constitutive relations, Eqs. (2), (3) as 

(30)1,2,3

where  and   are in-plane normal stresses  at bottom and upper plane

in k-th layer of plate element ‘e’, while  are average transverse shear stresses  in

k-the layer of plate element ‘e’.

4. Numerical results and discussion

Based on the previously derived continuum finite element model for the geometrically nonlinear

analysis of laminated composite plates, the original computer program is coded using MATLAB

programming language. The finite element stiffness matrix and the geometric stiffness matrix are

evaluated using Gauss-Legendre quadrature rule, which are 3 × 3 Gauss integration schemes or 2D

quadratic Lagrange rectangular element for in-plane interpolation and 1D linear Lagrange element

for through the thickness interpolation (Hinton et al. 1988). The Newton Rapson’s numerical

method is used to solve nonlinear incremental equilibrium equations. The effects of plate thickness,

lamination scheme, boundary conditions and load direction on nonlinear response of isotropic,

orthotropic and anisotropic plates are analyzed. The accuracy of the present formulation is

demonstrated through a number of examples and by comparison with results available from the

literature. 

The following boundary conditions at the plate edges are analyzed (Thankam et al. 2003).

Simply supported (SS)

SS: (31)

Simply supported-hinged (HH) 

HH: (32)
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Clamped (CC)

CC: (33)

When analyzing a quarter of a plate, boundary conditions in the plane of symmetry become:

For cross ply laminates 

SS1: (34)

For angle ply laminates

SS2: (35)

Example 4.1. A nonlinear bending of square, simply supported (SS1), isotropic plate, with

 in and  in made of material

 psi, ν = 0.3 (36)

subjected to uniform transverse pressure is analyzed. Using the load parameter ·

, the incremental load vector is chosen to be

(37)

with convergence tolerance  and acceleration parameter . The displacements and

stresses are given in following nondimensional form

, (38)

A 3 × 3 quarter plate GLPT continuum model is compared with 4 × 4 quadratic FSDT model

(Reddy 2004), The results for linear and nonlinear deflections and nonlinear stresses are presented

in Table 1 and Fig. 2. It is shown that proposed GLPT model closely agree with FSDT model. The

Fig. 2 also demonstrates the physical nature of geometrically nonlinear response. The study has

proved that depending of applied load level, the plate goes from the state of pure bending, at small

displacement ( ) to the phase of bending-stretching coupling, at large displacements.

Namely, when the lateral displacement reaches approximately one half of plate thickness

( ), they take part in stretching, together with bending of the plate middle surface

(nonlinear terms in Eqs. (2)). This activates the tensile forces, thus enlarging the stiffness of the

plates, and reducing displacements and stresses from the values predicted by linear theory. This may

be the reason why this phenomena is also known as “plate stiffening” or “stress relaxation”.

Moreover, the activation of tensile forces in laminated composite plates is of utmost importance,

due to their high available specific tensile strength.
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Example 4.2. A nonlinear bending of square simply supported (SS1), orthotropic plate made of

high modulus glass-epoxy fiber reinforced material

 (39)

subjected to uniform transverse pressure is analyzed. Using the load parameter ·

 , the incremental load vector is chosen to be 

(40)

E
1
/E

2
25=  G

12
/E

2
0.5=  G

13
/E

2
0.5=  G

23
/E

2
0.2= ν

12
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13
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23

= =, , , , 0.25=

q q x y,( )=

a/h( )4 ⋅ 1/E2

q∆{ } 10 20 30 40 50 60 70 80 90 100 110 120 130 140, , , , , , , , , , , , ,{ } q⋅=

Table 1 Central displacement and stresses  versus load parameter of square simply-supported (SS1)
isotropic plate with a/h = 10

Linear solution Nonlinear solution Nonlinear solution

Reddy 
(2004)

Present
Reddy 
(2004)

Reddy 
(2004)

Present
Reddy 
(2004)

Reddy 
(2004)

Present

6.25 0.2917 0.2889 0.2813 0.2813 0.2788 1.779 1.780 1.8460

12.50 0.5834 0.5778 0.5186 0.5186 0.5155 3.396 3.398 3.5486

25.0 1.1668 1.1556 0.8673 0.8673 0.8629 5.882 5.885 6.0960

50.0 2.3336 2.3112 1.3149 1.3149 1.2884 9.162 9.165 9.1316

75.0 3.5004 3.4668 1.6239 1.6241 1.6055 11.462 11.465 11.9282

100.0 4.6672 4.6224 1.8683 1.8687 1.8473 13.307 13.308 13.3641

125.0 5.8340 5.7780 2.0751 2.0758 2.0555 14.890 14.889 14.8062

150.0 7.0008 6.9336 2.2556 2.2567 2.2335 16.293 16.290 16.2348

175.0 8.1676 8.0892 2.4177 2.4194 2.4337 17.572 17.567 17.4796

200.0 9.3344 9.2448 2.5657 2.5681 2.5720 18.755 18.748 18.6326

σxx

q

w σxx

Fig. 2 Nonlinear bending of square simply supported (SS1) isotropic plate with a/h = 10; central displacement
versus load parameter
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with convergence tolerance  and acceleration parameter . The displacements and

stresses are given in following nondimensional form

, , (41)

ε 0.01= γ 0 3,=

w w0 E2h
3
/ q a

4⋅( )⋅= σxx σyy τ xy, ,( ) σxx σyy τxy, ,( ) h

a
---⎝ ⎠
⎛ ⎞

2 1

E2

-----⋅ ⋅= τ xx τxz
h

a
---

1

E2

-----⋅ ⋅=

Table 2 Central displacement and stresses  versus load parameter of square simply-supported (SS1)
orthotropic plate with a/h = 10

Nonlinear solution

Reddy 
(2004)

Present
Reddy 
(2004)

Present
Reddy 
(2004)

Present
Reddy 
(2004)

Present

10 7.453 7.7843 0.3771 0.3581 0.4800 0.4755 0.0540 0.05152

20 14.852 15.4336 0.7827 0.7466 0.9845 1.0902 0.1077 0.1028

30 22.146 22.8972 1.2117 1.1605 1.5113 1.4801 0.1608 0.1534

40 29.291 30.1395 1.6590 1.5948 2.0583 2.0859 0.2130 0.2033

50 36.253 37.1112 2.1198 2.0427 2.6229 2.6925 0.2641 0.2523

60 43.010 43.8498 2.5900 2.5031 3.2026 3.0450 0.3139 0.3001

70 49.546 50.3274 3.0660 2.9715 3.7952 3.9478 0.3624 0.3467

80 55.856 56.5466 3.5450 3.4449 4.3985 4.4896 0.4096 0.3920

90 61.940 62.5144 4.0248 3.9213 5.0106 5.0883 0.4554 0.4361

100 67.802 68.2402 4.5037 4.3989 5.6300 5.7141 0.4998 0.4789

110 73.450 73.7364 4.9804 4.8764 6.2551 6.3526 0.5430 0.5204

120 78.893 79.0148 5.4540 5.3529 6.8849 6.9965 0.5849 0.5608

130 84.141 84.0879 5.9239 5.8278 7.5184 7.6427 0.6256 0.6000

140 89.205 88.9686 6.3894 6.3003 8.1548 8.2913 0.6653 0.63803

σxx

q
σxx σyy σxy τ xz

Fig. 3 Nonlinear bending of square simply supported (SS1) orthotropic plate; central displacement versus load
parameter 
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A 2 × 2 quarter plate GLPT continuum model is compared with 8 × 8 CPT nonconforming and

4 × 4 quadratic FSDT models (Reddy 2004). The results for thick and thin plates (a/h = 10 and

a/h = 100) of linear and nonlinear deflections and nonlinear stresses are presented in Table 2 and

Fig. 3. It is shown that proposed GLPT model closely agree with CLPT and FSDT models (Reddy

2004). The more significant difference between linear and nonlinear solutions is observed for thick

plates, while in thick plates larger lateral deflections have greater influence on nonlinear response,

as it can be seen from the underlined nonlinear terms in Eq. (2).

Example 4.3. A nonlinear bending of square cross ply 0/90 and angle ply 45/−45 plates, with

 and , with three different boundary conditions (SS, HH and CC, Eqs. (31), (32),

(33)), made of material

(42)

subjected to uniform transverse pressure ·    are analyzed. The incremental

load vector is 

(43)

with convergence tolerance  and acceleration parameter . The displacements and

stresses are given in following nondimensional form

, (44)

A 2 × 2 quarter plate and 4 × 4 full plate continuum GLPT models are analyzed and compared

with full 8 × 8 plate FSDT models (Thankam et al. 2003). The results for linear and nonlinear

deflections are presented in Tables 3, 4, 5, 6, 7, 8. It is shown that proposed GLPT model closely

agree with FSDT model form literature, with the faster convergence. Also, the discrepancy between

a b 1= = h 0.1=

E1/E2 40=  G12/E2 0.6=  G13/E2 0.6=  G23/E2 0.5= ν12 ν13 ν23= =, , , , 0.25=

q q x y,( )= a/h( )4 ⋅ 1/E2

q∆{ } 100– 20– 20– 20– 20– 40 20 20 20 20, , , , , , , , ,{ } q⋅=

ε 0.01= γ 0 5,=

wLIN w
h
3

a
4

-----
E2

q
-----× 100⋅= σxx σyy,( ) σxx σyy,( ) a

h
---⎝ ⎠
⎛ ⎞

2

× 1

E
2

-----⋅=

Table 3 Stresses versus load parameter of square simply-supported (SS1) orthotropic plate a/h = 10

Thankam 
et al. 

(2003)

Present Thankam 
et al. 

(2003)

Present Thankam 
et al. 

(2003)

Present

Full 
plate

Quarter 
plate

Full 
plate

Quarter 
plate

Full 
plate

Quarter 
plate

-100 -9.723 -10.4584 -10.3068 -85.81 -87.7687 -91.4865 6.389 -6.2803 -6.1190

-80 -8.421 -8.8924 -8.8388 -74.23 -80.2677 -83.2767 5.546 -5.4995 -5.3706

-60 -6.888 -7.1942 -7.1501 -60.66 -64.9796 -66.6366 4.551 -4.5429 -4.4573

-40 -5.026 -5.1870 -5.1778 -44.24 -46.1771 -47.1425 3.334 -3.3316 -3.3083

-20 -2.722 -2.7559 -2.7537 -23.93 -24.2330 -24.4841 1.814 -1.8280 -1.8198

20 2.722 2.7559 2.7537 23.76 22.8399 22.5550 1.827 1.8946 1.8201

40 5.026 5.1870 5.1778 43.66 41.5389 40.5038 3.379 3.5618 3.3021

60 6.888 7.1942 7.1501 59.57 56.2325 54.1600 4.635 4.9345 4.4838

80 8.421 8.8924 8.8388 72.59 68.1087 65.2326 5.674 6.0725 5.4087

100 9.723 10.4584 10.3068 83.61 77.9324 74.6326 6.559 6.5274 6.1561

1.410 1.4130 1.4130 1.2370 1.2115 1.2114 0.0940 0.0960 0.0960

q

wNL 10⋅ σXX σYY

wLIN



Large deflection analysis of laminated composite plates using layerwise displacement model 271

linear and nonlinear solutions are larger for flexible plates, which are the plates with simply

supported boundary conditions (SS), compared to hinged (HH) and clamped (CC) boundary

conditions. The study has verified that the change in load direction gives unsymmetrical stress field

and symmetrical displacement field, due to non-coincidence of the neutral plane and the mid-plane

in laminated composite plates. 

Table 4 Central displacement and stresses versus load parameter of square hinged (HH) cross ply 0/90 plate
with a/h = 10

Thankam 
et al. 

(2003)

Present Thankam 
et al. 

(2003)

Present Thankam 
et al.

(2003)

Present

Full 
plate

Quarter 
plate

Full 
plate

Quarter 
plate

Full 
plate

Quarter 
plate

-100 -4.7650 -4.5939 -4.9490 -39.0700 -37.8815 -37.1852 -2.5720 -2.7585 -2.7143

-80 -4.2080 -4.0508 -4.2688 -37.0900 -35.6542 -35.2788 -2.3440 -2.4965 -2.4756

-60 -3.5360 -3.4747 -3.7107 -33.7000 -32.8219 -32.0224 -2.0350 -2.1942 -2.1512

-40 -2.6720 -2.5864 -2.7981 -27.7900 -26.8872 -26.3827 -1.5940 -1.7097 -1.6858

-20 -1.5090 -1.4334 -1.5765 -17.2700 -16.6923 -16.5961 -0.9330 -1.0001 -0.9954

20 1.5090 1.4334 1.5765 20.4900 20.1643 20.2555 0.9570 1.0238 1.0249

40 2.6720 2.5864 2.7981 38.0800 37.6015 38.0757 1.6730 1.7686 1.7877

60 3.5360 3.4747 3.7107 52.1200 51.5368 52.4040 2.1860 2.2869 2.3170

80 4.2080 4.0508 4.2688 63.6200 63.6309 64.2721 2.5760 2.7131 2.7150

100 4.7650 4.5939 4.9490 73.3600 71.8442 74.4556 2.8940 2.9282 3.0357

0.8020 0.7544 0.8385 1.0100 0.9847 0.9848 0.0510 0.0545 0.0545

Table 5 Central displacement and stresses versus load parameter of square clamped (CC) cross ply 0/90 plate
with a/h = 10

Thankam 
et al. 

(2003)

Present Thankam 
et al. 

(2003)

Present Thankam 
et al. 

(2003)

Present

Full 
plate

Quarter 
plate

Full 
plate

Quarter 
plate

Full 
plate

Quarter 
plate

-100 -3.5120 -3.3819 -3.4784 -21.4000 -20.5632 -19.2411 -2.1120 -2.1710 -2.2723

-80 -3.0180 -2.8846 -2.9700 -20.2300 -19.1365 -18.3254 -1.8910 -1.9245 -2.0278

-60 -2.4380 -2.3055 -2.3810 -18.0200 -16.8767 -16.4203 -1.5970 -1.6135 -1.7035

-40 -1.7460 -1.6342 -1.6902 -14.2500 -13.1940 -12.9932 -1.1970 -1.1990 -1.2737

-20 -0.9240 -0.8567 -0.8889 -8.3160 -8.4576 -8.4757 -0.6620 -0.6576 -0.7026

20 0.9240 0.8567 0.8889 9.7460 9.2713 9.3123 0.7064 0.7002 0.7525

40 1.746 1.6342 1.6902 19.4220 18.8206 18.9384 1.3556 1.3562 1.4554

60 2.4380 2.3055 2.3810 28.2170 27.7584 28.0222 1.9089 1.9293 2.0654

80 3.0180 2.8846 2.9700 36.0310 35.8938 36.2816 2.3748 2.4206 2.5803

100 3.5120 3.3819 3.4784 43.0000 43.2176 43.8145 2.7725 2.8376 3.02543

0.4730 0.4535 0.4535 0.4650 0.4353 0.4352 0.0350 0.0373 0.0373

q

wNL 10⋅ σXX σYY

wLIN

q

wNL 10⋅ σXX σYY

wLIN
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Example 4.4. A nonlinear bending of square simply supported (SS1) general quasi-isotropic (0/

45/−45/90)s, laminated plate with  and , made of material

(45)

subjected to uniform transverse pressure is analyzed. Using the load parameter ·

 , the incremental load vector is chosen to be

a b 1= = h 0.1=

E1/E2 40=  G12/E2 0.6=  G13/E2 0.6=  G23/E2 0.5= ν12 ν13 ν23= =, , , , 0.25=

q q x y,( )=

a/h( )4 ⋅ 1/E2

Table 6 Central displacement and stresses versus load parameter of square simply-supported (SS) angle ply 45/
−45 plate with a/h = 10

Thankam et al. 
(2003)

Present
Thankam et al. 

(2003)
Present

Thankam et al. 
(2003)

Present

-100 -4.811 -4.8803 -14.2100 -16.2177 -14.21 -15.1525

-80 -4.266 -4.4157 -13.3280 -14.4082 -13.28 -14.4082

-60 -3.607 -3.5423 -11.9700 -13.1740 -11.97 -13.1740

-40 -2.765 -2.5328 -9.8840 -10.1196 -9.884 -10.1196

-20 -1.605 -1.3778 -6.3090 -5.7065 -6.309 -5.7065

20 1.605 1.3778 7.7410 6.7321 7.741 6.7321

40 2.765 2.5328 14.1160 13.1960 14.116 13.1960

60 3.607 3.5423 19.1260 19.0340 19.126 19.0340

80 4.266 4.4157 23.2730 24.1754 23.273 24.1754

100 4.811 4.8803 26.8130 28.7658 26.813 28.7658

0.8740 0.8385 0.3840 0.4136 0.3840 0.4136

Table 7 Central displacement and stresses versus load parameter of square hinged (HH) angle ply 45/−45 plate
with a/h = 10

Thankam 
et al. (2003)

Present
Thankam 

et al. (2003)
Present

Thankam 
et al. (2003)

Present

-100 -4.279 -4.4926 -16.9800 -16.6682 -16.9800 -16.6037

-80 -3.713 -3.9842 -15.3600 -15.0492 -15.3600 -14.9743

-60 -3.039 -3.2500 -13.1700 -12.8871 -13.1700 -12.8074

-40 -2.216 -2.3568 -10.1100 -9.8387 -10.1100 -9.7654

-20 -1.195 -1.2646 -5.7630 -5.5954 -5.7630 -5.5457

20 1.195 1.2646 6.3330 6.1515 6.3330 6.0767

40 2.216 2.3568 12.0960 11.8130 12.0960 11.6517

60 3.039 3.2500 16.9700 16.6419 16.9700 16.3936

80 3.713 3.9842 21.1100 20.7937 21.1100 20.4630

100 4.279 4.4926 24.7100 24.0000 24.7100 24.0042

0.618 0.6514 0.3140 0.3041 0.3140 0.3009

q

wNL σXX σYY

wLIN

q

wNL σXX σYY

wLIN
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(46)

with convergence tolerance  and acceleration parameter . 

A 2 × 2 quarter plate continuum GLPT model is compared with 8 × 8 full plate HSDT model

(Argyris and Tanek 1994). The results for linear and nonlinear deflections are presented in Fig. 4

and Table 9. It is shown that proposed GLPT model closely agree with HSDT model form

literature, with the faster convergence.

q∆{ } 50 50 50 50 50, , , ,{ } q⋅=

ε 0.01= γ 0 8,=

Table 8 Central displacement and stresses versus load parameter of square clamped (CC) angle ply 45/−45
plate with a/h = 10

Thankam 
et al. (2003)

Present
Thankam 

et al. (2003)
Present

Thankam 
et al. (2003)

Present

-100 -3.6950 -3.7427 -13.5812 -14.6400 -13.4659 -14.6400

-80 -3.1470 -3.1993 -12.2698 -13.1800 -12.1617 -13.1800

-60 -2.5140 -2.5680 -10.4569 -11.1500 -10.3614 -11.1500

-40 -1.7770 -1.8251 -7.9629 -8.3790 -7.8876 -8.3790

-20 -0.9290 -0.9609 -4.4927 -4.6560 -4.4483 -4.6560

20 0.9290 0.9609 5.0711 5.1570 5.0145 5.1570

40 1.7770 1.8251 10.0477 10.2150 9.9274 10.2150

60 2.5140 2.5680 14.5717 14.8220 14.3851 14.8220

80 3.1470 3.1993 18.5663 18.9130 18.3136 18.9130

100 3.6950 3.7427 22.1323 22.5590 21.8148 22.5590

0.4730 0.4906 0.2510 0.2423 0.2510 0.2423

q

wNL σXX σYY

wLIN

Fig. 4 Nonlinear bending of square simply supported (SS1) general quasi-isotropic (0/45/−45/90)s laminated
plate with a/h = 10; central displacement versus load parameter
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Example 4.5. A nonlinear bending of square simply supported (SS1) general unidirectional (0/0/0/

0)s, laminated plate with  in and  in, made of material

(47)

a b 12= = h 0.138=

E1 3 10
6

psi×= E2 1.28 10
6

psi×= G12 G13 G23 0.37 10
6

psi, ν12 ν13 ν23 0.32= = =×= = =, ,

Table 9 Central displacement versus load of square simply supported (SS1) general quasi-isotropic 
(0/45/−45/90)s laminated plate with a/h = 10

Linear Nonlinear

Argyris and Tanek (1994) Argyris and Tanek (1994) Present

50 0.2717 0.2691 0.2980

100 0.5435 0.4862 0.5582

150 0.8152 0.6573 0.7276

200 1.0870 0.7975 0.8631

250 1.3587 0.9179 0.9780

q

Table 10 Central deflection versus load of simply supported 8-layer unidirectional (00)8 square laminate
subjected to a uniformly distributed load

Linear solution Nonlinear solution

Argyris and 
Tanek 
(1994)

Zhang and 
Kim

 (2005)

Zhang and 
Kim

 (2005)
Present

Argyris and 
Tanek
(1994)

Zhang and 
Kim 

(2005)

Zhang and 
Kim 

(2005)
Present

0.40 0.0912 0.0906 0.0900 0.0882 0.0840 0.0779 0.0774 0.0800

0.80 0.1824 0.1812 0.1799 0.1764 0.1408 0.1313 0.1306 0.1359

1.20 0.2720 0.2718 0.2698 0.2647 0.1768 0.1708 0.1699 0.1764

1.60 0.3608 0.3624 0.3598 0.3529 0.2152 0.2023 0.2013 0.2086

2.00 0.4536 0.4529 0.4498 0.4411 0.2364 0.2287 0.2275 0.2373

q

Fig. 5 Nonlinear bending of square simply supported (SS1) general quasi-isotropic (0)8 laminated plate;
central displacement versus load  
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subjected to uniform transverse pressure applied in five load increments

  (psi) (48)

with convergence tolerance  and acceleration parameter  is analyzed. 

A 2 × 2 quarter plate continuum GLPT model is compared with HSDT models (Zhang and Kim

2005). The results for linear and nonlinear deflections are presented Table 10 and on Fig. 5. It is

shown that proposed GLPT model closely agree with HSDT model form literature.

5. Conclusions

In this paper a continuum layerwise finite element model for geometrically nonlinear small strain,

large deflection analysis of laminated composite plates is derived using the total Lagrangian

formulation. The total Lagrangian formulation is utilized to obtain the symmetric tangent stiffness

matrix, which is computationally desirable and directly applicable in Newton Raphson’s method for

the numerical solution of system of nonlinear incremental finite element equilibrium equations. The

accuracy of the model is verified calculating nonlinear response of plates with different mechanical

properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate

thickness, different boundary conditions and different load direction (unloading/loading). In despite

of its mathematical complexity, proposed model has shown better convergence characteristics than

ESL models of CLPT, FSDT and HSDT, still with less computational cost than 3D elasticity model.

Moreover, present model has no shear locking problems, compared to ESL models, or aspect ratio

problems, as the 3D finite element may have when analyzing thin plate behavior. The analysis has

also shown that the discrepancy of nonlinear from linear response is greater for flexible plates, such

as thick compared to thin plates, or plates with SS compared to hinged (HH) and clamped (CC)

boundary conditions. It is verified that the change of load direction (unloading/loading) has no

influence on displacement field, while stress field is load direction dependent. Finally, the total

Lagrangian formulation of GLPT model, derived from 3D continuum mechanics formulation, by

introduction of appropriate kinematical assumptions, gives the general procedure to include different

kinds of nonlinearity in the future.
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