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Abstract. A finite element model of a beam element with flexible connections is used to investigate
the effect of the randomness in the stiffness values on the modal properties of the structural system.
The linear behavior of the connections is described by a set of random fixity factors. The element
mass and stiffness matrices are function of these random parameters. The associated eigenvalue problem
leads to eigenvalues and eigenvectors which are also random variables. A second order perturbation
technique is used for the solution of this random cigenproblem. Closed form expressions for the Ist
and 2nd order derivatives of the element matrices with respect to the fixity factors are presented. The
mean and the variance of the eigenvalues and vibration modes are obtained in terms of these derivatives.
Two numerical examples are presented and the results are validated with those obtained by a Monte-
Carlo simulation. It is found that an almost linear statistical relation exists between the eigenproperties
and the stiffness of the connections.
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1. Introduction

The importance of the joint flexibility effects on the behavior of structural frameworks has
been recognized for many years. This problem is relevant to diverse areas of structural engineering.
In civil engineering for example, the commonly used methods of analysis and design of steel
structures are based on the assumption that the member connections behave as pinned or perfectly
rigid joints. However, early experimental studies on steel frames revealed that few real connections
behave according to this assumption, and thus extensive research has been performed to characte-
rize the behavior of flexible riveted and bolted beam-to-column connections. Besides the conven-
tional steel building frames there are other engineering structures in which the flexibility of
the joints can be important. For example, in mechanical engineering, it is important to assess
the influence of body connection flexibility in vehicle structures which consist of irregular and
complicated members connected by overlapping sheet metals fastened by spot welds. This is
also the case in piping systems, in which in order to calculate more accurately the bending
moment acting at the joints it may be necessary to take into account the flexible behavior
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of the connections.

Although using test results it is possible to assign a value to the rotational stiffness of a
given connection configuration, one cannot guarantee that this value will be the same for all
the connections of the same type in a given structure. The values of the connection stiffness
obtained from a test should only be regarded as the mean value of the stiffness of connections
with the same configuration. There will always be a degree of dispersion due to the varnations
in the several parameters that control the connection behavior. Therefore, it is logical to consider
the connection stiffness as a random variable in the structural model. In this case both the
stiffness and the mass matrix will have random coefficients, since both are function of the connec-
tion stiffness. The finite element equations of motion of the structure become a set of ordinary
differential equations with time-independent random coefficients. Although the equations of mo-
tion are random they are still linear and hence they could, at least in principle, be decoupled
and solved by modal analysis. However, the eigenvalue problem associated with the equations
of motion also becomes random, and the eigenvalues and eigenvectors of the system end up
being random variables as well.

The solution of random eigenvalue problems is a challenging problem in applied mathematics
that has attracted the attention of both mathematicians and engineers (e.g, Boyce 1968, Collins
and Thomson 1969, Hasselman and Hart 1972, Shinozuka and Astill 1972, Hart 1973). There
are several solution methods available, such as asymptotic methods (Boyce 1968), integral equation
methods (Boyce-Goodwin 1964), hierarchy methods (Haines 1965), and perturbation methods.
A rigorous treatment of the subject is presented in the monograph by Scheidt and Purkert 1983.
They only used the perturbation technique as the solution method because, as they pointed
out, the other methods can only be used on a limited scale.

One of the first studies on the solution of the eigenvalue problems with random matrices
is due to Collins and Thomson (1969). They obtained expressions to define the differentials
of the eigenvalues and eigenvector components. Based on these equations, they obtained the
eigenvalue and eigenvector statistics as linearized expressions in terms of small variations about
their mean values. The validity of the formulation was confirmed by comparing the results
with a Monte Carlo simulation. Shinozuka and Astill (1972) obtained estimates of the variance
of the n” natural frequency of vibration of a beam-column with random properties using a
Monte-Carlo simulation. The results obtained using the MCS were compared with the correspon-
ding results using the perturbation method. It was found that the perturbation method provides
a reasonable solution over a much wider range of variation of the material and geometric proper-
ties than would be found in practice. Hasselman and Hart (1972) presented a method for compu-
ting the variance of the eigenproperties of large structural systems using a modal synthesis techni-
que. The method is based on a first-order perturbation approach. The effects of modal truncation
on the accuracy of the modal statistics were investigated and the results showed that component
mode synthesis can be effectively used to compute the mean values and standard deviations
of the eigenproperties.

Most of the studies on random eigenproblems are limited to the calculations of the first. mo-
ments of the eigenvalues and eigenvectors. The calculation of the probability distribution of the
eigenproperties is a very difficult problem that has been solved only tor a few simple cases
(e.g., Scheidt-Purkert 1983, Iyengar-Manohar 1989). Besides the mathematical complexity of the
problem, it requires considerable information about the joint probabilistic behavior of the random
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coefficients of the equations. Quite often, however, the only information available on the probabili-
stic structure of the coefficients is the first two moments, i.e., the mean and correlation functions.
Nevertheless, in many important cases, for example for reliability analysis, engineering decisions
are also based upon the first two moments of the solution process.

The objective of this paper is to study the random algebraic eigenvalue problem associated
with a structural system with' random flexible end connections. In the first part of the paper
a succinct account of the finite element formulation of a beam element with flexible connections
is presented. This is followed by the derivation of the closed form expression for the statistics
“of the eigenvalues and eigenvectors via a perturbation approach. The derivatives of the element
matrices with respect to the parameters used to model the connection behavior are also provided.
Numerical examples are presented to validate the formulation and to assess the effect of the
inherent uncertainties in the values of the stiffness of the connections on the dynamic properties
of the structures. ‘

2. Finite element model of a beam with flexible end connections

A summary of the formulation of a finite element (FE) model of a beam element that incorpo-
rates the effects of the flexibility of the end connections is presented here. The details of the
development in which the finite size of the connections is also included can be found in a
previous work by the authors (Suarez-Matheu 1992).

In the dynamic finite element formulation of beam elements, the displacement field w(x, 1)
is usually expressed in terms of a shape function vector n(x) and a vector of end displacements
u(t):
wi(f)
0,(t)
wa ()
6: ()

where n;(x) are the standard cubic polynomials used as shape functions for beam elements.
The form in Eq. (1) of the displacement field is not the most convenient to develop the
finite element model of a beam with flexible end connections. Since the end rotations of the
two members concurring at a node are different, such a formulation would increase the number
of degrees of freedom of the structural model. It is more convenient to formulate a FE model
in which the rotational coordinates are the joint rigid body rotations ¢ and ¢ instead of the
usual end member rotations 6 and 6. These rotations are related as follows (see Fig. 1):

wee, )=n(x) ()= {n, (x) n2(x) 13 (x) ny ()}

(1)

B0=00+a0=00- " i=1, 2 @

where ¢; is the additional end rotation due to the flexibility of the joint. It is assumed that
for small rotations the connections behave linearly and thus their effect can be included through
rotational springs with constant k.

The moments M, and M, can be expressed in terms of the node displacements by substituting
the assumed displacement field w(x, ¢) in:

M\ (O=EIw"(x, )~: Mu()=—EIw"(x, Ol 3)
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Fig. 1 Beam element with flexible joints.

where E is the Young's modulus and / is the cross-sectional area moment of inertia of the
beam element.

Considering Egs. (1), (2) and (3), the moments M, and M, can be written as:
M\=EIs’q(t); M,=EIs’q(t) )

where ¢(f) is the vector of joint displacements {wi, ¢, w», @} The vectors s, and s, are given
by:

( 6 A 4 6 3\
*~L~(1+2}3) —1—(1+2}q)
5= %< _46(”3’/2) P e # ) 2 0 )
z(l +27)) Z(l +2%)
\ -2/ \ —4(1+37,) /
in which:
_Er 1 _ EIl 1
n=- T =7 5 (7

The coefficients ¥, and ¥, are nondimensional parameters that characterize the linear behavior
of the connection. Their values vary from zero for a perfectly rigid connection to infinity for
a frictionless pin connection.

Combining Egs. (1), (2) and (4), the displacement field w(x, 1) can be written as:

w, H=n() [[[1+[ST]1q () (8)
where:
[S1=[0; s,: 0; 5,17 ©)

The continuous system is then discretized by substituting the displacement field w(x, ) from
Eg. (8) in the kinetic and potential energy of a beam element:
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L.

T:%J mx) wix, 1) dx (10)
0
L 2

Pbéﬁfii%%%ﬁ+%hﬁ+%hﬁ | (11)

Applying Lagrange’s equations, the equations of motion can be expressed in the standard form:
[(Mo]+ M 1] g0+ (K ]+ 1K\ ] g0=£@O+£0) (12)

The matrices [M,] and [K,] represent the standard mass and stiffness matrices of a uniform
beam element, whereas [M,] and [K,] are correction matrices that account for the effect of
flexible connections at the ends of the element. Similarly, £ (f) and fi () are, respectively, the
standard vector of generalized forces and the correction term due to the flexibility of the connec-
tions.

Closed form expressions for these corrections terms are presented in the sequel. To obtain
more compact expressions for these terms, the connection flexibility is characterized by a new
set of nondimensional parameters. These parameters, referred to as the fixity factors of the element,
are:

SR S S
S T R 12 49

The correction matrices [M,] and [K,] will be only defined for the flexural effects (transverse
displacements and rotations) since the connections are assumed to be rigid for the axial and
torsional displacements. The matrices for a three-dimensional beam element can be obtained
by combining the matrices associated with the flexural effects in the two principal planes of
the cross section and adding the standard matrices for axial and torsional displacements. Thus,
for the three-dimensional case it is necessary to define pairs of fixity factors at both ends of
the element, corresponding to each principal plane of the cross-section. In practice, the axial
flexibility of the most commonly used connections (welded, bolted) can be safely disregarded.
The torsional flexibility can be important in mechanical and aeronautical engineering structures.
The analysis of such systems is beyond the scope of this paper, although the same methodology
introduced herein can be applied in their study.
The expression of [M,] is given by:

— 1568, (u, ) symmetric
— mL | —22LBs(w, o) —4L? Bs (. )
MOI= 00 S4B, ) 13 Bin ) — 1568 ) (14)

13LAu (1, 1) 3L° B, o) LBy, t)  —AL Bs(e, )

in which m represents the distributed mass per unit length and L is the length of the element.
The following auxiliary functions were introduced:

Bi(ur, )= (64T’ 1+ 5507 = S0y i — 32>+ p2°)
+ 164 th— 2244+ 19645 )/(39R(uy, 1)) (15)

B, )= 128+ 14’ p* + S(u” po+ iy 1) — 64y + %)
+ 32 1= 28(u + 1))/ (3R (1, o)) (16)
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B, w)=2(88—=Tu* uy’ +43u° ty— 16 p1°

— 320+ 36 o — 112)/(1IR (1, 1)) (17
B, po)=2(104—=21p’ s’ + 32 ty+ 194y 11
=2 o+ 64— 196L)/(13R (w1, 1)) (18)
Bs (14, ,Uz):2(16“7/112#22+31ﬂ12ﬂ2_32,“12_8/11 W)/ R(w, )y (19
Bo (s )= (48— 28" iy + 64(uy” o+ pty ip”)
— 14841 £)/(3R(w, 1)) (20)
and the function R(y;, w) is given by:
Ry, w)=4— 21
The expression of [K,] is given by:
=6 (1. th) i symmetric
[Kl]:% 2?1%’/211(# ],;12;)12) ié’(}ffllﬂg ) =64 (u, W) )

—3L &, ) —L*Ca(, ) 3L &, ) _2L2§3(,U2~ M)

where the auxiliary functions ¢; are defined as follows:

Cilur, 10)= @ 2u =t — w)/R(p, ) (23)
Gl 10)=22— o= )/ R(w, b) (24)
G, 1o)== o= 3w)/R(uy, ) (25)
Caltss ) =41 =ty t)/R(uy. o) (26)

Finally, the expression of f(f) is given by:

ﬁ(t)=f S 0 [ST n(x)dx 7)

3. Effective connection stiffness as a random variable

We have assumed so far that the connections have a linear behavior, that is, the end moment
M; can be obtained by multiplying the additional end rotation ¢, by the stiffness k. In general,
the value assigned to this stiffness involves some degree of uncertainty. This variability can
be caused by a number of factors, such as fluctuations in the material characteristics, the geometry
of the connection, the assembling method or the quality control of the process. Consequently,
for a given level of deformation, the ratio between the end moments and the additional end
rotations has to defined in terms of a stiffness coefficient considered as a random variable.

The determination of the probability associated with a particular value of stiffness requires
the knowledge of either its distribution function or its density function. In general, the choice
of a distribution to describe the probabilistic behavior of a physical variable is governed by
the nature of the phenomenon. In this case, since the connection stiffness represents the slope
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of the linear moment-rotation relationship, its distribution should be restricted to nonnegative
values. On the other hand, the moment-rotation behavior of a connection can be affected by
the presence of initial stresses, and the moments induced by these stresses at the ends of the
beam can be either positive or negative. These initial moments modify the position of the linear
relationship, which may be now in the positive or negative half-plane while still having a positive
slope. The resulting end moment can be written as:

where k; and M, are random quantities representing the actual connection stiffness and the
initial end moment. We can now define an effective stiffness coefficient as follows:

where &; is a random variable that includes the uncertainty associated with the connection stiffness
as well as the effect of the variability of the end moments produced by initial stresses. For
our purposes, we assume that this effective stiffness can be modeled as a random variable with
normal or Gaussian distribution. Furthermore, the value of this random parameter can be regard-
ed as the sum of a deterministic component and a component representing random perturba-
tions. Therefore, the effective stiffness value corresponding to the / structural joint can be repre-
sented as follows:

ki=k+ & (30)

where k; is a deterministic constant and & is a random perturbation. In order to simplify the
analysis the mean value of the random perturbation will be incorporated into the deterministic
component so that & can be regarded as a zero-mean random variable. Moreover, if we assume
that the probability distribution of the effective stiffness is normal, then we conclude that &
is also normal, since normal random variables remain normal under linear transformations.
With the above considerations it is straightforward to show that the first two moments of the
random variables £ and k; are given by:

E{G1=0; Elk}=k G
E{&y)=0t=0; Efk)}=0+k? (32)

Hence. the mean value of the stiffness is I_c,», and its variance O}, is equal to the variance 0%
of the random perturbation & . These two quantities define completely the probability distribution.

4. Second order perturbation technique

In the formulation of a probabilistic finite element method based on the second order perturba-
tion technique, each random variable is expanded about its mean value and terms up to second
order are retained. The rates of change of the eigenproperties with respect to the fixity factors
are used to obtain expressions for the mean and variances of the eigenproperties in terms of
the first and second moments of the random stiffnesses. For this reason, this type of approach
is called a second-moment analysis. The limitation of this formulation is that the statistical

variations of the random variables have to be small in order to obtain acceptable accuracy,
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as it is the case with all perturbation-based methods.

If the random parameters of the structure are substituted by their mean or expected values
in the analytical model, one obtains an averaged version of the structural system. In particular,
if the mean values of the stiffness of the connections are used to define the system matrices,
the solution of the associated eigenvalue problem will provide a deterministic set of eigenproper-
ties. It will be’ shown later that these eigenproperties coincide with the mean values of those
obtained through a perturbation method based on a first order expansion. Hence, to study the
difference between the deterministic eigenproperties of the averaged system and the mean values
of the eigenvalues and eigenvectors associated with the random system, it is necessary to include
at least second order terms in the expansions.

The eigenvalue problem for a structural system with N unconstrained degrees of freedom
and p random flexible joints is:

{{K()]— A (k) [MK)]} o(k)=0; i=1,2, -\ N (33)

where [K] and [M] are the stiffness and mass matrices whose coefficients are function of the
random variables k,, k>, -, k,. These variables are expressed in vector form as follows:

k:{k|kg. o, k,,}T (34)

The eigenvalues A, and eigenvectors ¢ are nonlinear functions of the variables k,, k, -, k,
and hence they are also random quantities. The specific form of the nonlinear functions cannot
be determined, except for trivial cases. Nevertheless, assuming that the variables k; are constrained
to small fluctuations about their mean values, we can express the eigenproperties as Taylor
series expansions in terms of the random stiffness parameters. The coefficients of the expansions
are evaluated at the mean value vector k defined as follows:

I_(:{l;|l_(2, Tt ]E/)}T (35)

Therefore, the eigenvalues can be approximated as:

- L
A=A+ "Z ok | ki Uk
l Y4 P _
+? ”Z:I '; 3/(,,, Bk;, ’k k m km)(kn kn) (36)

Introducing the notation:

_ 8/1, ;1[1 . d A

TN Y Y
=AW A= S =k Ao ™ Ok, Ok k= 37)
and expressing the random perturbations from the mean values of the stiffness coefficients as:
fm k"l (38)
Eg. (36) can be written as:
_ P P o
A=h D E4 s Y M EE | (9

m=1 m=1 n=1

Proceeding in a similar way, the second order Taylor series expansion for the eigenvectors
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can be written as:

¢+Z¢ ZZ¢ (40)

m=1 m=1 n=1

where

29,

- - ~ 24

0o 9@
P = k.. ok, | k=

To define the expressions for the eigenvalues and eigenvectors one needs their derivatives
with respect to the stiffness coefficients k. These derivatives can be obtained in terms of the
derivatives of the element matrices with respect to those coefficients. However, as shown by
Egs. (14) and (22), both the mass and stiffness matrices are defined in terms of the fixity factors
4. Based on this, one could be inclined to replace Egs. (39) and (40) by the expansions with
respect to . However, after inspecting the relationship between the fixity factors and the joint
stiffness given by Egs. (7) and (13), it is clear that if the variables k; are considered to be normal
random variables, the same assumption cannot be extended to the factors y, since these equations
do not define a linear transformation. Therefore, if we are interested in maintaining the Gaussian
distribution assumption to take advantage of its properties, the expansions have to be done
in terms of the stiffness coefficients k. Nevertheless, the rates of change of the eigenproperties
with respect to those coefficients can be obtained in terms of the corresponding rates of change
with respect to the fixity factors g by making use of the chain rule as follows:

11_5/1 _/{lé:“_m. ! __‘2

1)

ak,n i é’k i ¢1m &k (42)
u [ Ol ! izﬂ_
/lll — 821,‘ { Al <ﬁkm) +;{’lm &kj for m=n
™ Ok, Ok, i _&% %’Z_ for m+n (43)
] ] e
m dk,. ok, ¢{1mn_§_£i_§%_ for m+n (44
in which:
3_EL —6-—121—
Ol L . Oy L 45)
2
N N )

The coefficients A/ and A! denote the first and second order derivatives of the eigenvalues
with respect to the fixity factors, respectively. They are given by:

;. OAi

" o - =/ {[KL1— A ML}, (46)

u=p
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i :_az’lf_ =T K! _1 M! “1+'_7‘ M7 AN
Imn Cy,Um 8'[1" ,U:,U ¢! {[ m:l Aq[ m:]}¢l" ¢1 {[K,,] A,,[Mn]}(b’m
+(_Z),T{[Kf,',,,:]—/_1,[Mg,,, } (_pi_l{m (—DT[MZ:I &i

— X o" ML) =X &TIM] ¢, — A, T[M] ¢!

m

(47)

Similarly, the coefficients ¢! and o denote the first and second order derivatives of the
‘genvectors with respect to the fixity factors. respectively. They can be written as:

¢fm:ai£ pmj Vet j___il I ® (48)
o= g g e TR Y LG )
where:
™ (ﬁ)&f{l (MLI-[K ¢ i (50)
Yh="— %&"'[M,i, Jo (51)

(1 Vg _TK!
,’/m,,—( ppy >(¢,,- {AlM; 1-[K5 b o,

+o, (A M I—[K, 1V o+ 07 1A, IME]— (K" 1}y

+AL §TIME ) g+ AL ¢/ ML ] o+AL §TM] ot + AL ¢TIM] ¢! ) (52)
70, =~ oM} 1 0!, 6 I D of, — o1 LiM) 0!, ~ S 7M1 (53)
in which the following notation was introduced:
(K= (K@) : [M]=[M(u)] (54)
[K I]: 3[1((&)] ‘ . [Ml — JEM(H):I ‘ _ (55)
" Ol = 77" Ol u=u
2 2

[Kfnln :ME]L ‘ - [Mf'lln]:a—w(ﬂﬂ‘ - (56)

Ol Oty | u=p Oln Oy |u=p

Thus, the expressions for the rate of change of the eigenproperties with respect with the stiffness
coefficients can be written in terms of the derivatives of the element matrices [M]=[M,]+[M,]
and [K]=[K,]+[K;] with respect to the fixity factors. These derivatives can be obtained by
considering the correction terms [M,] and [K,] defined in Egs. (14) and (22). Closed form
expressions for the derivatives are presented in Appendix A.

To obtain the expected values of the i eigenproperties, it is necessary to apply the expected
value operator to the expansions in Egs. (39) and (40). Considering Eq. (31), we can write:
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B 7
E(il=i+3 Y XA El6é) (57)
Elol=o+5 > 2 o, El6.6) (58)

We can see from these equations that the expected values differ from the zero-order terms that
are solution of the averaged problem, and the difference i1s a linear function of the covariances
of the random variables.

If the random variables are considered to be uncorrelated. then it is possible to write:

{f"l §II } nm m (59)

where 68, is the Kroenecker delta, and 0, is the variance of the random variable &,. With
this assumption, Egs. (57-58) take the form:

o, (60)

I”I"

N|»—-

E{¢il=0¢ O (61)

P
L

I i

r\)l-—

The variance of the i eigenvalue is given by:
G;{i:E{(/{i_E {A: b} (62)

Substituting the corresponding expressions for A; and E{A,} given by Eqgs. (39) and (57), respec-
tively, and considering the linearity of the expected value operator, we can write:

el $ e} el $ S s

m=] m=1 n=1

we{($ Sarre )

m=1 n=l

+
ey
< Mv
i Mu
i M\
u\T
——

m—1 r=1 5=1

-%E{( AP Z f,’,,,z/l,’f\fmé‘nE{fy«f.\-}} (63)

m=1 n=1 r=1 3=

Considering the properties of normal zero-mean random variables, it follows that the fourth
and fifth terms in the above expression must vanish, since they involve odd moments:

E{$, & 81=0 (64)
E{CEEEN=E{CE{ES =0 (65)
and Eq. (63) reduces to:
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o-/h Z Z A’lfn é:m fn}

m~1 n=1

LSS S Sanaeiseleize)

m=1 n=1 r- 1 571

+ LS S % S aElgE L) (66)

m=1 n=1 r=1 s=1

The joint moment of four normal random variables can be written in terms of lower order
moments as follows:

E{EEEE=ENE EYENSEIHELS SV ELE EHELS STELS S (67)

and the multiple summation in the last term of Eq. (63) can be expressed in the following
form:

i

S5 Y Y AAEEGE

m=1 n=1 r=1 «y°

=3 Z Z Z Gl A A2 AV E &, EVELEE) (68)

m=1 n-
Substituting Eq. (66) in (63), we finally obtain:
poor
oh= 2 2 A AELGE]
m=1 =1

P 14 P

f1 3T A A& EIEL) (©)

m=l o n=1 r=|
The eigenvectors variance can be obtained following an analogous derivation. It can be shown
that the variance of the eigenvectors is defined by the following expression:

Vi

P
2), - Z Z ¢I{,, ¢’1{,E {fmézn}

m=1 n -1
l /) I) [) I

D NDND) S @ o+ A AN ENE G ELEE) (70)

m=1 n=1 r=1 s=1

Furthermore. if we assume that the random variables are uncorrelated, then Egs. (69) and
(70) reduce to:

G}J z (A':Im)z :;1 2 Z Z( mn : m n (71)

m=1 m—1 -l

14 P

[7
o, = 2. (o) )o, +— S Y @l ye (72)

m=1 m—1 a-1

5. Numerical examples

In order to validate the expressions obtained for the first and second order moments of the
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eigenproperties a Monte-Carlo Simulation will be implemented. For this we will consider the
plane frame illustrated in Fig. 2(a) and we will compare the values of the moments obtained
with the second order perturbation expansion method against the results of a Monte-Carlo simula-
tion. The Monte-Carlo simulation (hereafter referred to as MCS) is a well known and powerful
method to determine the performance of systems with random parameters. In a nutshell, the
method consists in the generation of a set of systems derived from the original system by assigning
values to the random parameters. All the systems are later statistically processed using techniques
of sampling and parameter estimation (e.g., Soong 1981, Ross 1987). The values assigned to
the parameters of the systems are obtained by means of an algorithm that generates random
numbers. This requires to select the probability distribution function that governs the behavior
of these parameters.

Once the accuracy of the expressions obtained with the Second Order Perturbation Method
(from now on designated as SOPM) is established. they will be used to obtain the probability
density function of the eigenvalues and elements of the eigenvector. This will allow us to assess
the level of dispersion in the dynamic properties of the structure introduced by the random
variation of the stiffness coefficients. The two-level frame in Fig. 2(b) will be used for this purpose.

5.1. Example 1: One-story frame

Two sets of random normal variables (k, . k. i=1. 2, -+-, 50) representing the effective stiffness
coefficients were generated. The mean value of the these coefficients is such that the corresponding
fixity factor is 0.50. Two different values of the coefficient of variation (c.o.v.) of the stiffness
coefficients were considered: 0,=0.10 and £,=0.20.

Tables 1-6 present the mean values and standard deviations for the eigenvalues and eigenvectors
of the first two modes of the frame in Fig. | calculated with the two approaches. The frame
was modelled with only three elements and 6 dof because the aim of the analysis is to compare
the accuracy of the perturbation method without being concerned about the accuracy of the
calculated eigenproperties. Tables 1 and 2 show the expected value and standard deviation of
the lower eigenvalue of the frame, respectively. The results shown under the Monte-Carlo column
are the sample mean and sample standard deviation. All the tables include the limiting values

|
3.65 W 21 x 96 (all
W21 x 96 (all {m] elements)
. elements)
Joint (a) X Joint (a) Joint (c)
- € o= O0—
T Joint (b} Joint (b) Joint (d)
365 | 3.65
[m) l tmi l
- g Ve 77J777 >
- ] - el : >
7.30 3.65 6.08
(m] [m] {m]

a) One Story Frame
b) Two Story Frame

Fig. 2 One story and two story frames for numerical examples.



290 EFE Matheu and LE. Suarez

Table 1 Eigenvalue statistics: mean values

Eigenvalue # 2nd Order Monte-Carlo 95% 95%
Perturbation Mean Confidence: Confidence:
Lower Limit  Upper Limit

a) Coecfficient of Variation=0.10

1 25906 25945 25843 26048

2 441812 439869 435146 444591
b) Coefficient of Varnation=10.10

1 25816 25887 25678 26096

2 444647 440835 431219 450451

Table 2 Eigenvalue statistics: standard deviation

Eigenvalue #  2nd. Order Monte-Carlo 95% 95%
Perturbation St. Deviation Confidence: Confidence:
Low Limit Upper Limit

a) Coefficient of Variation=0.10

1 343 360 300 448

2 15939 16616 13880 20706
b) Coefficient of Variation=0.20

I 695 736 615 917

2 32303 33835 28263 42162

corresponding to a confidence interval of 95%. It can be seen that the results obtained via the
SOPM always lie within the confidence interval. Note also that according to the table, doubling
the standard deviations of the connection stiffness produces the same effect on the standard
deviations of the eigenvalues. The same phenomenon can be observed in the c.owv. of the eigen-
values in Table 3. This reveals an almost linear probabilistic dependence between the stiffness
of the connections and the eigenvalues of the structural system. Examining Table 3 it becomes
apparent that the structural system filters out the effect that the uncertainties in the stifiness
of the connections have on the eigenvalues of the system. For instance, when the co.v. of the
stiffness of the joints is 0.10, the c.ov. of the first and second eigenvalue is 0.0139 and 0.0378,
respectively.

Tables 4-6 show the comparison in the statistics of the first eigenvector calculated using the
SOPM and the MCS technique for two values of the c.o.v. of the connection stiftness. It is
illustrative to discuss some characteristics of the results presented in these tables. The expression
for the expected value of the i eigenvector given by Eq. (61), includes the second order derivatives
of the eigenvector. These second order derivatives are obtained in terms of a linear combination
of the eigenvectors of the deterministic system associated with the mean values of the stitiness
coetficients. Due to the symmetric configuration of the structure under consideration, these deter-
ministic eigenvectors (or modal shapes) are either symmetric or antisymmetric. Thus, the expected
values of the eigenvectors of the random system are also either symmetric or antisymmetric.
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Table 3 Eigenvalue statistics: coeflicients of variation

Eigenvalue # 2nd Order Monte-Carlo
Perturbation

a) Coefficient of Variation=0.10

1 0.0132 0.0139

2 0.0361 0.0378
b) Coefficient of Variation=0.20

1 0.0269 0.0284

2 0.0726 0.0768

Table 4 First eigenvector statistics: mean values

DOF # 2nd. Order Monte-Carlo 95% 95%
Perturbation Mean Confidence: Confidence:
Lower Limit Upper Limit
a) Coefficient of Variation=0.10
1 3.6399E-01 3.6396E-01 3.6391E-01 3.6401E-01
2 1.3977E-03 1.3990E-03 1.3768E-03 1.4212E-03
3 2.9631E-03 2.9607E-03 29511E-03 2.9704E-03
4 3.6399E-01 3.6395E-01 3.6390E-01 3.6400E-01
5 1.3977E-03 1.3899E-03 1.3692E-03 1.4105E-03
6 2.9631E-03 2.9584E-03 2.9482E-03 2.9686E-03
b) Coefficient of Variation=0.20
1 3.6400E-01 3.6392E-01 3.6383E-01 3.6402E-01
2 1.4111E-03 1.3940E-03 1.3487E-03 1.4393E-03
3 2.9704E-03 2.9662E-03 2.9467E-03 2.9858E-03
4 3.6400E-01 3.6391E-01 3.6381E-01 3.6401E-01
5 14111E-03 1.3769E-03 1.3352E-03 1.4185E-03
6 2.9704E-03 2.9620E-03 2.9410E-03 2.9829E-03

The same situation occurs with the variance of the eigenvectors. The expression for the variance
of the i eigenvector is given by Eq. (72), and it includes the squares of the first order derivatives,
and the squares of the second order derivatives. Therefore, for this particular example the variance
vectors are also symmetric. On the other hand, the results of MCS are obtained from the statistical
processing of a set of structures which are not necessarily symmetric, since the stiffness coefficients
are uncorrelated random variables. Therefore, for a sample of finite size the expected values
and variances of the cigenvectors do not necessarily show a strict symmetry. In spite of this
fact, the mean values and standard deviations of all the elements of the eigenvector calculated
using the SOPM fall inside the 95% confidence interval. The c.o.v. for the first mode of vibration
are presented in Table 6. The table shows that the modal dof associated with the horizontal
displacement of the ends of the beam (Ist and 4th elements) are practically insensitive to the
uncertainties in the stiffness of the connections. Moreover. there is an almost linear statistical
relation between the components of the eigenvector and the stiffness of the joints. The agreement
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Table 5 First cigenvector statistics: standard deviations

DOF # 2nd. Order Monte-Carlo 95% 95%
Perturbation St. Deviation Confidence: Confidence:
Lower Limit Upper Limit

a) Coefficient of Variation=0.10

1 1.6773E-04 1.7189E-04 14358 E-04 2.1419E-04
2 7.0381E-05 7.7280E-05 6.4555E-05 9.6302E-05
3 3.2871E-05 3.3559E-05 2.8033E-05 4.1819E-05
4 1.6773E-04 1.791 1 E-04 1.4962E-04 2.2320E-04
5 7.0381E-05 7.1826E-05 5.9999E-05 8.9505E-05
6 3.2871E-05 3.5570E-05 29713E-05 44325E-05
b) Coefficient of Variation=0.20
1 3.3603E-04 3.3784E-04 2.8221E-04 4.2099E-04
2 1.4205E-04 1.5776E-04 1.3178E-04 1.9659E-04
3 6.6444E-05 6.8073E-05 5.6864E-05 8.4828E-05
4 3.3603E-04 3.5319E-04 2.95ME-04 44013E-(4
5 1.4205E-04 14521 E-04 1.2130E-04 1.8095E-04
6 6.6444E-05 7.3115E-05 6.1076E-05 9.1112E-05

Table 6 First eigenvector statistics: coefficients of varia-
tion

DOF # 2nd Order Monte-Carlo
Perturbation

a) Coefficient of Variation=0.10

] 0.00053 0.0005
2 0.0504 0.0552
3 00111 0.0113
4 0.0005 0.0005
5 0.0504 0.0517
6 00111 0.0120
b) Coefficient of Variation=0.20
] 0.0009 0.0009
2 0.1007 0.1132
3 0.0224 0.0229
4 0.0009 0.0010
5 0.1007 0.1055
6 0.0224 0.0247

between the perturbation-based results and the Monte-Carlo technique in this as well as in
the previous tables is remarkable.

The only objective for comparing the Monte-Carlo simulation with the perturbation-based
results was to verify the accuracy of the latter method. Although it was not our intention to
compare the computational efficiency of both methods. it is evident that the perturbation method.
being a closed form solution. is simpler to use and requires much less computational effort.
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Fig. 4 Probability density function of third and fourth eigenvalues.

5.2. Example 2: Two-story plane frame

For the next example we will consider the two-story plane frame modelled with 42 dof shown
in Fig. 2(b). Each beam and column was discretized with two frame elements, except the beam
connecting the joints (c) and (d) which was divided into three elements. The stiffness coefficients
of the connections at the ends of the beams at the first level, denoted as (a), (b). (c) and (d),
are regarded as uncorrelated normal random variables. They have a distribution such that the
mean value of the fixity factors is 0.70. Two different c.o.v., 0.10 and 0.20, will be used to describe
the dispersion in the values of the stiffness coefficients.

It can be shown (Scheidt-Purkert 1983) that for the case in which the random quantities
involved in the eigenproblem are weakly correlated, the PDF of the eigenproperties tends to
be Gaussian. The PDF of the first eigenvalue is shown in Fig. 3(a). The mean value and the
standard deviation to plot the curve were calculated with the SOPM. The eigenvalues in the
horizontal axis were divided by the corresponding eigenvalue obtained from the deterministic
eigenproblem using the mean value of the stiffness coefficients. The c.o.v. for the random eigenva-
lue are 0.0078 and 0.0158 when the c.o.v. of the stiffness coefficients are 0.10 and 0.20. respectively.
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This indicates that. as in the previous example, the structure is not very sensitive to the uncertain-
ties in the stiffness of the non-rigid joints. Figs. 3(b), 4a) and 4(b) show the PDF for the 2nd,
3rd and 4th eigenvalues. The 3rd eigenvalue is the most sensitive to the random variability
of the connections’ stiffness. For c.o.v. of the stiffness equal to 0.10 and 0.20, the respective c.o.v.
of the 3rd eigenvalue are 0.0146 and 0.0296. It can be noted that the 2nd and 4th eigenvalues
do not have a significant dispersion meaning that they are not much affected by the uncertainties
in the stiffness of the connections at the first floor.

The PDF for selected elements of the lower four eigenvectors are displayed in Fig. 5-8. The
results for the st eigenvector are shown in Fig. 5. The random connections have a more pronounc-
ed effect in the modal dof associated with the vertical displacement of the node in the beam
¢-d. The two PDF's for this dof depicted in the figure have cov. equal to 03072 and 0.6172
for c.o.v. of the stiffness equal 0.10 and 0.20, respectively. Although the effect is not as pronounced
as in the previous case, the uncertainties in the connections also have an important influence
in the rotation of joint (d). The PDF’s associated with this dof plotted in the figure have c.o.v.
equal to 0.0253 and 0.0517. On the contrary, the horizontal displacement of node (d) is relatively
insensitive to the random connections, as evidenced by the sharp PDF for this dof shown in
the figure.

Fig. 6 show similar results but this time for the 2nd eigenvector. The PDF’s are similar to
those for the 1st eigenvector. The PDF's for the modal displacements corresponding to the 3rd
eigenvalue are presented in Fig. 7. In this case, the largest dispersion is associated with the
horizontal displacement of node (d). The c.o.v. are 0.0239 and 0.0485 when the respective coefficie-
nts for the stiffness are 0.10 and 0.20. Finally, Fig. 8 displays the results for the 4th eigenvector.
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/ — 0.20

0.0E+00 ‘ - 0.06+00 !
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Fig. 5 Probability density function of selected Dof’s of first eigenvector.
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Here the vertical displacement of the interior node on beam (c)Hd) is the modal dof most affected
by the randomness of the connections. The distributions have c.o.v. equal to 0.0712 and 0.1425
when the distribution of the stiffness have c.ov. equal to 0.10 and 0.20, respectively.

6. Conclusions

The objective of the study presented in this paper was to quantify the effect of flexible connec-
tions with random stiffness on the modal properties of the structures. A brief description of
the formulation of a finite element model of a beam element with flexible linear connections
previously developed by the authors was presented. Since the mass and stiffness matrices contain
random parameters, the modal decomposition solution of the equations of motion lead to a
random eigenvalue problem. A second order perturbation expansion was used for the solution
of the random eigenproblem. Closed form expressions for the mean and variance of the eigenpro-
perties were provided. The method requires the derivatives of the eigenvalues and eigenvectors
with respect to the stiffness coefficients. The expressions to calculate these derivatives in closed
form were also provided in the paper.

Although, as it was mentioned in the introduction, perturbation methods have been applied
before to the solution of the random eigenvalue problem, this paper adressed the specific case
of a structure with random flexible connections. The analysis of these systems required, among
other developments, the derivation of the proper mass and stiffness matrices as well as their
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first and second order derivatives.

The results were validated by comparing them against a Monte-Carlo simulation. An excellent
agreement was observed. The numerical examples showed that the level of dispersion induced
by the uncertainty of the connection stiffness varies with the eigenvalue number and is different
for the different components of the eigenvectors. For the example structure considered, it was
found that an almost linear statistical relation exists between the eigenproperties and the stiffness
of the joints.

[t is hoped that the work in this paper can lead to extensions that will further enhance the
understanding of the phenomenon. Some of the possible extensions include the consideration
of the energy dissipation in the joints by means of random rotational dampers and the calculation
of the statistics of the time history response of structures with random connections.
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Appendix A
Derivatives of the Element Matrices

This Appendix presents the explicit expressions of the derivatives of the stiffiness and mass matrices
of a flexural element with respect to the fixity factors u and w

A. 1. Mass Matrix:

a) First derivative with respect to u:

[ 156 (i o) symmetric ]
OM {_mL | —22L7h () —4L s (u ) A
ouw |70 | samu ) —BLM(m @) 156 M ) .

BL (o) 3L () 2L Mo(pn o) —4L Mo(un o)

b) First derivative with respect to u:

[ — 1567 (1 o) symmetric ]
oM — mL | —22L Ny(u, 1) — 4L Mo (i, ) (A2)
ow 420 5415 (e, ) 3L Ny (u o) — 1567 (16, ) ’

13006 (t, 1) 3L (e, ) 2L M (th, ) —ALNs(w, ) _

¢) Second derivative with respect to

— 1567 (tn, w) symmetric
IM |_mL | —2Lw(w, ) —4L (i, ) (A3)
ou’ 420 Sdvy(u. ) —13Lw(u, ey —156T(un, 1) ’

BLu(u, w) 30w, w)  22Lw(w, w) —4L to(w, )

d) Second derivative with respect to ¢ and

— 1567, (w1, ) symmetric
0 M |_mL | —22Lto(m, ) —4Lns(u, ) (Ad)
&,Lh d,l.lv_ 420 541'|3(,U|, ,Ug) —13L Z'14(,Ug, ,U]) — 1561, (,Ug, ,Lll) '

BLra(u, ) 3L te(u, ) 22L1ia(th, ) —4L s, )

¢) Second derivative with respect to to:

— 1561 (s, ) symmetric
M :WI_L —22L v (, ) —4AL Tis (e, ) (A.5)
d,uf 420 541’3 (/Jz U —13L 'L'4(ﬂ2. ,l.ll) - 1561’1 (,U:, ,Ul) ’

BLta(e, ) 3L7m(we, ) 22Lo(w, ) —4L7 ws(, )
where the following auxiliary functions were introduced for the definition of the first derivatives:

m(m, n)=—(50mn’—72mn*—216mn +256m + 64n’

—1927°~ 1921+ 896)/39R (m, n)) (A6)
h(m, n)=(—2)16mn’+20mn>—232mn + 256m + 64n>
—320n+448)/(11R(m, n)’) (A7)
M(m, n)=Gmn’+ 144mn>+ 12mn —512m+ 128n°
—36n"+384n—112)/(27R (m, n)) (A.8)

Ny(m, n)=2(19mn*— 170mn>+ 256mn+ 128x°
— 31602+ 200)/(13R (m. n)) (A9)
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Ns(m, n)= —(64mn>—248mn+256m)/(R(m, n)’)

Ne(m.n)=2(32mn* — 170mn>—44mn +512m+128n*
+200n —784)/(13R (m, n)))

M(m, n)=(64mn’—372mn*+ 512mn+ 256n°
—496n)/(3R (m. n)’)

Ns(m, n)=(55mn*+72mn*—204mn - 256m — 64n*
— 2281+ 192n +784)/(39R (m. n)’)

Ny(m, n)=243mn*—20mn>—128mn —64n’
—52n2+320n)/(11R (m, n)®

Mo(m, n)=B1lmn' —64mn>—64n*+ 128n*)R(m.n)'
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(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
(A.15)

The following auxiliary functions were used to facilitate the definition of the second derivatives:

t(m, n)=—(100mn*— 144mn*—432mn*+ 512mn +192n*
— 376n — 864n>+ 1824n -+ 1024)/39R (m. n)’)

o(m, n)=(—2)32mn*+40mn’—464mn*+ 512mn + 2560’
—880n°+416n+1024)/(11R(m, n)H

o(m, ny=(10mn*+288mn’+ 24mn*— 1024mn — 384n*
8807+ 1728n— 288n -+ 2048)/(2TR (m, n)")

z(m, n)=2038mn*—340mn’+512mn’>+ 384n*—872n°
—80n2+1024n)/(13R (m, n)*)

w(m, n)=—(128mn*—496mn’>+ 512mn +256n"
—992n+1024)/R (m, n)*

w(m, n)=2(64mn*—340mn*—88mn*+ 1024mn +512n*
— 801> —2528n +2048)(13R (m, n)*)

o(m. n)=(128mn*—744mn’*+ 1024mn>+1024n’
—29761°+2048)/(3R(m.n)")

w(m, n)=(110mn*+ 144mn*—408mn*>— 512mn — 192n*
—464n° + 8641+ 1536n — 1024)/(39R (m, n)*

o(m, n)=286mn*—40mn’—256mn*—192n*+ 16n*
—880n>— S12n)/(11R(m, n)*)

tio(m, n)=(62mn*—128mn*—192n*+496n° —256n*)/R (m, n)*

t(m, n)=(72m>n>+432m’n —768m>— 408mn>+ 960mn
— 1824m — 768n°+ 1536n + 768)/(39R (m, n)’)

ta(m, n)=(—2)Q20m*n>—464m>n +768m*+ 256mn
+416m+512n—1280)/(11R (m. n)*)

tis(m, n)=(144m>n*+24m’° n — 1536m>+ 24mn’+ 1920mn
—288m — 1536n°—288n + 1536)/(27R (m, n)*)

ta(m, n)=(—2)(170m*n>— 512m*n + 88mn*+960mn
—1024m — 1536n°+ 25281 — 800)/(13R (m, n)*)

tis(m, n)= —(64m>n>—496m>n +768m>+ 512mn —992m)/R (m, n)*

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A21)

(A.22)

(A23)

(A24)
(A25)

(A.26)

(A27)

(A28)

(A29)
(A.30)
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tis(m, n)=—(372m*n*—1024m*n— 1024mn’ -+ 3968mn
—2048m — 2048n + 1984)/3R (m. n)") (A31)

in which R(m, n) ts given by Eq. (21)
A2 Stiffness Matrix:

a) First derivative with respect to u:

r—-661(,111, W) symmetric ]
oK _ 2ET | —3L&6:(w, ) —2L°8:(w. ) (A32)
o L 651 (th, o) LS, o) — 68, th) '
3LE (. o) —L78a(u, 1) 3LS(w, ) 2L 83(w. ) i
b) First derivative with respect to o:
—‘()61(,[12. ) symmerric T
OK |_2El | —3L&(, m) —2L7 81, ) (A.33)
o L’ 601 (. ) LSy (b, ) — 60 (1 ) '
_"314 Sx(te, ) — L85, ) 36w, ) 2L 8a(sh, ,UI)J
¢) Second derivative with respect to :
-“6,01 (thy r) SYImetric ]

K| _ 2EL | =3Lpy(p. ) —2L7 Py, ) (A34)
.5#%' L 60 (11, 1) Lo, ) 60 (W, ) -
3P, ) L Ps(un, ) P, ) 2L 04 () N

d) Second derivative with respect to u and gw:
— 60 (1, o) symmetric
K — 2FE1 —3L Ps (. 1) —._Ljp4(,l12, ) (A 3;)
o L 60 (1, ) 3O ) 6P () o
3L (o, )~ L7 0o(un, i) 3LPx(th, ) —2L2Py(an, o)
e) Second derivative with respect to th:
=60 (. 1) symmetric
hﬁlK ZVZL_‘I = 3L P (o, 1) "2szh(,uzq ) (A.36)
ou3 L} 60 (Lo, th) LoV ) — 6P (b, 1) '

~3L o (o, ) L7 Ps(w. ) 3LO(th, 1) 2L Pa(e, )

where the following auxiliary functions were introduced for the definition of the first derivatives:

Si(m, n)y=—m*+dn+4)/Rum, ny (A37)
&(m, n)y=(—4Yn+2)/R@m, ny (A.38)
&(m, n)=(—4)n’+2n)/R(m. ny (A.39)
S (mn)=(- 12)/R(m, ny (A.40)
Ss(m. n)=(—12n/R{m. ny (A41)
S(m, n)y=(-3wm/R(m, nY (A42)

The following auxiliary functions were used to facilitate the definition of the second derivatives:
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p(m, n)y=(—2n(n*+4nd)/R(m, n)
P, n)=(—8)n(n+2)/R(m, n)
ps(m, n)=(—4)n*+2n")YR(m, n)
Ps(m, n)=(—24)n/R(m, ny’
Ps(m, n)=(—24n*/R(m, n)’
Po(m, n)=(—6Wm*/R(m n)’
Pr(m, n)=(—4)mn+2mn+2n+4)/R(m, n)
Pi(m, n)y=(—4)mn+4am+4)/R(m, n)’
Po(m, n)y=(—12)mn+4)/R(m, n)
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(A43)
(A44)
(A45)
(A46)
(A47)
(A48)
(A49)
(A.50)
(A1)





