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Extension of a cable in the presence of dry friction
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Abstract. A mathematical model of a cable as a system of interacting wires with interwire friction
taken into account is presented in this paper. The effect of friction forces and the interwire slip on
the mechanical properties of tension cables is investigated. It is shown that the slip occurs due to the
twisting and bending deformations of wires, and it occurs in the form of micro-slips at the contact
patches and macro-slips along the cable. The latter slipping starts near the terminals and propagates
towards the middle of the cable with the increase of tension. and its propagation is proportional to
the load. As the result of dry friction, the load-elongation characteristics of the cable become quadratic.
The energy losses during the extension are shown to be proportional to the cube of the load and in
inverse proportion to the friction force, a result qualitatively similar to that for lap joints. Presented
examples show that the model is in qualitative agreement with the known experimental data.
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1. Introduction

Cables are commonly used as tension members in large space engineering structures such
as suspension bridges and large-span roofs, in mooring systems, in concrete reinforcement, etc.
In all applications where the cyclic deformations are taking place, the damping properties of
the cables and their effect on the dynamic behaviour of structures is of interest (Vranish, 1990).

It is known that dry friction is the main cause of damping in cables, since it is much larger
than the material viscosity (Pipes 1936, Yu 1952, Claren and Diana 1969, Vinogradov and Pivova-
rov 1986). However, the integration of friction forces into the cable mechanics remains a challe-
nging problem today. In most of the theoretical studies on cables subjected to axial loads, the
interwire friction was neglected (Machida and Durelli 1973, Chi 1974, Phillips and Costello
1977, Knapp 1979, Kumar and Cochran 1987). As a result, these friction-free models of cables
are unable to simulate their damping properties:

A widely accepted approach in cable mechanics is to consider a cable as an assembly of
helical thin rods. Within the framework of this approach, the interwire friction forces can be
treated as externally distributed loads in the form of forces and/or moments acting on each
wire in the cable. However, the cause of these forces, namely. the interwire slippage, very often
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is not taken into account (LeClair and Costello 1988). The slipping behaviour and energy dissipa-
tion in a bent cable in the presence of interwire dry friction were investigated by Vinogradov
and Atatekin (1986) and Huang and Vinogradov (1994). In the case of an axially loading cable,
Huang (1978) included the interwire friction effects in his analysis of the finite extension of
a uniformly stretched cable. The effect of interwire friction and slip in a stretched cable was
also investigated theoretically and experimentally by Utting and Jones (1987). Ramsey (1990)
in his analytical study found that in a uniformly stretched cable the interwire friction will occur
only in a form of moments balancing the change of the helix angle. More recently, Huang
and Vinogradov (1992) extended their theoretical model on the extension of the cable with inter-
wire friction to predict its energy losses in a cyclic loading,

The focus of this paper.is the study of cable extension in the presence of interwire friction
and associated slip. In the following sections, basic equations of the thin rod theory related
to our analysis are first reviewed. Then the kinematic relationships, including a criterion for
slip prediction, are presented. The expressions for the slipping length are derived in an explicit
form as functions of load and cable parameters, such as the helix angle and the number of
wires. Finally, an expression for the extension of the cable in the presence of finite friction
is presented. The experimental data of Utting and Jones (1987) are used to qualitatively validate
the obtained theoretical results.

2. Analysis

A cable is considered here as a single strand formed by an arbitrary number of helical wires
wound around the core. An eight-wire cable, for example, is shown in Fig. 1. This model allows
to simplify the mathematical analysis without losing the characteristic properties associated with
the interwire friction, slip and corresponding energy losses. As in most engineering applications,
a cable is considered to be fixed at both ends in order to prevent the self-loosening twist, and

Fig. 1 A nine-wire cable.
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the cable’s deformations are assumed to be elastic and small. Also, a dry friction at the interfaces
and a constant coefficient of friction is assumed. The latter is based on the observation that
the interwire contact forces are usually dominated by the pre-stretching (static) load which is
much larger than the amplitude of the dynamic load. The local effects at the clamping ends
are neglected. Due to symmetry, only a half of the cable is considered, so that the middle of
the cable is fixed and the extension is applied at the clamped end.

2.1. Basic equations for a thin-rod model of cable

Each wire in the cable is treated as a thin rod and its initial shape is assumed to be a
helix. Accordingly, the displacement of the wire cross-section is described by a translational
component along the wire centerline and three rotational components. The orientations of the
wire cross-section can be described by a triad (¢, n, ) moving along the wire centerline, as
shown in Fig. 2, in which ¢, n and b are unit vectors indicating the tangential, normal and
binormal directions of the helical line, respectively.

Denote the internal force components in the tangential, normal and binormal directions by
F, F, and F,, the external distributed forces acting on the wire by p, p, and p;, and the external
distributed moments by m, m, and my,, respectively. Then the equilibrium equations for the
wire according to (Huang 1973) are

dar _
oK F,+p=0 (D
df, —tF,+k'F,+p,=0 )
ds
dF,
_Jsﬁ +tF,+p,=0 ?3)
4
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Fig. 2 Global and local coordinate systems.
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dM,

5 k’'M,+m,=0 4
dTMy"—tM,& k'M,—F,+m,=0 (5
%’*f—tM,,—l—Fn—l-mb:O ©6)

If the helix angle and helix radius of the wire in an initial state are denoted by
and r, respectively, then the torsion (z,) and curvatures (k, and &) for the wire can be defined
by (Love 1944)

_sin2ay —0, x/= cos’ay

Th— 27 Kp— v (7N

Similarly, if the helix angle and helix radius of the wire after deformation are denoted by
a and r, the new geometry of the wire is given by¢

sin2a da cos’a
=, K=———, K/: _
2r ds F ®)
The axial force component, F, is proportional to the axial strain g, so that
F=Ag, 9

where A=FEnR’ R is the radius of the wire cross-section, FE is Young's modulus of the wire
material.

According to the Clensch-Basset moment-curvature formula (Love 1944), the three components
of the internal moment in a wire cross-section, M,, M, and M,, are related to the change in
the torsion and bending curvatures by

M=—2= (c=n). M =Bx—x). M,=B(x'~x) (10)
where B=EnR%4, v is Poisson ratio of the wire material.

If the radius of the core cross-section is denoted by R,, the helix radius for the wire in touch
with the core is given by r,=R,+R. It is reasonable to represent r by r, since the error caused
by neglecting the contact and lateral shrinkage of the wire under the axial extension is within
1% (Utting and Jones 1987). Also from the assumption of small deformations, the change of
the helix angle, denoted by Aa=a—a, is small as well. As a result, Eq. (10) after substituting
Egs. (7)-(8) into it, can be represented by
da

ds

From the geometry of an elementary length of the developed helical wire (see Fig. 3) in its

B COSZ%Am M.—=—B

sin2ay
= =—B——2 11
M, v M, p Aa (11)

“According to Love (1994, p. 383). the torsion of a thin rod consists of two components: the rotation
of the cross section moving along with the twisted centerline and the rotation of the cross section
around the centerline (df/ds). Because tanf= — (k'/k) (Love, Eq. 3, p. 383), it can be shown that df/ds= —k’
sin2a/[Hk*+k7)] is a second order term and thus is neglected.
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Fig. 3 Development of an elementary helix length for two deformation states:
initial, indicated by subscript 0, and intermediate state.

initial and deformed states, we can obtain the following relationship between the axial strain
& of the wire and its component along the cable axis, g. That is

__sing

sing [ T&) 1 (12)

It follows from the fixed-end condition that the centerline of a helical wire has no rotational
movement with respect to the cable axis, i.e. the polar coordinates of the wire do not change
(see Fig. 3)

rnlte 1

=0 (13)
r tana tanq,

For the case of small deformations, Eq. (13) is reduced to

sin2aqy

Aa= 2&;

(14)
Solving Egs. (12) and (14) together, the axial strain in the helical wire is found to be a function
of the change of the helix angle in the form
g=Aatanq, (15)
As it is shown in Egs. (9), (10) and (15), the internal force ¥, and moments M,, M, and M,
are also expressed as functions of Aa.

2.2. Extension of the friction-free cable

To understand how an interwire slip occurs inside a cable, it is helpful to consider first the
deformations and forces in the cable under friction-free conditions, a commonly used assumption
in theoretical analyses of cable extension. Since for the friction-free conditions p,=p,=m,=
m,=m,—0, the equilibrium equations, Egs. (1)(6), become
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=4da =0 (16)

£= ds

and

_ B{sin*2qy | cos’aycos2a
F”‘ﬂ( > T 1y )4

Also, under the friction-free assumption, the strain in the core is constant along the cable and
thus must be equal to the strain component of the helical wire in the direction of the cable
axis, given by Eq. (14), in order to satisfy the compatibility conditions of elongation. Thus the
internal force in the core can be written as

__A, Aa
C 0 sin2a

(17)

(18)

where A.=E.nR?’ Substituting the forces and moments given by Eqgs. (9), (10), and (16)}«(18)
into the following equilibrium equation

P=F,+n(F,sina+ F,cosa) (19)
we can find that the change of the helix angle is proportional to the extension force
Aa=CP (20)
where
[ e B (L cos2ay |
C—[ Sin2a +nA tanag, singy + e cos @,(25m o+ v )] (21)

2.3. Slip in the friction-free cable

Like in a helical spring, extension of the helical wire in a cable is always associated with
twisting (around unit vector 7) and .bending (around unit vectors n and b) deformations of the
cross sections. In the following the relative displacements at the interface between the helical
wire and core are found. For an infinitesimal length of the helical wire, the displacement along
the direction of the cable axis is given by

B
The latter can be reduced, after using Egs. (11), (14) and taking that ds=dz/sina, to

Aa
oSy

du=¢edz+R [—A—g'— (1+ v)cosa— M, sina] ds (22)

dur= (1 + %COSZ a0> (23)

The rotational displacement of the wire with respect to the core is given by

du, ’ZR(% (1+v)sina+ % cosa) (24)

which can also be reduced to
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Contact patch

Fig. 4 Micro-slip at a contact patch.

duyr=— ésina{,Aads (25)

The rotation of the wire given by Eq. (25) indicates that since the core has no rotational
displacement under the friction-free conditions slip must occur inside the cable.

24. Uniform extension of the cable with friction
The assumption of a uniform deformation leads to a constant helix angle along the cable.

It follows that the case of cable extension in the presence of friction can be solved similarly
to that of the friction-free cable. As a result, the following is found

F,=0, p=py=m=m,=0 (26)

o B sin*2qy | cos’aycos2ay
F;,~—m,,+r2< 5 + Ty )Aa 27)
Aa=C(P—nm,cosay) (28)

The friction moment m, is due to the shear force at the contact patch between the wires
and the core (see Fig. 4). The corresponding friction losses are due to rotation of the wire cross-
section around vector n. The associated slip is uniform along the cable length since it is proportio-
nal to Aa to which is the same for any cross-section in a uniformly extended cable. This slip
is called here a micro-slip since it takes place locally at the contact patch (see Fig. 4). The correspo-
nding friction work per unit length of a helical wire is given by

We=m, Aa 29)
2.5. Extension of the cable with absolute friction

The condition of absolute friction means that the interwire friction forces could be as large
as the shear forces at the interface. Under such conditions any slip will be prevented and a
cable will behave like a solid bar. In this case the tensile stiffness can be approximated by

nA
sing,

K,=A+ (30)
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a5

Fig. 5 Interwire forces.

and the axial strain will be equal to
_ P
Eon— K,, (31)

while the helix angle, after substituting Eq. (31) into (14), will become

sin2ay P

> K (32)

an:w)_i—

2.6. Extension of the cable with finite friction and slip

Since friction in a real cable can only be finite, a slip associated with rotations of the wire
cross-sections around vectors ¢ and b (twisting and bending deformations) will occur if the interwire
shear force exceeds the friction limit. As shown in Fig 5, the interwire friction moments are
related to the friction forces by

m=Rp,,  m,=—Rp, (33)
Then from the equilibrium equations, Egs. (1)-(6), the following can be found

da _da

Pzzclza Pr—0C ds (34)
E,:C]% . F;,:C4 Aa (35)

where

3B .
Atangy— P sing, cos’
C1= R (36)
7cosza<,—l
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__ B (cos2a ,
OF T ( T4y +cos a0> 37)
c:=Re,+ 3B sin2ay (38)
2r
in2
C4:—(C2+ St 2ra0 C3) (39)
If the interwire friction limit is denoted by p; then the criterion of slipping is
pr=plitpy (40)
or, after substituting Eq. (34),
s, da
p/: C1_+C2'dd;" (41)

Thus, in the presence of slippage, the change of the helix angle is governed by the equa-
tion

2 Ppr (42)

where

_ 1
D= ;; C'|2+C32 (43)

It follows from the symmetry of the cable structure that neither the helical wire nor the core
will rotate at the middle of the cable. However, away from the middle, as the twisting and
bending stresses in the wire increase the friction forces might be overcome and then the slippage
will take place. This slippage will originate in the parts of the cable close to the ends and
spread along some length towards the middle of the cable. This slip is called here a macro-
slip since it takes place along some length and is not uniform along the cable. The macro-slip
is similar to propagation of the slip boundary in lap joints (Goodman, 1959). Thus the extended
cable will consist of two segments: with uniform and nonuniform deformations. In the segment
with uniform deformations the interwire slip does not take place. Whereas in the segment with
nonuniform deformations the helix angle a will vary and the interwire slip must occur. This
slip will comprise both micro- and macro-components. In the slipping segment the axial force
F* and the twisting moment M. * in the core are given by

5(z)
FL‘*:F(—{_'J (p,sina+p,cosa)ds “4)
0

s(z)
M*=M.+n f (p,cosa—p,sina)ds “43)
0

where the arc length s is measured from the boundary between the uniform and slipping segments
towards the cable end. The axial and rotational displacements of an infinitesimal length of
the core in the slipping segment are defined by,based on Egs. (44) and (45) and using the results
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in Eq. (34),
e Fe  n
du: _( A, “Aa“') dz (46
duf= —1%' R.(M.+nR.coAa)dz (47)
where Aa,—a,—a and
Cs=¢, Sinay+ ¢2Cosay (48)
Ce=C, COSQY— C>SINQ (49)

From the boundary conditions that when = «, then du.* =du. and du,*= —du,* at the boundary
between the uniform and slipping segments, and using Eq. (23) to Eq. (46) and Eq. (25) to
(47), it is obtained

_ R, \24.Aa
E-(H— €S aﬂ> sin2a, (50)
__R B
=R B s (51

The length of the slipping segment, denoted by H,, can be found from the condition that the
rotational displacement of the core at the fixed end is equal to zero. The change of the helix
angle in the slipping segment, Aq, can be found from Eq. (42) to be as follows

D :
_ Prz

Now the slipping length H, can be found, using Egs. (47), (51) and (52) and the boundary
condition that =0 at z=H,, to be

— RA“
2an(,Dpf(l + V()

H= sing, Aa (53)
Note that ¢, is always negative so that it ensures that the physical meaning of H, is correct.

The energy dissipation rate per unit length of the wire inside the slipping segment H, is defined
by

e, _(dur _dur\, dw' duf\ o
g —( e g )(p,sma+p,,cosa)+< p + e )(p,cosa p,sina) (54)
The latter can be reduced, after substituting Egs. (23), (25), (46)-(49) and (52), to
w,=nc,(Dpy) z* (55)
where
0= [e 4+ el ] (56)

24, sing,

The extension of the cable of length 2H as a function of the increasing tensile load P is
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calculated in two steps:

(1) 0 < P< nm,cosa. The middle part of the cable with the length of 2(H-H,) is in a non-
slipping situation, and the change of the helix angle is equal to Aa, given by Eq. (32). At
the same time, the length of the slipping segment, H,, can be found from Eq. (53) by substituting
Aa= Aq,. The total elongation is the sum of contributions from the slipping and non-slipping
segments and is given by Eq. (14).

4 H Hy
5= sin2ao<Jo Aa,,dz+f0 Aasdz> (57)
which will yield, after using Egs. (14), (32) and (52).
_2H Dp, 2
0= K, Pt G Q) COSQ H; (58)

In the extreme case when the interwire friction p, is infinite, the second term in the above
equation will vanish since the slipping length H, equals to zero in Eq. (53). Then, as expected,
a cable will behave like a solid bar.

(2) P>nm,cosa,. The middle part of the cable will experience a uniform extension with a
micro-slip at the contact patch and rolling displacement between the helical wires and the core.
The corresponding change in the helix angle, Aq, is given by Eq. (28), and the extension is

as follows
2H 4 " s
6= K, nm,,cosa0+m (fo Aadz +j0 A%dz) (59)
which, as in the previous case, is transformed to
_2H 4aHC Dp, 2
o= X nm, cosay+ 5 n2a<,(P nm, cosey)+ e p— H, (60)

It is seen that the ¢elongation of the cable with interwire slip, given by Egs. (58) and (60), is
a non-linear function of the axial load. It should be pointed out that Eq. (53) is valid only
if the length of slipping segments does not exceed the cable length, the condition applicable
to long cables. As shown in Eq. (53), the slipping length is in inverse proportion to the friction
force p; But the ultimate length of the slipping segments is the cable length. If the friction
is equal to zero, the entire cable will be under uniform extension, and the elongation defined
by Eq. (60) will yield the same result as that for the friction-free cable.

When the load is within the limits 0<P<nm,cosa, the energy dissipation for the entire cable
is given by

H :
W;=2n f w,dz (61)
0
The latter, after substitution of Egs. (32), (53) and (55), becomes
W:&<M>3 p (62)
I Py ZK,I

where
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. 3
S RA, sinay |
ST nD [ reo(1+v) ] (63)

When the load P>nm,cosa, the energy dissipation is given by

H H,
W= ZnJ wodz+2n f w,dz (64)
¥

)

which after substitution of Egs. (28), (53) and (55) yilds

N 3
W, = 2Hnm, C(P—nm, cosa))+‘ip€fpl (65)

3. Examples and discussion

In this section a new mathematical model of a cable with finite friction forces is discussed
and evaluated through some numerical examples. In order to compare the numerical results
with the experimental ones reported by Utting and Jones (1987), the following data for a single
layered cable will be used: n=6, R.=197 mm, R=1.865 mm, ay=76.16°, H=0.75 m, E=E.=1979
GPa. v=v,=03, and the interwire distributed friction force p, and moment m, are assumed
to be constant and equal to 1 kN/m and 100 N-m/m, respectively, except where they are specified.

3.1. Slip propagation

First. it should be pointed out that there is no direct experimental evidence on the propagation
of the macro-slip in cables during the axial loading. It is possible that no attempt has been
made to find it, but more likely it is not easy to confirm it because of the complex and non-
ideal geometry of the wire assembly. The fact is that in real cables the axial load is unevenly
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Fig. 7 Slipping length vs axial load relationship for different number of wires.
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Fig. 8 Axial load vs cable elongation relationship for two values of helix angles.

shared between the wires (Cappa 1987). There are also indications that the contact forces (and
thus the friction forces) are uneven along the cable (Casey and Lee 1989). It is known, however,
that the temperature of the cable under cyclic loading is usually higher near the clamps. This
is an indication of the presence of slippage that causes the heat. Also the presented theory
of macro-slip propagation is in agreement with analogous phenomenon in lap joints. Eq. (53)
shows that the propagation of the macro-slip is proportional to the change of the helix angle,
which, in turn (Egs. (20), (28) and (32)), is proportional to the axial loading. The slip propagates
faster in the case of smaller interwire friction forces (smaller pre-tension and/or friction coeflicient)
and fewer helical wires. This can be seen in Figs. 6 and 7 of the numerical examples.
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Fig. 10 Energy dissipation vs axial load for different helix angles.

3.2. Cable elongation vs axial load

The present model shows that the elongation of the cable is a nonlinear function of the
axial load. The nonlinearity, however, is usually small so that it may be ignored in engineering
applications. This is seen in Fig. 8 where the load vs elongation curves are shown for two values
of helix angles. In an extreme situation when the interwire friction is zero, the present model
becomes nearly identical to the Costello’s (1990) model (not shown in the figure). The slight
difference is attributed to the fact that in the present model the Poisson’s ratio effect on the
change of the transverse dimension of the wires was ignored.

In Fig. 9 two boundaries of the model are shown: absolute and zero friction conditions. It
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Fig. 12 Energy dissipation vs axial load for different friction forces.
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is seen that the experimental results by Utting and Jones (1987) are bounded by the two extremes.
The validity of the present model is further confirmed by noting that for the magnitude of
the interwire friction moment 50N-m/m, found by trial, the theoretical curve coincides with the

experimental one.

3.3. Energy dissipation

Energy dissipation presented by Eqgs. (62) and (65) shows that it consists of two parts: one
is proportional to both the axial load and the interwire friction moments, and another is propor-
tional to the cube of the axial load but is in inverse proportion to the interwire friction forces.
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The former is due to the micro-slip at the contact patches. The latter is the result of the macro-
slip propagating along the cable, which is qualitatively similar to the slip in lap joins with
dry friction (Goodman, 1959). The effects of the helix angle, the interwire friction moments
and friction forces are shown in Figs. 10, 11 and 12, respectively. Smaller helix angles will cause
more energy dissipation, and so will the smaller friction forces and moments. These results
are in correspondence with the effects of these parameters on the slipping length given by Eq.
(53).

4. Conclusion

A mathematical model of a cable as a system of interacting wires is developed. The model
allows to analyze the energy dissipation during the process of cable extension, and the effect
of dry friction on this process. The following main results are briefly summarised:

(1) Explicit expression for the energy dissipation caused by dry friction is derived. It shows
that the energy dissipation is proportional to the cube of the tensile load and in inverse proportion
to the friction forces, which is a typical characteristic of losses in dry friction joints. Other structural
parameters including the wire number and helix angles also affect the energy dissipation.

(2) The energy dissipation is caused by the twisting and bending deformations of wires.

(3) The process of cable extension is accompanied by the processes of micro-slippage due
to the rotation of the wire along the normal to the core at the contact patches, and macro-
slippage due to the twisting and bending of the wire with respect to the tangential and bi-normal
directions of the helix.

4) In the part of the cable where slippage takes place, the helix angle is not constant but
varies as a linear function of the longitudinal coordinate.

(5) The stiffness of the cable with finite friction forces is weakly nonlinear.

(6) The model was evaluated by comparing it with the experimental results obtained by Utting
and Jones (1987), and a frictionless model according to Costello (1990). It is shown that the
results for a model with finite friction forces are bounded by the results for the two extremes
cases: friction-free and infinite friction models.
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