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Abstract. The paper reports on alternative hybrid/mixed formulations being developed by the Structural
Analysis Research Group of Instituto Superior Tecnico. These formulations open the scope and increase
the power of the finite element method by allowing different fields to be independently approximated,
within certain consistency criteria, and by enhancing the use of a wide range of approximation functions.
They have been applied to the analysis of 2-D problems, laminar structures and solids, using different
constitutive relations, both in quasi-static and dynamic regimes. The fundamental properties of the formu-
lations are identified and assessed and their performance is illustrated using simple, linear applications.

Key words: hybrid; mixed; equilibrium and Trefftz finite elements.

1. Introduction

Although the basis for the development of hybrid and mixed formulations has long been
established (Pian 1969), the hybrid and mixed finite elements never gained widespread acceptance.
Several reasons have been evoked to justify this failure in their direct competition with the
conventional, conforming finite element.

Some of these reasons derive from the advantages inherent to the conventional finite element
formulation, namely simplicity of the supporting concepts, robustness, and ability to produce
estimates with controlled accuracy for virtually every structural engineering problem. Other argu-
ments focus directly on the weaknesses of the hybrid and mixed formulations: poorer performance-
cost ratios, the difficulties associated with controlling the possible emergence of spurious modes
and the possibility of developing new elements producing solutions with convergence patterns
that cannot be stated a priori. Moreover, it is known that under certain circumstances the hybrid
and mixed formulations can lead to the same solutions generated by a corresponding traditional
conforming formulation (de Veubeke 1965, Stolarski 1987).

The recent developments in computer hardware, in particular in what concerns parallel process-
ing, are forcing the finite element developers to reassess the competitiveness of the conventional
formulation and to accept that the hybrid and mixed formulations, because of their higher flexibi-
lity, offer particular advantages within this new framework. Thus the renewed research interest
on these non-conventional formulations, attested by the recent increase in the number of papers
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published in the specialised literature.

If this revival in the interest on the hybrid and mixed formulations is to succeed, it is essential
to accept them as alternative concepts that should be developed per se, instead of insisting in
establishing the bases for their development by mimicking the conforming approach. This is
the philosophy adopted in the development of the hybrid finite element formulations reported
here (Freitas 1989).

Four ingredients may be considered as the key aspects of this attempt to overcome the major
drawbacks of the non-conventional formulations and thus provide the user with a much wider
set of available finite element models:

* To depart from first principles of mechanics, namely equilibrium, compatibility and constitu-

tive relations;

* To use nodeless, hierarchical approximation functions, thus removing the restrictions imposed
by the use of nodal interpolations, extending the choice of available function bases and
enhancing the implementation of adaptive procedures;

» To enforce energetically consistent definitions for the discrete generalised variables;

* To use mathematical programming concepts to recover the corresponding variational theo-
rems and to establish the conditions for existence and uniqueness of solutions, from which
the convergence characteristics of the models can be stated.

Two complementary sets of finite element models have been established from a Navier-type
description of boundary value problems. They are termed stress and displacement models and
are so designed as to generate, under certain conditions, statically and kinematically admissible
solutions, respectively. For the sake of brevity, the displacement model is not covered in this
paper. ,

Three alternative formulations can be stated for each finite element model, depending on
the constraints enforced on the intervening approximation functions. The three alternative formu-
lations for the stress model are the following:

e The hybrid-mixed formulation, for which the displacements (both in the domain and on
the boundary of the finite elements) and the stresses are approximated independently but
the corresponding functions are not required to satisfy locally the relevant field equations;

* The hybrid formulation, where the boundary displacements and the stresses are approximated
independently and the latter are required to satisfy locally the differential equilibrium equa-
tions;

» The hybrid-Treffiz formulation, where now the stress approximation functions are constrained
to satisfy locally the governing Beltrami-Michell equation, meaning they are associated with
displacement fields that solve the governing Navier equation.

In every case the approximation criteria are so defined as to ensure consistency.

As the approach adopted here is not problem dependent, it is easily adaptable to distinct
structural forms and alternative constitutive relations and is open to the incorporation of a wide
variety of approximation functions.

In the latter part of the paper, different problems consisting in the analysis of plates and
solids are used to illustrate the use of digital functions, wavelets, standard, Legendre and Chebyshev
polynomials, as well as trigonometric, hyperbolic and rational functions as finite element approxima-
tion functions. Linear problems are used to support this illustraiion, as they combine formal
simplicity with the ability to enhance the most relevant aspects of the alternative formulations.
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2. Fundamental relations

The formulations are derived from first principles, that is the fundamental relations governing
the boundary value problem under consideration, and not from equivalent variational statements.

The system of equations governing the linear response of an elastic body with domain V
and boundary I, assigned to a Cartesian system of reference, can be stated as follows:

Do+b=0 in V 8]
e=D*u in V 2
e=f(o—0o)te in V 3
No=t; on I, )
u=ur on I, ©)

In the equilibrium condition Eq. (1), o is the array where the independent components of
the stress tensor are listed and vector b collects the components of the body forces. In the compati-
bility condition Eq. (2), vectors & and u collect the independent components of the strain tensor
and of the displacement vector.

In description Eq. (3) of the constitutive relations, the flexibility matrix f collects the relevant
elastic constants, and vectors & and o, are used to define residual strains and stresses.

The boundary conditions Eq. (4) and Eq. (5) apply to the entire limiting surface of the domain
V under analysis: I'= I, U I, and ¢ = I, N I,. In the static boundary condition Eq. (4), matrix
N collects the components of the unit outward normal vector associated with the entries of
the differential equilibrium matrix D and ¢ is the vector that collects the tractions prescribed
on portion I, of the enveloping surface. The kinematic boundary condition Eq. (5) states that
displacements uy are prescribed on the complementary portion I;. The notation used above
can accommodate mixed boundary conditions.

Appropriate combinations of the field Egs. (1) to (3) yield the governing Navier equation,

DkD*u+D(o,—k&g)+b=0 in V (6)

where k is the elastic stiffness matrix:
k=f"" ()
The basic properties of system Egs. (1)-(5) are the following: the differential equilibrium and
compatibility operators D and D* are linear and adjoint in the context of geometrically linear
models: the flexibility matrix f is symmetric and has constant entries when a linear, reciprocal

elastic law is assumed. To ensure consistency, the equivalent properties must be preserved in
the finite element model.

3. Basic finite element approximations

In the hybrid-mixed formulation the displacements and the stresses in the domain V of the
element are independently approximated in each finite element, as stated by Egs. (8) and (9)
in Table 1, where matrices Sy and Uy collect appropriate approximation functions, vectors X
and gy list the associated weights and vectors o, and u, are used to model particular solutions,
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Table 1 Finite eclement approximations and associated dual variables for the hybrid-mixed
stress model

=8 X+o, in V  (8) u=Usqytu, in V 9 u=Urqr on I (10)
eZJS#edV 11y QV:jUV’de (12) QFJUftdec (13)

X'e= f(o—o,,)’edv 4) ¢/Q= f(u—up)'de 15 4/0— fu'trdfa (16)

for instance those associated with body forces, specific boundary conditions or residual stresses
and strains. In general, it is convenient to construct the approximation basis from a complete
set of functions.

In the stress model, the displacements are also approximated on the static boundary of the
element in form Eq. (10), where matrix Ur collects the boundary approximation functions and
vector gr the corresponding weights. It should be noted that, for a free element, the definition
of the static boundary I3 is relaxed to include all the boundaries where on the displacements
are not prescribed.

Also given in Table 1 are the definitions for the generalised strains, e, the generalised body
Jorces, Qy, and the generalised tractions, Qr, respectively associated with the generalised stresses,
X, and the generalised domain and boundary displacements, gy and gr They represent the dual
transformations of the stress and displacement approximations Eq. (8) to Eq. (10), thus ensuring
that the finite element discrete fields dissipate the same energy as the continuum fields they
are associated with, as stated by Eqgs. (14) to (16).

As it is shown below, this is a sufficient condition to ensure that the finite element models
display the properties that typify the problem under analysis, namely:

* Linearity, that is finite element arrays with constant entries;

e Static-kinematic duality, meaning that the finite element equilibrium and compatibility matrices

are the transpose of each other;

* Constitutive reciprocity, encoded by symmetric finite element elasticity matrices.

4. The hybrid-mixed stress model

The generalised stresses, X, and the generalised domain and boundary displacements, q, and qr,
collect approximation weights that need not-and in general will not - correspond to nodal or
modal values: the physical concepts of node and mode are herein avoided to release unnecessary
constraints in the selection of approximation functions collected in matrices Sy, Uy and Ur
In general, it will be convenient to construct the approximation bases from complete sets of
functions.

Moreover, besides linear independency, in the hybrid-mixed stress model the functions present
in the finite element approximations Eq. (8) to Eq. (10) are not required to satisfy any of the
relevant fundamental relations Eq. (1) to Eq. (5):

» The stress fields collected in matrix Sy need not satisfy either the equilibrium condition

Eq. (1) or the static boundary condition Eq. (4);
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Table 2 Finite element equations for the hybrid-mixed stress model

Statics (17) Kinematics (18) Elasticity (19)

___At +
e B e e

» Also, neither the strains compatible with the displacements Uy nor the elastic strains associa-
ted with the stresses Sy are explicitly used, meaning that neither the compatibility condition
(2) nor the elastic constitutive relations Eq. (3) are locally satisfied;
e Lastly, the boundary displacement approximation functions listed in matrix Ur are not requir-
ed to satisfy continuity conditions.
The finite element basic relations for the hybrid-mixed stress model are summarised in Table
2.
Definition Eq. (11) for the generalised strains is used to enforce the local compatibility condition
(2) on a Galerkin-weighed residual form, using the stress approximation functions as weighing
functions,

f S/ (e—D*u)dV=0 (20)

or.
e:fSV’(D*u)dV (21

To derive the finite element description (18) for Kinematics, Eq. (21) is first integrated by parts
to mobilise the boundary terms and thus enable the combination of the kinematic admissibility
conditions (2) and (5) in a single statement:

e= —f (DSVYudV+f(NSV)’udFU+f (NSy)Yurdl, (22)

Inserting above the displacement approximations (9) and (10), the following expressions are
found for the finite element compatibility matrix and for the terms associated with prescribed
displacements:

AV:f D SyUu,dv 23)
Ar= f NSy UL (24)
= f (D SyYu,dV (25)
er= J (NSyYurdl, (26)

Similarly, definitions (12) and (13) for the generalised body forces and boundary tractions are
used to enforce the local equilibrium condition (1) and the static boundary condition (4), respecti-
vely, on a Galerkin-weighed residual form, using now as weighing functions the displacement
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approximation functions in the domain and on the boundary of the element:

fUVf(D o+b)ydV=0 @7

fw(zv o—t)dl,=0 (28)
or

— f U/(Do)dV=0y (29)

f Ut (N o)dT. =0 (30)

The discrete description of Statics, given by Eq. (17) in Table 2, is obtained inserting in Egs.
(29) and (30) the stress approximation (8). Static-kinematic duality is preserved, as the finite
element equilibrium matrices are the transpose of the domain and boundary compatibility matri-
ces (23) and (24), respectively, and the following expressions are found for the terms associated
with the prescribed stress field:

QV,,ZJ U/(D c,)dV (31)

QI'[):f UI'I(N Gp) dra (32)

Definition (11) for the generalised strains is also used to enforce the local elasticity condition
(3) on a Galerkin-weighed residual form, using again the stress approximation functions as wei-
ghing functions,

f S/ [e—f(o—0c)—&ldV=0 (33)

e= f S/ flo—o)+eldV (34)

The discrete representation of Elasticity, given by Eq. (19) in Table 2, is obtained substituting
the stress approximation (8) in Eq. (34), yielding definition Eq. (35) for the symmetric finite

element flexibility matrix and definition (36) for the term associated with prescribed stresses
and strains:

F,= f S/fS,dV (35)

en= f SYLf(o,~o)+egldV (36)

The results above show that the finite element Eqs. (17) to (19) can be interpreted as the Galerkin-
weighed enforcement of the fundamental relations (1) to (5) consistent with the finite element
approximations (8) to (10):

* The finite element description of Statics, Eq. (17), represents the Uy,- and the Up- weighed
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residual enforcement of the equilibrium condition (1) and of the static boundary condition
(4), respectively;

* The finite element description of Kinematics, Eq. (18), represents the S,-weighed residual
enforcement of the compatibility condition (2) wherein the kinematic boundary condition
(5) 1s locally enforced;

 The finite element description of Elasticity, Eq. (19), represents the S;-weighed residual enfor-
cement of the elasticity relations (3).

5. The hybrid stress model

The hybrid stress model is a direct specialisation of the hybrid-mixed model described above
and is obtained by constraining the stress approximation (8) to satisfy locally the equilibrium
condition (1):

DS,=0 in V (37)
Do,+b=0 in V (38)

The constraints above restrict only marginally the bases from which the finite element approxima-
tions can be built up. The generation of self-equilibrated stress fields is implemented easily
using appropriate stress potentials.

These constraints on the approximation bases are compensated by important practical gains:

* The stress approximation (8) satisfies locally the equilibrium condition, thus meeting a priori
a necessary condition to obtain statically admissible finite element solutions;

 The displacements need no longer to be approximated in the domain of the element, which
reduces the chances of generating approximation bases that induce spurious modes;

 All arrays present in the hybrid stress finite element description of Statics and Kinematics
have boundary integral expressions;

e The number of degrees of freedom required to achieve an equivalent level of accuracy
in the stress estimate is substantially lower than that required by the hybrid-mixed stress
model.

Consequent upon constraint (37), the S,-weighed residual enforcement (22) of the kinematic

admissibility conditions (2) and (5) reduces to form,

e=— f (OYudv+ f (NSyYudl,+ f (NS,Yurdr, (39)

which shows that approximation (9) for the displacements in the domain of the element becomes

irrelevant. The resulting finite element description for Kinematics simplifies to form (41), given
in table 3. Definitions (24) and (26) still hold for the intervening finite element arrays.

Also consequent upon constraints (37) and (38), Eq. (27) is made redundant and the finite
element description for Statics reduces to the Ur-weighed enforcement (28) of the static boundary
condition (4), as stated by Eq. (40) in Table 3.

The finite element description (42) for Elasticity is the same as that derived for the hybric
mixed stress model.
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Table 3 Finite element equations for the hybrid stress model

Statics (40) Kinematics (41) Elasticity (42)
A["X:QF—QE,, e:Arqr+er e=FyX+ey,

6. The hybrid-Trefftz stress model

The hybrid-Trefftz stress model is obtained by further constraining the stress approximation
(8) to be associated with strain and displacement distributions that satisfy locally the compatibility
and elasticity conditions (2) and (3), besides solving the equilibrium condition (1) through constrai-
nts (37) and (38).

This is equivalent to assume that the stress fields Sy and ¢, in approximation (8) derive from
displacement functions, Uy and u,

S,=kD*Uy, in V (43)
o,=k(D*u,—g)to, in V (44)
that represent, respectively, homogeneous and particular solutions of the Navier Eq. (6):
DkD*Uy=0 in V (45)
Dk D*u,+D(c,—ke&)+b=0 in V (46)

The constraints above have no direct consequence on the finite element description for Statics
and Kinematics, which preserve expressions (40) and (41), as stated in Table 4. However, they
are necessary to obtain the alternative description (49) for Elasticity, where now all the finite
element arrays present boundary integral expressions, as it was already the case for the equilibrium
and compatibility arrays.

Table 4 Finite element equations for the hybrid-Trefftz stress model
Statics (47) Kinematics (48) Elasticity (49)
A]!X:QrAQ]“p e:Arqr+8r e=FrX+ep

To obtain the new description for the finite element flexibility matrix, Eq. (43) is first inserted
in definition (395),

F,= fSV’ D*UydV (50)

and integration by parts is implemented next to enforce constraint Eq. (45), yielding the following
alternative boundary integral expression:

Fr= f (NS, U, dl" (51)

Applying a similar procedure to definition (36) for the generalised residual strains, using now
result (46), the alternative boundary expression thus found is the following:
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ene f (NS u,dI )

Constraints (43) to (46) restrict further the bases from which the hybrid-Trefftz stress elements
can be derived. It should be noted, however, that the necessary function bases are available
and well defined in the specialised literature for a wide range of structural forms and different
constitutive relations. They are generally derived from displacement potentials constrained to
satisfy the Navier equation or from stress potentials governed by the corresponding Beltrami
equation.

The main features of the hybrid-Trefftz stress model can be summarised as follows.

» The stress approximation (8), besides satisfying locally the equilibrium condition, is now
associated with elastic strain distributions and unique, compatible displacement fields:

e=EyX+¢g in V (53)
u=UX+u, in V (54)

* As in the hybrid stress model, the displacements are only approximated on the boundary
of the element;

* All arrays present in the hybrid-Trefftz stress finite element model have boundary integral
expressions;

e The number of degrees of freedom needed to achieve a level of accuracy equivalent to
that produced by the hybrid stress model is substantially lower, as the hybrid-Trefftz estimates
generate from local solutions of the governing equations;

 The finite element model is free of spurious modes.

7. Finite element solving systems
The elementary solving systems for the alternative stress models described above are summari-

sed in Table 5. They are obtained combining the associated finite element descriptions of Statics,
Kinematics and Elasticity given in Tables 2 to 4 to eliminate the generalised strains, e, as explicit

Table 5 Finite element solving systems

Hybrid-mixed stress model (55)

FV AV "‘Ar X er—éey, ey
4/ 0 O qv ( — —0y—0y,

Hybrid stress model (56)
F FV _Ar:l { X }: { er—ey, }
| —4f O qr Qn—0r

Hybrid-Trefftz stress model (57)

A RS s
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variables.
As the flexibility matrix (35) is positive-definite, system (55) can be condensed on the generalised

displacements,
Kvw —Kir { qv }:{QV*}
[ —Kitr K ] qr or 58)

or further on the generalised boundary displacements, into the form typical of the displacement
formulation:

K qr=0* (59)

The hybrid and hybrid-Trefftz systems (56) and (57) can be condensed into a similar form.
Format (59) for the finite element solving system is often used to extend to hybrid elements
the libraries of the commercial finite element codes based on conforming, displacement elements,
simply by implementing the boundary displacement approximation (10) on a nodal frame basis.

The governing system of a structure discretised into elements is obtained by assembling one
of the alternative elementary systems defined above by requiring adjacent elements to share
the same boundary displacement approximation law (10). The assembled finite element governing
systems present a structure that is similar to that of the elementary systems they generate from,
as given in Table 5 or, alternatively, by Egs. (58) and (59).

The assemblage procedure of the finite element solving systems given in table V consists,
therefore, in the implementation of simple, direct allocation operations, that do not involve the
superposition of the contributions of connecting elements typical of the conventional displacement
formulation. The entries of vector Qr associated with the inter-element boundary tractions are
set to zero to model traction continuity. These entries are computed from definition (13) for
the actual, prescribed tractions on the assembled finite element mesh.

The assemblage procedure described above can be generalised to allow for independent boun-
dary displacement approximation laws along adjacent elements (Almeida 1991). A basically similar
technique is used to combine stress and displacement elements in the same finite element mesh
(Rebelo, 1993).

8. Numerical Implementation

The governing systems summarised in Table 5 display a special structure that must be convenie-

ntly exploited in the phase of numerical implementation. The following aspects are particularly
relevant:

* The solving systems are symmetric and sparse, as it is typical of all finite element solving
systems;

* The dimension of the solving systems for hybrid-mixed elements is relatively high but this
limitation 1s compensated by the high sparsity index of the system, consequent upon the
block-diagonal structure of the flexibility matrix;

* The sparsity index of the solving systems for the hybrid-mixed stress model is further impro-
ved by the use of orthogonal approximation functions;

* A significant number of the finite element arrays, in fact all arrays in the hybrid-Trefftz
model, present boundary integral expressions, a feature typical of the boundary element
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method;

 The use of coarse finite element meshes based on few but very rich elements and the imple-
mentation of adaptive techniques is possible and simple to implement as hierarchical series
are used to construct the finite element approximation bases;

e Numerical integration can be minimised or even fully avoided, in particular for the hybrid-
mixed and hybrid models, as the simplicity of the approximation functions allow for the
direct encodement of the analytical expressions of the finite element arrays;

 The generalised tractions, g, are the only variables that can be shared, as all the remaining
variables used to describe the approximations in the domain of the elements, the generalised
displacements and stresses, ¢ and X, are strictly element dependent;

e The post-processing phase is substantially simplified as the stress and displacement fields
can be directly computed from the finite element solution using definitions (8) and (9)
for the hybrid-mixed model and definitions (8) and (54) for the hybrid-Trefftz elements,
respectively;

e The independent displacement estimates obtained from the boundary approximation (10)
can be used directly to assess the convergence of the solution;

e The graphic representation of the finite element solutions is also simplified because the
field and boundary approximations are strictly element dependent and smoothing techniques
need not to be applied as highly accurate solutions can be obtained using high degree,
hierarchical approximation functions.

Highly efficient finite element codes can be implemented by exploiting convemently the features

above, in particular when parallel processing is used (Almeida 1996).

Different approximation functions have been tested, namely digital Walsh functions and wave-
lets (Freitas 1992 and Castro 1996), orthogonal and non-orthogonal polynomials (Almeida 1991
and Pereira 1996) and fundamental solutions for elastostatic problems, such as trigonometric
(Freitas 1991), hyperbolic, exponential and logarithmic functions (Freitas 1996). Examples of
one dimensional Walsh functions (Walsh 1923) and wavelets (Daubechies 1988) are given in
Figs. 1 and 2.

Hybrid-mixed and hybrid-stress formulations have been developed for 2-D problems (Almeida
1991, Freitas 1996c), 3-D problems (Almeida 1996b) and for the analysis of Mindlin (and higher-

A v N
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Wy ) o R e e I
0 0
—1 — =

WAL(2,

AL(2,1) o | I | . s WAL(6,1)
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Fig. 1 One dimensional Walsh functions.
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Fig. 2 One dimensional scaling functions and primary wavelets.

order) bending plates (Pereira 1996b) and used to model interlaminar stresses in composite lami-
nates (Pereira 1993). Both hybrid-mixed (Almeida 1989, Castro 1996) and hybrid-stress (Almeida
1989, 1995) formulations have been applied to the elastoplastic analysis of 2-D problems. The
experience with hybrid-Trefftz formulations is limited to quasi-static (Freitas 1996a, 1996b) and
dynamic elastic problems (Freitas 1996d).

The governing systems associated with the hybrid-Trefttz formulations are small in dimension,
positive semi-definite and well conditioned. The efficiency that can be attained in the storage
and solution of such systems is countered by the implementation of the heavy procedures required
to process the singular functions that may be present in the (boundary integral) definitions
of the structural operators. Analytical and semi-analytical, special purpose procedures seem to
be the natural way to overcome this difficulty, exploiting the currently available symbolic proces-
sing programs.

Large systems and the threat of spurious modes is the price paid to achieve the high malleability
that typifies the hybrid-mixed and, to a lesser extent, the hybrid stress models. Static spurious
modes are absent from these formulations as the stress approximation functions are linearly
independent. The existence of kinematic spurious modes can be minimised by establishing appro-
priate relations on the degrees of the intervening approximation functions. The use of assemblies
of elements for which the spurious kinematic modes are eliminated at macro-element level is
another approach to handle this problem (Maunder 1996). Alternatively, dependent equations
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Fig. 3 Typical pattern of the governing system.

must be discarded during the solution of the governing system.

As closed form solutions for the structural operators can be obtained, setting up the governing
system is, in general, a low cost operation. The use of orthogonal approximation functions allows
for the generation of highly sparse systems, which can be stored and solved using appropriate
algorithms (Harwell 1993 and Pissanetzky 1984). A typical pattern of the corresponding matrices
is shown in Fig. 3.

9. Existence and uniqueness of solutions

It is important, from both theoretical and computational stand points, to establish clearly
the sufficient conditions for the existence and uniqueness of the finite element solutions. This
has been achieved in a consistent and formally elegant way for alternative structural analysis
and optimisation problems using mathematical programming theory (Maier 1982 and Maier
1986).

The finite element systems given in Table 5 can be stated in the common form Eg. (60),
using appropriate identifications for the system variables, x and y, as stated by Eq. (61) for
the hybrid-mixed stress model and Eq. (62) for the hybrid and hybrid-Trefftz models, respectively:

[ @
x=X and y=(@qv, 91 (61)

x=X and y=qr (62)

Under certain sufficiency conditions (Karush 1939, Kuhn 1951), system (60) is equivalent to either
of the following pair of dual quadratic programs:

Min z= —é—x’Hx—l— %y’Gy —y'xy (63a)

subject to: My—Hx=y, (63b)
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Min w—*—%x’Hx-F—é—y’Gy%—x’yo (64a)
subject to: M'x+Gy—x, (64b)

Eq. (60) is thus uncoupled into sub-systems Egs. (63b) and (64b), which define the primal and
dual constraint sets, respectively. Solutions of these sub-systems are said to be feasible solutions
of the corresponding programs. Among all the primal and dual feasible solutions (63b) and
(64b), the optimal solution, or solutions of the corresponding program are those that simultaneou-
sly minimise the associated objective function, z and w, as defined in statements (63a) and (64a),
respectively. Under the equivalence conditions referred above, these optimal solutions are also
the solutions of system (60).

The sufficient conditions for the existence and uniqueness of the finite element solutions are
directly obtained by applying the relevant mathematical programming theorems (Cottle 1963,
Kunzi 1966) to programs (63) and (64). They can be used to establish under which situations
the finite element models may produce either static or kinematic multiple solutions. Based on
this information, it is possible to state the sufficient conditions that must be met to avoid the
emergence of these spurious modes. They are particularly simple to implement in the development
of hybrid-Trefftz elements.

10. Static and kinematic admissibility conditions

Let ny, ny and n,r represent the number of degrees of freedom in the finite element stress
and displacement approximations (8), (9) and (10), respectively. According to the equilibrium
and compatibility conditions (17) and (18), given in Table 2, the static and the kinematic indeter-
minacy numbers of the hybrid-mixed stress element, @ and f, are defined thus:

a:nx-‘nqy—nquO (65)
ﬂ —n, V+ nyr (66)
The definitions above can be specialised for the hybrid and hybrid-Trefftz elements by letting

anZO.

The finite element solutions satisfy on average (weak enforcement) the static admissibility
conditions (1) and (4) and the kinematic admissibility conditions (2) and (5); in general they
do not satisfy locally these conditions (strong enforcement).

Definition (65) shows that the smaller is the static indeterminacy number of the stress element,
the stronger is the enforcement of the static admissibility condition. As it is always possible
to choose an approximation basis that implements this condition strongly, it may be stated
that the finite element stress model may produce statically admissible solutions. However, and
in consequence of the same definition, the enforcement of the kinematic admissibility conditions
in formats (18), (41) or (48) is, in general, weak.

11. Energy statements and qualification of solutions

The finite element formulations are frequently derived from alternative energy statements, na-
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mely the virtual work Eq. (67) and stationary conditions on the potential energy (68), the comple-
mentary potential energy (69) and the Hellinger-Reissner (70) functionals:

fo‘edV:fb’udV+ftfudFU+JuﬁtdE (67)
= % j (o+o)(e—&)dV— f budV— J tiudl, (68)
== f (o+o)(ete)dV— f urdr, (69)
=11, —fu’ (Do+b)dv+ J w(t—tpdl, (70)

Note that in definitions (68) and (69) the residual stress and strain fields satisfy, by definition,
the following zero-dissipation condition:

J o' &dV=0 (71)

It can be shown that the inner product of equilibrium and compatibility conditions given in
Tables 2, 3 and 4 for the alternative stress models recovers the virtual work Eq. (67). For instance,
for the hybrid-mixed model this inner product yields the following result:

97 (Qr—0p)t4/(Qvt Qy)=X'(e—ertey,) (72)

To recover the virtual work equation it suffices to substitute in the equation above the definitions
summarised in Table 1.

Taking into account the identifications (61) and (62), and recalling the expressions found for
the equilibrium and compatibility conditions given in Tables 2, 3 and 4 for the alternative stress
models, it can be easily found that the primal and dual feasible solutions (63b) and (64b) represent
(weak) kinematically and statically admissible finite element solutions, respectively.

Identifications (73) and (74) for the primal and dual objective functions z and w are obtained
substituting in their expressions the definitions found for the relevant matrices and vectors interve-
ning in the governing systems (55) to (57) of the hybrid-mixed, hybrid and hybrid-Trefftz stress
models, for the identifications (61) and (62), respectively, and manipulating next the resulting
equations using the expressions found for the finite element arrays:

z=II+ constant (73)
w=1II_+ constant 74

It is thus found that the primal and dual programs (63) and (64) encode the theorems on the
minimum potential energy (68) and co-energy (69), respectively.

Under the same sufficiency conditions (Karush 1939, Kuhn 1951), the alternative pair of quadra-
tic programs (75) and (76) is also equivalent to system (60):

Min z*:~%x’Hx+%y’Gy—Fx’My-—x’yo—y’xo (75)
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Min we=— —é—x’ Hx+ é—y‘ Gy+x'My subject to system (60) (76)
Program (75) enjoys the feature of being unconstrained, meaning that a stationary value of functio-
nal zx recovers the solution set of the governing system (60). The following identification,

Zs = — Ilyp+ constant )

is obtained using a process similar to the one described above for functionals z and w. Again,
as the constant terms do not interfere in the optimal values of the objective function, it can
be stated that program (75) encodes the stationary condition on the Hellinger-Reissner functional
(70).

The results presented above show clearly that the finite element stress models derived here
directly from the fundamental state conditions (1) to (5) are consistent with the relevant energy
theorems of elastostatics. Therefore, these energy theorems could also be used to derive directly
the finite element systems summarised in Table 3.

12. Numerical lllustrations

Typical applications in linear elastostatics are presented below for the hybrid-mixed, hybrid
and hybrid-Trefftz finite element models. The graphic outputs shown for the distributions of
stresses are directly obtained from computed values (Almeida 1992). No smoothing is applied.

The uniformly loaded triangular wedge, represented in Fig. 4, is studied using a Legendre
polynomial approximation of degree 10. In table VI the values of the stresses at the points
indicated are compared with those obtained by (Pian and Wu 1988) and (Dong and Freitas
1993). Fig. 5 shows the corresponding stress trajectories.

The same formulation is adopted in the implementation of the higher-order model used in
the analysis of composite plates, where the 3D model is replaced by a sequence of 2D problems

yT 1
ff*f*/gf***ﬁ**t

X

A - B& X,

%

923

}___‘\110\__’ v=03

Fig. 4 Triangular wedge.
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C

Fig. 5 Stress trajectories for the triangular wedge.

Fig. 6 Shear stress distribution in a cross-ply laminate (1/8 of specimen).

Fig. 7 Normal bending moments in a 1/4 of a thick plate subject to uniform load.

by expanding the displacement field on a power series on the thickness co-ordinate. Represented
in Fig. 6 is the interlaminar shear stress concentration in a cross-ply laminate subject to uniform
axial deformation.

Fig. 7 illustrates the convergence of the bending moment distributions in one quarter of a’
square, simply supported (hard) Mindlin plate, subject to uniform load. Two meshes are tested
(A and B, with 1X1 and 2X2 square elements, respectively) with up to 22 Walsh approximation
functions, for each variable, in each direction.
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Qv ar

Oyy Oxy

Fig. 8 Stresses and deformed shapes in a thick circular tube.

2102 2102 2437
1592 1,595  1.594

-2.102  -2.402 -2.137
-1.602 -1.595 -1.504

Fig. 9 Cartesian stresses in a thick shell under internal pressure (1/8 of the shell).

Wavelet approximation functions are used to obtain a solution for an infinite thick cylindrical
tube subject to external pressure. The plane components of stress and the deformed shape of
a cross section are represented in Fig. 8, when 8 translations of a wavelet with N=10 are used.

The results described above are solved using the hybrid-mixed stress model. The following
two applications derive from the implementation of the hybrid stress model.

Solid elements, using polynomial approximation functions derived from the Morera stress
potentials, are applied in the example of Fig. 9, where the Cartesian components of stress in
this thick shell subject to internal pressure are represented.

An important characteristic of the hybrid stress model being described is the lack of compatibi-
lity in the resulting deformed shapes. The tapered plate under compression shown in Fig. 10
is used to illustrate this effect. The convergence of the non-conforming deformed shapes is presen-
ted in Fig. 11. Robust macro-elements free from spurious kinematic modes are used in the
analysis (Ramsay 1995).

The illustration in Fig. 13 represents the stress patterns obtained with the hybrid-Trefftz stress
model in the simulation of the elastic response of the stretched plate with a kinked crack shown
in Fig. 12 (=10, E=2, 100, v=03, L=w, a=w/4, I=w/100, w=4). A relatively coarse finite
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Fig. 10 Tapered plate subject to compression.
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Fig. 11 Example of p-convergence for non-conforming deformed shapes.
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Fig. 12 Rectangular plate with kinked crack, subject to axial tension.

element mesh is adopted. Less than 200 degrees of freedom are sufficient to generate an accurate
solution. In each element the stress field is approximated with Chebyshev polynomials satisfying
the governing Navier equation. In the elements where cracks develop, the Chebyshev rational
functions simulating exactly the local singular stress fields are directly injected in the crack
kink and tip. The weight of these stress modes represent directly the crack stress intensity factors.

The last example is selected to illustrate the accuracy that can be achieved in the direct compu-
tation of stress intensity factors. The test shown in Fig. 14 has been devised to assess the effect
of small cracks on the stress intensity factor of a major neighbouring crack (L=3w, a=0.5w,
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Fig. 13 Stress fields in the plate with the kinked crack.
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Fig. 14 Elastic plate with neighbouring cracks subject to axial tension.

6=0.025w, w=10). The results obtained on a 14 element mesh with the formulation described
here (Freitas 1996) are given in Table 7 and shown in Fig. 15, where the stress intensity factors
are normalised with respect to the mode 1 factor found for the plate in the absence of the
microcrack, K;,=1586.
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Table 6 Stresses in the uniformly loaded plane wedge

Pol Pian-1 Pian-11 Dong
Ox —3.483 —2220 —3.290 —3.499
1 Oy —2429 —1.850 —2.860 —2.463
Oy 3.002 — - 2936
O —1.819 —1.590 —1.700 —1.830
2 Gy —1.663 - - —1.652
Oy 1.775 — - 1.775
Cx 0.303 1.010 0.500 0.201
3 Gy —1.2045 — - —1204
Oy 0.826 — — 0.825
Cx 2499 2.770 2.570 2499
4 Oy —1.027 - - 1.028
Oy 0.206 - - 0.207
O 4.924 295 4270 4943
5 Gy —1.000 - - —1.000
Oy 0.000 - - 0.000

Table 7 Estimates for the stress intensity factor K;

&/ 0.250 0.400 0.666 1.000 2,000
Model 3 225.52 200.90 181.86 171.90 162.63
Model 4 236.74 210.04 188.45 176.83 165.10

Hybrid-Trefftz 228.00 204.58 185.18 174.08 163.62
nSIF )
1
16 1-||2
4
14 |—
1.2
(4
4
J1 ;2
1.0 [ 35
0 04 08 1.2 16 O

Fig. 15 Normalised stress intensity factor (nSIF=Ky/Kpy).
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In Fig. 15, the results assigned to models 1 and 2 correspond to the solutions given in (Chudnov-
ski 1983) and (Kachanov 1986), respectively. The results for models 3 and 4 are quoted from
(Maiti 1992), respectively obtained with Maitis one point singularity element and the Dutta-Maiti-
Kakodkar singularity element.

13. Closure

The solutions obtained with the hybrid/mixed finite element models described here are compu-
tationally competitive and can provide accurate and stable estimates for the response of structures.

The formulations suggested are particularly well suited for the development of adaptive methods
as hierarchical approximation functions are easily incorporated. They are also appropriate to
model stress concentration patterns developing in fracture mechanics problems, using suitable
singular approximation functions. Their natural ability to implement higher-order plate and shell
formulations can be exploited to establish efficient codes capable of simulating accurately interla-
minar stresses developing in laminated structures.

These features follow from the open architecture that can be achieved by deriving the formula-
tions from first principles, while being prepared to approximate a wide variety of fields (within
a well defined set of consistency criteria) and to release conceptual constraints dictated by an
overly rigid physical interpretation of the finite element method, of which the node and mode
concepts are typical examples.

Another important characteristic is the possibility of obtaining direct bounds of the solution
error and error estimators using pairs of statically and kinematically admissible solutions.

A common property of these formulations is the economy that they allow at both pre- and
post-processing phases. They can operate accurately using coarse meshes of super finite elements,
demanding the handling of small data structures, and are based on the direct approximation
of different fields, allowing for efficient graphic representation of deformed shapes and strain
and stress patterns.

Expert processing of (not necessarily definite) very large sparse systems becomes vital to achieve
acceptable levels of numerical efficiency. The current developments in supercomputing, particula-
rly in the area of parallel processing, open a wide and promising new field.

The conjugation of structural mechanics with mathematical programming yields immediate
benefits from both theoretical and numerical standpoints. The energy theorems can be obtained
a posteriori by identification of the mathematical programs associated with the structural gover-
ning system. Mathematical programming theory can also be used to establish sufficient conditions
for the existence, uniqueness and stability of solutions. Lastly, efficient solution procedures can
be developed by adapting mathematical programming algorithms to the physics specific to the
structural problem under analysis.
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