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Rayleigh-Ritz optimal design of orthotropic
plates for buckling

Robert Levyt

Faculty of Civil Engineering. Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel

Abstract. This paper is concerned with the structural optimization problem of maximizing the compres-
sive buckling load of orthotropic rectangular plates for a given volume of material. The optimality condi-
tion is first derived via variational calculus. It states that the thickness distribution is proportional to
the strain energy density contrary to popular claims of constant strain energy density at the optimum.
An engineers physical meaning of the optimality condition would be to make the average strain energy
density with respect to the depth a constant. A double cosine thickness varying plate and a double
sine thickness varying plate are then fine tuned in a one parameter optimization using the Rayleigh-
Ritz method of analysis. Results for simply supported square plates indicate an increase of 89% in
capacity for an orthotropic plate having 100% of its fibers in 0° direction.
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1. Introduction

Distributed parameter structural optimization problems involving shape as a design variable
and maximal buckling loads as the objective function for such elements as thin rectangular
plates having a behavioral partial differential equation of the fourth order and containing mixed
terms will often exhibit uncomfortable complexities yet produce high strength to weight ratios
of the structural elements under consideration and thus attract industries with weight sensitive
products. A comprehensive review on such problems was done by Haug (1981) and Banichuk
(1983). Of particular interest in this paper is the thickness variation of thin orthotropic plates
under uniform compressive buckling loads.

Keller (1960) and Tadjbakhsh and Keller (1962) considered optimal shapes of beams under
compressive loads for various constraints. Spillers and Levy (1990) extended Keller's technique
to axially compressed plates. Axisymmetric cylindrical shells (Levy and Spillers 1989) and ortho-
tropic rectangular plates (Levy 1990) for axial compression were later considered. Their work
derived optimal plates of double curvature (a constant and the first term of a cosine Fourier
series in each direction) having a parametric characterization for buckling represented by a
symmetric double sine displacement mode with a 112% increase in the buckling load. A symmetric
Rayleigh-Ritz analysis with a multiple of half sine waves in the direction of loading and only
one half sine wave in the other direction predicted a 41% increase in the buckling load for
the same plates. A general Rayleigh-Ritz analysis with half sine waves in both plate directions
produced a “degenerate” locally buckled mode with no strength advantages.
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This paper reshapes the Spillers and Levy plate to avoid these local instabilities. It shows
that the behavior is indeed symmetric with only slight variations in shape and critical buckling
loads. The fine tuning is performed in a one parameter search using the Rayleigh-Ritz method
repeatedly.

The same search is also imposed on a hybrid double sine plate having the first term (a
constant) of a Fourier cosine series and the first term of a Fourier sine series.

2. Problem formulation

The partial differential equations (Timoshenko and Krieger 1959) which describe the buckling
behavior of rectangular orthotropic plates which are acted upon by compressive forces parallel
to the x-axis consist of the equilibrium equations

M\, oo 2M\»\'. RS +M\ w — PW,V\-\. (1)

and the constitutive equation
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Egs. (1) and (2) yield a governing partial differential equation in terms of lateral displacements,
w, of the form

(D,\/ W, .\‘.\')'a,\‘,\' + (Dl w'_l'}')\\‘.\‘ + 4(D,\jr W, .\‘)')1\)' + (Dl W )n'\' + (D\ w, \1\*)«_\:\' + PW. W 0 (3)

The comma is used to indicate differentiation; M, and M, are the bending moments per unit
length: M., is the twisting moment per unit length; P is the applied compressive force per unit
length; w is the lateral displacement; D, D,, D, and M,, are the elastic rigidities all of which
are proportional to the cube of the plate thickness; {M} is a vector containing the bending
moments M., M, and M,: [D] is a matrix of elastic rigidities containing D,, D,, D, and
D\\

The optimization problem is now stated as find 7(x. y) that minimizes the volume V for
a fixed buckling load P given the plate dimensions. It is formally written as minimize the function-
al

J:fr(x, y)ds=V 4)
subject to ’
Lityw=0 (5)
where
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In Eg. (6), the following new variables have been introduced so as to highlight the dependence
of the problem on # D.=D. % D,=D.t %, D,=D;* and D,=D,t . In matrix form these
new variables are given as

[D]=1'[D] 7
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Where [D] is a matrix of elastic rigidities as in Eq. (2) but containing D,. D,. D, and D,, instead.
2.1. The optimality condition

The optimality condition is obtained by applying variational calculus in a straightforward
manner. Taking the first variation of the governing equation, Eq. (5), multiplied by an adjoint
variable and integrated over the area added to the first variation of the objective functional,
Eq. (4), form a new Lagrangian functional which is equal to zero. Using the self adjoint property
of the operator L(r) and the fact that the original objective functional varies with the design
variable 7 and. therefore 8 only, and is independent of w. the optimality condition is obtained
as

7\ T 43 4
LDl (8)

where is a constant; {w’} is a vector whose elements are —w,,.. —w,, and 2w,,.

The optimality condition may be obtained. in a somewhat simpler manner by applying the
stationary condition of Rayleigh's quotient with respect to the variation of thickness. It states
that the plate thickness is proportional to the strain energy density. Alternatively it states that
the depth averaged strain energy density is a constant at the optimum.

Prior claims (Masur 1970) argue that constant strain energy density at the optimum for prebuck-
ling statically determinate stress fields.

2.2. The approximate “optimal” plate

When solved simultaneously Egs. (3) and (8) will yield an optimal thickness distribution func-
tion and a lateral displacement function. A truncated Fourier series that satisfies the simply
supported boundary conditions is proposed (Spillers and Levy 1990). For a plate defined over
0=<x<qa, 0L<y<h, let
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For a symmetric approximation use

w= a,,(,sin%( smp—l? (12)
2
II[BH'B:COS p(jTX ][B3+B4COS qu”y :I (13)
2 - )
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Eqgs. (8) and (12) are now substituted into Rayleigh's representation of the governing equations,
Le.

[ Wi IDIw s

J: (W, ) ds

P,= (15)

to yield an expression for the volume in terms of P, and a. Since a@ may be directly expressed
in terms of C;, C5, C; and C,; from the optimality condition, their values that minimize V are
obtained. First order relations between B,, B, Bi, By and C,, (s, Cs, C, are extracted by equating
the square of Eq. (13) and Eq. (14) as identities. Thus “optimal” values are obtained as

al;) [l+( 7+\/_)(,0§ ][Hr( 2+ﬂcos 4 y] (16)

and
P=23-22) ‘b‘ u/+9<p)(—p‘3;>2 (17)
where
-o.(2)(%)
and
o= (47 ) 2 (57 ) (5 )+n (¥ @

For ¢=1, p may be found from

_a Dyo '
P b( Dy ) (20)

where D, and D,, are averaged uniform elastic constants.

3. One parameter optimization

Two plates are considered in this section as candidates for optimization. The first is the double
cosine symmetric plate of the form

2 2
1 (x, y):c](l+cgcos%> (1+czcos%}> (21)

where ¢ =t,ume and —1<¢,<1. The second is the hybrid double sine symmetric plate of the
form

t(x y):cl<l +cgsin—%> (H—czsin—];;h) (22)
where 0L¢; Kty (1—2/1) and = m/2(— 14 \/Lurerage /C1).
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The total potential [T=U—W. is first written in terms of the coefficients a,, of a double sine
Fourier infinite series for the displacement. w. The variation of IT is cquated to zero as a require-

ment for equilibrium to yield

_ ol
oII=0 or (da,,‘,>5a""

Due to the arbitrariness of 8a,, obtain

ol
aa,

=0 for all p, ¢
The total potential of non uniform orthotropic plates is given by
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After substituting Eq. (9) into Eq. (25) obtain
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(24)

(26)

Note that four of the double integrals contain r* which in itself consists of 16 terms to be multiplied
by the sum resulting from a particular choice of p and ¢. The choice is such that an increase
in the number of terms will yield insignificant additional accuracy. A truncated, suffi iciently
accurate series is thus used instead of an infinite series. Moreover, mixed double summations
or double summations squared result in quadruple summations that render themselves more

suitable for programming.

3.1. The “cosine” plate

Eq. (26) is further reduced to tailor to the “cosine” plate of Eq. (21) to yield

H-ZZZZ{ZB[( SDKBV DK 1D KA1 B)

»oyomon
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+25\-,»»K4(ﬁ)t/,-([3)]}04w =g KB, @7)

P4
where B, i=1—16 comes from the thickness cubed, 1,(8), i=1—16 and Ji(B), i=1—16 are two
types of integrals, § is a given combination, p, ¢. m, n and K:(B). i=1-—>5 contains constants
stemming from internal differentiation of sines and cosines. For example, and without going
into unnecessary details

Blh:(‘ﬁ (28)
Lo(P= f ydxdy (29)
0 Jo
pnx . qmny . mnx . Amy
where y—sm— sin—— 2 sin—— %mT and
Jis(B)= f ndxdy (30)
0 J0

pnxX  gqmy  max  Kny
where 17 C0S™ = COS™p= COS— = COS 5~ and

K: (ﬁ)*ﬁ”*I (31)

3.2. The hybrid “sine” plate

The hybrid “sine” plate of Eq. (22) is substituted in Eq. (26) to yield an expression for the
total potential of the form:

16

H~ZZZZ{ZB [( DK (B)+DiK(B)+ 3D, Kz(B)>1*(B)

Py m n

+ 25\1'K4 (ﬁ)‘ll* (B)]} ,m/ Oy — ZZ KS (ﬁ)a/zn/ (32)

Py
where integrals 1*(8) and J*(f) are obtained by replacing the cosinc terms with identical sine
terms in Eq. (27).
Within Eq. (24) lies a generalized eigenvalue problem of the form

[LAT=P[B]]{a}=0 33)

where {a} is a vector of coefficients @,,. An automated procedure evaluates integrals and assembles
LAl and [B]. Actual solution of Eq. (33) is performed using IMSL subroutines. Repeated analyses
are performed using a suitable large number of terms that ensures convergence for cach choice
of ¢; and ¢, as a one parameter (since ¢, and ¢» are mutually dependent) optimization problem.

4. Examples

An isotropic aluminum square plate of dimension 254 ¢cm (100 in)X254 c¢cm (100 in) and
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Table 1 Mechanical constants of graphite epoxy plates

Plate type Mechanical constants
X 108, psi

E\‘! E‘.I E” G
100% 0°

I 17076  1.8084 03798  0.65004
100% +45°

11 5916 5916 4.5 45
25% 0°
25% 90°
50% +45°

08 74724 74724 22416  2.6004
50% 0°
50% 90°

v 942 942 038004 065004

Table 2 Optimized “COSINE” plates

Plate type Shape coefficients (PYr /(P
C (6
Aluminium —0.295 1.234
I -0.370 1.745
11 0.05 —0.113 1.0107
I —0.295 1.228
v —0.365 1.745

Table 3 Optimized “SINE” plates

Plate type Shape coefficients (PY&r/(Pynorm
Ci (6]
Aluminium 0.0135 1.452 1.323
I 0.00980 1.977 1.887
11 0.0244 0.678 1.0329
111 0.0130 1.509 1315 .
v 0.010 1.942 1.873

having a total volume of 819 cm' (50 in') with E=706 GPa=102X10° psi and v=0.32 and
four different orthotropic configurations whose mechanical constants are given in Table 1 and
of the same edge dimensions and volume as the isotropic plate were optimized for both the
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Fig. 4 Optimal buckling mode isotropic “cosine” plate.

“cosine” shape and “hybrid “sine” shape. The plates are of symmetric layout with off diagonal
terms Dy, and D, taken as zero to yield a specially orthotropic matrix of constants. Optimal
results in the form of magnification ratios are presented in Tables 2 and 3. Figs. 1 and 2 show
three dimensional plots of thickness results of typical optimal plate configurations for the “cosine”
and “sine” plates respectively for all cases under consideration. Only one half of each of a
plate is shown. The other half is a mirror image on the other side of their base planes. The
thickness is highly exaggerated in these plots. Figs. 4-8 and Figs. 9-13 show of the buckling
modes for all cases considered. It should be noted that all modes come out symmetric.

A point of interest is the approximate plate of Eq. (16) for p=¢g=1. When a modified version
of Eq. (27) is used to handle the special case of taking ¢=1 and p=1. 3. 5. 7. -+ (symmetric
case) a magnification ratio of 141 results with a degencrate mode of anti symmetric nature
(Fig. 3) for a full analysis. Slight “tuning” brings back the symmetric stable mode at the optimum.
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Fig. 10 Optimal buckling mode case 1 “sine” plate.

549



550 Robert Levy

/7;;;7117'
207777
AL

\\\\-‘G\\
S oS
100052200 505930000 NSRS
77 [N
7758
L2
L2

L7777 N
gL S TR
7 7 77 NSLSREERR (URURRANER S
4/} i/ 47 Nt LN S
Sttty et G RIS
006200

P e
e e e e S
S eSS SITSICTISS

s
e sy, ST
7 F A IS S SITEIOTS IS TSNS
S EI sy gy, G P eSS SRR Te
e S S ST SOCTI S I To o
e T S
L7 77 ,”Il’ll':::‘:““‘:\“““x\\\\“ DO

’I””'III; etrssy, esast i guneee S

7] L7 10017220t S S EN N L R e

II”’”III[[[/,’,,;;;I'I”I;;;;:‘:S\\\?\‘“{“\\\\\\\“
4 L5 ass

Fig. 13 Optimal buckling mode casc IV “sine” plate.

5. Conclusions

Plates of variable thickness exhibit obvious strength/weight advantages in compressive buckling.
The hybrid “sine” plate turned out to perform better than the “cosine” plate. Isotropic variable
thickness plates outperform uniform plates by 32.3% whereas the specially orthotropic plate having
100% of its fibers at 0° direction maintained an 88.7% advantage.

In problems where Fourier series “works™ such as the problem at hand a clear picture of
the behavior in terms of the original problem parameters may be obtained using a one-term
truncated series.

With regard to the constant state of compressive stress that was assumed to exist one should
exercise further consideration and modifications when thickness variations are of the same order
of magnitude as the plate dimensions (in this paper the order is 1/100 1) or when the plates
are of high aspect ratios.
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Notation

The following symbols are used in this paper:

a plate dimension in x-direction
{a} vector of coefficients a,,
[B] generalized eigenvalue matrices
plate dimension in y-direction
B\, B>, By, B, coefficients of trigonometric terms
¢, € cosine and hybrid sine plate coefficients
C. G, G, Gy coefficients of trigonometric terms
[D]. [D] matrix of elastic constants for plate.
D\, D,, D,, D elastic constants for plate
Dy, Dy averaged elastic constants for plate
D\, D.. D D\, elastic constants for plate per cubic thickness
ds differential area
E Young's modulus
I*(B), I.(B) integral types
J*B). Ji(B) integral types
J functional
Ki(B). K\, K>, K. Ky constants
L() differential operator
M} vector of bending and twisting moments
M, (y) function of y
M. M. M, bending and twisting moments per unit length
m, p number of waves in x-direction
n g number of waves in y-direction
P compressive loading
P, critical buckling load
S area
T transpose of a matrix
Laverage uniform thickness
L tx p) thickness varying with x and y
U strain energy
4 volume
w work done
w lateral displacement of plate
(W] Vector (—W.oi — Wl 2W.)

X coordinate direction
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y coordinate direction

Qs Bogr Vu Fourier double sine coefficients

P g4 m, n combination

sine multiples

Poisson’s ratio

cosine multiples

total potential

ratio of wavelengths squared

function of D,,, p and ¢ (Eq. (8)). and
function of Di. D.. D,. p and q (Eq. (19)
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