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Dry friction losses in axially loaded cables
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Abstract. A model of a cable comprising interacting wires with dry friction forces at the interfaces
is subjected to a quasi-static cyclic loading. The first cycle of this process, comprising of axial loading,
unloading and reloading is investigated analytically. Explicit load-elongation relationships are obtained
for all of the above phases of the cycle. An expression for the hysteretic losses is also obtained in
an explicit form. It is shown that losses are proportional to the third power of the amplitude of the
oscillating axial force, and are in inverse proportion to the interwire friction forces. The results obtained
are used to introduce a model of a cable as a solid rod with an equivalent stiffness and damping
properties of the rod material. It is shown that the stiffness of the equivalent rod is weakly nonlinear,
whereas the viscous damping coefficient is proportional to the amplitude of the oscillation. Some numeri-
cal results illustrating the effect of cable parameters on the losses are given.
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1. Introduction

A model of a cable comprising interacting wires in which a slip between the wires is allowed
was considered by the authors for the case of extension of an initially pre-stretched cable (Huang
and Vinogradov 1994). It was shown in that paper that losses in a cable caused by dry friction
occur due to twisting and bending of individual wires. The effect of twisting of wires on the
losses in a bent cantilever cable was considered by Vinogradov and Atatekin (1986). More recently,
such an effect in an axially loaded and uniformly bent cable was investigated by Huang and
Vinogradov (1992, 1994).

In this paper the results obtained by Huang and Vinogradov (1996) for the case of loading
are extended to include two other phases of a cycle: unloading and reloading. The full investigation
of the cycle results in a hysteretic curve characterising the structural losses in a cable. The load-
elongation relationships during the cycle, obtained in an analytical form, allowed to derive an
explicit expression for the structural losses.

The analytical form of the load-elongation relationship is used to introduce a model of a
cable as a solid rod with some dynamically equivalent properties of the rod material: equivalent
stiffness and damping.
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Some numerical results are given to illustrate the behaviour of the cable during the cycle
of loading and the dependence of losses on cable parameters.

2. Hysteresis

The beginning of a cyclic loading is characterised by three phases: loading, unloading and
reloading. The result of the first cycle is the hysteretic loop formed during the unloading and
reloading phases of the cycle. However, to find out the hysteretic behaviour, the load-glongation
characteristics during the entire first cycle must be analyzed. The behaviour of a tension cable
in the loading phase was considered in the preceding paper by Huang and Vinogradov (1996).
In this paper the treatment of the unloading and reloading phases is based on the results obtained
for the loading phase. Specifically, the two other phases of the cycle are considered as “loading”
with respect to different initial states of the cable. Thus the problem is solved as an initial
value problem, that is, the state of the cable at the end the loading phase becomes an initial
state for the unloading one, and so on. For this reason, the state of the cable at the end of
the loading phase is presented briefly first. For the details the reader is referred to Huang and
Vinogradov (1996). Note, that the parameters related to the three phases of a cycle are identified
by the subscripts 1, 2 and 3, for loading, unloading and reloading phases, respectively.

2.1. Loading

A cable, consisting of a core and n helical wires, is clamped at both ends against self-loosening
rotation and is subjected to axial extension. Due to the structural symmetry only a half of
the cable is analyzed. It is assumed that, in general, at the end of the loading phase the cable
comprises two parts: one (H,) in which the macro-slip took place, and another one (H,) where
a micro-slip but not the macro-slip was in presence (see Fig. 1(a) and (b), where a half-length
of the cable is considered). The length of the slipping region during the loading is proportional
to the axial load (Huang and Vinogradov 1996).

_ GP,
Ga==2 (1)
where G is a cable structural parameter. The helix angle in the slipping part varies linearly
along the cable length according to the following relationship

Db,

0=+ - @—H+H,). H—H,<z<H )
sing

whereas in the nonslipping part of the cable, the helix angle is given by

1 = o+ C(P—nm, cosay), 3)

where @, is the initial helix angle, C and D are the structural parameters, K, is the stiffness
of the cable as a solid rod, and p; and m, are the distributed interwire friction force and moments,
respectively. A sketch of the variability of the helix angle along the cable at the intermediate
state of the loading phase is shown in Fig. 1(b).
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Fig. | Variability of helix angle along the half-length of cable at variousphases of cyclic loading,
(a) half-length of cable; (b) loading phase; (c)unloading phase; (d) reloading phase.

When the axial load is such that 0<P,<nm,cosaq, the cable elongation is given by Huang
and Vinogradov (1996).

4 H H,
5= Sin2a (fo Aa,,dz+f0 Aqdz) )]
where Aa,=0.5sin2¢,(P\/K,). The integration in the latter yields
D, >
§="g Pty H] ©
,, sin’ @, cosay

When P,>nm, cosaq, the elongation of the cable is represented by Huang and Vinogradov (1996)

2H 4 H H
5= K, nm, cosayt ?@]U’O Aa,,,ldz-i-anlAaﬂdz) 6)
which, after integration, gives,
_2H 4HC __DG* P’ )
6= X, nm,,cosaro-|~——Si 4 (P,—nm, (:osao)-i-si——nz acosa p; 6)

Eq. (6") shows that, since d” §,/dP,*>0, the load-elongation curve §, =6, (P)) is concave (correspond-
ingly, P,/=P,(5)) is convex).
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2.2. Unloading

The unloading is considered as a process of loading which starts at the end of the loading
phase and during which the load changes according to the following relationship

Pz:})maxﬂ},P/2 OSP2 SP max (7)

where P™* is the amplitude of the cyclic tension force, and P is the relative load in the unloading
phase. —pPm=<p/, <0.

The state of the cable at the end of the loading phase is thus the initial state for the following,
unloading phase. Under the action of a compressive load, a slip in the direction o’bposite to
that of the loading phase will start again at the extended ends of the cable. As a result, the
cable at any intermediate state of unloading will have three distinguished segments (see Fig.
1¢):

(1) a uniform segment whose length is equal to the micro-slipping segment at the end of

stage one, denoted by H,,™"

(2) a new non-slipping or micro-slipping segment (depending on the amplitude of the relative
load), with respect to the state of the cable at the end of stage one, denoted by H,,,
and

(3) a new reverse slipping segment Hp. It is seen from Fig. 1(c) that H,, is related to H;
by

HHZZH\TM _H\Z (8)

The objective of the following analysis is to find a relationship between the relative axial
force P, and the corresponding relative elongation of the cable. This can be done by following
the same procedures as outlined for the loading phase (Huang and Vinogradov 1996).

Consider the helix angle first. At the beginning of the unloading phase, the helix angles in
different segments should be equal to those at the end of the loading phase, ie. from Egs.
(2) and (3),

p=y+C(P™ —nm,cosq), 0<z<H™" )
[ — ﬂ’L i min
=+ sina —H+H»), H-H"<:{H (10)
)

where ap and afp are the initial helix angles in the micro-slipping and macro-slipping parts
of the cable at the beginning of unloading, respectively.

When the amplitude of P} is so small that there is no slip in segments H,,™" and H,,, the
helix angles are equal to (Huang and Vinogradov 1996)

sin2gy Py

an=0an+ 5 K, (1)
/ in2ay P,
ap=apt S (12)

In the new slipping segment H,,, the process of a reversed slip will not start until the slip
which occurred at the previous stage has been recovered. From the energy conservation principle,
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it is equivalent to having double friction forces along the length H,, resisting the new slip. In
addition, these forces act in the direction opposite to that at the initial phase. Thus

Pr=—2p; 13)

Similarly, when P,>nm,;cosq, so that micro-slipping occurs along the cable, the friction moments
have the following relationship

my=—2m, (14)

Taking Eq. (14) into account, the helix angle in the new micro-slipping region H," and H,,
can be represented, using Eq. (3), as follows

Oy = Gy + C(P>+2nm,, cosay), (15)
@'y =iy + C(P5+ 2nm, cosay), (16)

Furthermore, the helix angle in the new macro-slipping segment can be found to be similar
to Eq. 2)

aﬂz:a",,,f—siz%f’ @—H+H"+H,), H-H"™-—H,<:<H (17
Note that the only difference between the unloading and loading phases is in the magnitude
and direction of friction forces, as given by Egs. (13) and (14). Consequently, the relationship
between AH,, and AP, characterising the propagation of the slip during unloading, can be
found in a way similar to that in the loading phase. As a result, the length of the reversed
slipping segment H,, is found to be directly proportional to the relative load P, in the unloading
phase

__ _GP,
Ha==7, (18)
Similar to Eq. (4), the elongation &',, when-2nm, cosay<P,<0, is equal to
4 H H
/= . i
o) 2 sin200 (f“ A(lnzdz+fﬂ:::m+H"2 q_dz) (19)
which will lead,after substituting Eqs. (9), (11), (14) and (18), to
_2H, DG () ’
§:= K, P, 2sinaycosay  py (199

When P,<-2nm,cosa, all the non-slipping segments will be in a micro-slipping state, and the
elongation is equal to

,— ‘;g nm, cosey+

4 H H

0

which, after integration, gives,

§,=— A nm, cosy+ ﬂ (P>+2nm, cosay) — _DQ_ Py
- sin2a, 2sin" apcosay  py

K, (207)
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The actual elongation is equal to the elongation at the beginning of the unloading phase (which
is also the elongation at the end of the first loading phase) plus the relative elongation &',
ie.

8=8""+8, 2h

Since 8™ can be found from Eq. (6) by setting P,/=P™ and &, is given by Egs. (19) and
(20", the above equation can be-expressed as

2 F[ 1 ”r 2 max\2 max _
= (P,— P™™+nm, cosa)+ — ¢ (P™>—nm, cosay)+ == ,D G [Py +@p PP,
K, sin2aq, 2sin” aycosay Pr
5 ‘ )
4Hc DG? [(P™) + (2P™>— Py)P, ]
— — (P + ) T
K, 1, Cosap+ sin2qy (Pt nm, cosau)+ 2sin” ¢, Cosay Py a
(22)

where formula (1) is applied for P™*—2nm, cosay <P, <P™* and formula (II) for 0<P, <P™*—2
nm,cosa. At the end of unloading (P,=0), and the elongation, given by Eq. (22), equals to

2Hnm, cosa, n é‘lHC 1, cosay-+ — PG' (P
K, sin2q, 2sin“aycosqy  py

Smin=— >0 (23)

The inequality comes from the observation that the flexibility of the cable with micro-slip
(4HC/sinap) is always larger than that of the cable without any slip (2H/K,). The fact that §,™">0
indicates the existence of a residual elongation at the end of the unloading phase. This is under-
standable because the interwire resistance force and moment during the unloading becomes twice
as large and so a complete recovery of the initially deformed wires cannot be achieved. Note
that, during this phase, d°5,/dP,’<0, and thus the response curve &=24, (Py) is convex (whereas
P,=P,(5,) is concave).

2.3. Reloading

During the reloading phase thd load P; increases from 0 to P™. The state at the end of
the previous phase, the unloading phase, is taken as the initial state of the cable for the reloading
phase.

Fig. 1(d) shows that, at the end of the previous unloading phase, the cable can be characterized
by three distinguished segments:

(1) the segment H,™", in which the helix angle is uniform during the cycle,

(2) the segment H,,™" which experiences macro-slip only once during the first loading phase,
and

(3) the segment H,,™*, which experiences an alternate macro-slippage. Corresponding initial
helix angles in these segments are found, by using Egs. (15)<(16) and setting PY=—P™* and
Hy,=H,™, to be

Qo3 = Qpy— C(P™* —2nm,, cosq), 0<z<HI* (24)
ap=ap—C(P™ —2nm,cosqy), HI"<z<H-—H35> (25)
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2D,
an=an— Tnfzf z—H+HM+H3), H-—H—H3 <:<H (26)
)

As expected, when the relative load increases in the reloading phase, a macro-slip, reversed
with respect to the previous phase, will start again at the cable ends and then spread to the
center. For a symmetrical loading, a new region with a relative slip will not exceed the maximum
macro-slipping region of the previous unloading phase, which means that

H{,} +Hv3 = H\'llmlx (27)

Note also that the axial load at the beginning of the reloading phase is equal to zero and
thus the relative load at this phase is equal to the absolute value of the load on the cable,
namely

P,=P; (28)

When the amplitude of P is so small that there is no slip in segments H."", H¥" and
H,;, the helix angles are found, similarly to Eqs. (11)-(12), to be

in2a, P

3=zt _‘“—*“Slnz %o —”Kj (29)
sin2qy P

an‘_ ()1+ o) : K: (30)
sin2qy, P

an‘_alﬂ+ D) - K: (31)

These relationships are shown in Fig. 1(d) by the solid lines equally spaced from the dashed
lines characterising the initial angles ay. @, and aj.

The process of reversed micro- and macro-slip will be similar to that at the unloading phase,
so that

pszzpfs mn3:2mn (32)

Note that the difference between the reloading and unloading phases is in the direction of the
friction forces and moments (comparing Eq. (32) to Eqgs. (13) and (14)). Therefore, the following
results can be found by following a similar procedure for the unloading phase:

Oy = a3+ C(P'3—2nm,, cosay), (33)

A= aly+C(P5—2nm, cosay), (34)
o= agy+ C(P's—2nm, cosay), (35)

;= ah+ 5 n‘z @—H+H"+HY'+H,), H-H"—H}y"—H,,<:<H (36)

HY3:G3P/3, Where Gz:Q

; G7)

Similar to Eq. (4), the elongation &5 when 0<P;<2nm,cosq,. is equal to
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4 H H
L= — adz+ Aa,
which leads, after substituting Egs. (34)<(37), to
,_2H , DG? P,y .
6= K, P 2sin*qycosay  pr (38

When 2nm, cosaqy <P, all the non-slipping segments are again in a micro-slipping state, and
the elongation becomes

8/;=4Hnm CosQy 4 HAa,,3dz+ ! Ay dz (39)
K, " sin2ao \J, H-Hgy

which will lead to

DG’ Py
2sin*aycosay  py

6/3: 4H nm, COS(Z()+ i (Pl 2nmn Cosa())+

K,

(39)

The actual elongation is equal to the elongation at the beginning of the reloading phase (which
is also the elongation at the end of the unloading phase) plus the relative elongation &, i.e.
&=8""+68" (40)

where ™" is the residual elongation at the end of the unloading phase given by Eq. (23) for
P,=0. Thus, using Egs. (23), (38) and (39)), the actual elongation is found to be

DG2 I:(P max)z _+_P32:|

—2nm, cosay) + AHC

sin2qy MM COSAT 7 G2 Qo COSQ Py @
= 2H nm, cosa,+ _AHC (P;—nm, cosay)+ DG" [(Pﬂ2+P32] {an @b
K, SN Gin2g, nCOSAIT T in’ aycosay Dy

where formula (I) is applied for P™—2nm, cosay<P; <P™* and formula (II) for 0LP; <P™>—2
nm,cosa. Note that d”8;/dP; >0, so that the response curve & =35 (P;) is concave during the
reloading phase (correspondingly, P;=P;(8;) is convex).

Obviously, at the end of the reloading phase, where P;=P"*, the cable clongation is

4H DG 2 (P max)2
, 4 (pmax_ " + — 5
nm, cosant 5 ( M, COSG) + ~ s oS 7

max — 2H
&= K,

42)

which is the same as that at the end of the first loading phase. Therefore, the load-elongation .
curve in a cyclic loading will form a hysteretic loop enclosed by the unloading and reloading
curves, as shown schematically in Fig. 2. For this reason, in the analysis of cyclic loading the
two phases unloading and reloading are of interest, since in an ideal multi-cyclic loading the
hysteretic loop will repeat itself.

If only the unloading and reloading phases are important, the residual elongation, shown
in Fig. 2, can be excluded from the consideration. It means that Eq. (23) can be subtracted
from Egs. (22) and (41) for unloading and reloading phases. As a result, the load-elongation
curves for the cable under cyclic loading will form a closed loop as shown in Fig. 3.
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Fig. 2 Scheme of load-elongation relationship during first cycle.
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24. Energy loss per cycle
The energy loss in a half-length of the cable subjected to cyclic loading is defined by

W= /"d(c‘iz —6) 43)

After substitution of expressions for & from Eq. (22) and & from Eq. (41), and integration of
Eq. (43), the energy loss can be found to be

£ mux23
W,=8Hnm, cosa,(P™" —2nm, cosay) [ Silzlga{) - fl ] +¥ £ s (44)

where
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2DG*?

r= 3sin’ @y cosag (43)

The constant ¥ in Eq. (45) depends on structural and material properties of the cable. Eq. (44)
indicates a complex energy dissipation model comprising two parts: one is proportional to the
axial load and friction moment, and another proportional to the cube of the load amplitude
and in inverse proportion to the interwire friction force. The first one is a reflection of friction

work. and the second one represents a classical energy dissipation pattern in lap joints (Goodman
1959).

3. Cable as an equivalent rod

As it has been shown above, a model of a cable with finite friction between the wires has
nonlinear stiffness characteristics and amplitude-dependent damping properties. In this section
a model of a cable as a rod, having material properties such that the properties of a cable
and those of the rod are equivalent, is presented. This is done for the simplest situation when
a cable in a system serves as a nonlinear spring and dashpot element, so that the inertial properties
of the cable can be neglected. An equivalent rod can be found by considering oscillations of
a single-degree-of-freedom system, shown in Fig4. The forced oscillation of this system is governed
by the equation of motion

mx+T=F sin {2t (46)

where F and (2 are the amplitude and frequency of excitation, respectively; x is the elongation
of the cable, and T is the force in the cable.

To present the force-displacement relationship in a forced vibration, a symmetric transformation
of the force-elongation formulas with x=46—x™"* and 7=P—T™", in which x ™= §™*/2 and T™*
=P™*/2 (see Fig. 3), must be done. The maximum elongation in a cyclic process is represented
by

LSS

'

Fsinwt

Fig. 4 A spring-dashpot element representing cable in one-degree-of-freedom system.
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5max: 83max_ 52min (47)
Substitution of Egs. (23) and (42) into the latter yields the following
max— _HHC i 2 DG’ Py
6™= sin2-a0P +4Hnm,,cosa0< K, sin2a0)+ sin qycosay  py (48)
The stiffness of the equivalent rod is defined as
. Tmax B Pmax
k(’- x max - Smax (49)
According to Eq. (48), the latter can be rebresented by
_ 1
ko= 4HC  4Hnm,cosa (1 2C 4 DG? pmex (50)
sin2qq pma K, sin2aq singycosy  py

Since the friction moment m, at the contact patches is small, the corresponding term in the
denominator in Eq. (50) can be neglected in most engineering applications. With this approxima-
tion, the equivalent stiffness becomes

1
4HC + DGZ P max
sin2e,  sin‘aycosay  py

k.~

&1y

which is a nonlinear function of the amplitude of the cyclic load.
The damping coefficient in the equivalent rod can be found by equating the energy dissipation
per cycle in the ideal system to the actual one. That is

W, =c, mx ™) (52)

Representing x ™* by P™/2k, and using the result of Eq. (50), the equivalent damping coefficient
is found to be

% [SHnm,,cosm) <1_ 2nm, COSay )( 2C 1 > P"‘""‘]

“= N pmax pmas sima, K, (53)

Again, neglecting the small term with (nm,cosay/P™),, Eq. (53) can be approximated by

_ 4k} | 8Hnm,cosay [ 2C 1 pmax
| pr sin2ay, K, * P (54)

As it is seen, both k., and ¢, are nonlinear functions of the amplitude of cyclic loading. These
function are shown qualitatively in Figs. 5 and 6.

4, Examples

In this section some numerical examples are given to demonstrate the theory and present
some results. The structural data for a single layered cable given by Utting and Jones (1987)
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Fig. 6 Equivalent damping vs amplitude of oscillation relationship.
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Fig. 8 Energy dissipation per cycle-the influence of friction forces.
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Fig. 9 Energy dissipation per cycle-the influence of friction moment.

are used, specifically, n=6, R, =197 mm, R=1.865 mm, a=76.16°, H=0.75 m, E=E.=1979
GPa, v=v,=03, and the interwire distributed friction force and moment are assumed to be
constant and respectively equal to 1 kN/m and 100N-m/m, except when indicated otherwise.

The elongation of the cable during a cycle of loading is shown in Fig. 7, where one can
see a closed loop formed by the unloading and reloading curves. The enclosed area indicates,
therefore, the energy losses during the cycle. The broken line is shown for the case of the friction~
free cable (Costello’s model). Note that due to the interwire slip the cable’s elongation is not
equal to zero at the end of the unloading phase.

Eq. (44) indicates that the energy dissipation per cycle which is caused by two sources, micro-
slip and macro-slip, has, correspondingly, two components, one, proportional to the first power
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Fig. 10 Energy dissipation per cycle-the influence of helix angle.

of the force amplitude, and the other, to the third power. The latter component is analogous
to the type of relationship characterising energy dissipation in the lap joints (Goodman 1959).
In Fig. 8 and 9 the influence of friction forces and moments, and in Fig.10 the effect of the

helix angle on energy losses are shown. Note, that smaller helix angles lead to larger energy
losses.

5. Conclusion

For a model of a cable comprising a core and wound around it wires, a theory of cyclic
axial deformations in the presence of dry friction is developed. Explicit load-elongation relation-
ships are obtained for the loading, unloading and reloading phases of the cycle. It is shown
that these relationship are weakly nonlinear. It is also shown that the unloading and reloading
phases of a symmetric cycle form a closed loop characterising the structural losses in a cable.
Explicit expression for these losses is derived, which comprises two components: one due to
the micro-slippage at the contact patches, and another due to the propagation of the macro-
slippage along the cable.

It is suggested that in applications where inertial properties of the cable can be neglected
a model of it as a solid rod with amplitude-dependent damping properties can be used. Using
the equivalent linearization technique, explicit expression for the equivalent coefficient of damping
is derived. The numerical examples show the presence of residual strains in a cyclically loaded
cable, and also the effect of friction forces and moments and the helix angles on structural
losses.
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