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Abstract. In North America, a large number of concrete old slab-on-steel girder bridges, classified
noncomposite, were built without any mechanic connections. The stablizing effect due to slab/girder
interface contact and friction on the steel girders was totally neglected in practice. Experimental results
indicate that this effect can lead to a significant underestimation of the load-carrying capacity of these
bridges.

In this paper, the two major components-concrete slab and steel girders, are treat as two deformable
bodies in contact. A finite element procedure with considering the effect of friction and contact for
the analysis of concrete slab-on-steel girder bridges is presented. The interface friction phenomenon
and finite element formulation are described using an updated configuration under large deformations
to account for the influence of any possible kinematic motions on the interface boundary conditions.
The constitutive model for frictional contact are considered as slip work-dependent to account for the
irreversible nature of friction forces and degradation of interface shear resistance. The proposed procedure
is further validated by experimental bridge models.

Key words: composite action; contact: degradation; finite element; friction.

1. Introduction

Numerous concrete slab-on-steel girder bridges were built in North America over the last
few decades. These bridges, termed noncomposite bridges, are characterized by the fact that
the concrete slab simply rests on steel girders with no mechanical connection at the concrete/steel
interface. In practice, it is widely accepted that the two major components do not interact and
generally assumed that only the steel girders sustain loads. Evaluations of load carrying capacities,
based on this design philosophy. predicts that bridges built two decades ago are far from able
to sustain modern traffic loads. However, most of them are still in use and perform well under
heavy traffic loads. Experimental studies showed that the discrepancy between theorical prediction
and actual load carrying capacity can be attributed to the presence of fricition forces and contact
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at the concrete slab/steel girder interface (Dionne et al. 1991).

Frictional contact effects are of prime importance in engineering applications, such as the
design of mechanical connections and rock mechanics. There exist two major approaches in
previous investigations to the interface contact phenomenon. The first approach based on the
adoption of theoretical principles such as the variational principle. Relatively sophisticated inter-
face constitutive laws were then defined with consideration of the interface boundary conditions,
compatibility and the properties of the interface media (Burdekin et al. 1978, Michalowski and
Mroz 1978, Curnier 1984). The other approach consisted in using numerical approximations,
generally based on the finite element method, to simulate the interface phenomenon with either
classical or modified Coulomb’s friction law (Fredriksson 1976, Okamoto and Nakazawa 1979,
Sachedeva, and Ramakrishnan 1981, Torstenfelt 1983). These previous studies, whether theoretical
or numerical, are basically focused on solid mechanics problems limited, almost entirely, to
a deformable body resting on a rigid foundation (Signorini-Fichera problem) with a monotonically
increasing contact area as load increases. However, this may not always be the case for a deform-
able body on a deformable foundation (like Winkler foundation) since the contact area can de-
creases as load increases. Furthermore, if both material and geometrical nonlinearities are included
in the analysis of a contact problem, the variation of relative rigidities of contacting bodies
and change of configurations due to large geometrical deformations certainly affect the interface
boundary conditions and compatibility. Taking these factors into account, the classical approaches
are obviously not suitable and a more sophisticated analysis is required.

This study focuses on the frictional contact problems between two deformable bodies. The
interface displacements and contact forces are described using updated geometrical configurations
in order to capture the possible variations of interface boundary conditions induced by large
deformations and rigid body motions. Interface constitutive laws are established by assuming
independence between the normal and tangential directions. A model for the interface shear
resistance, inspired by a number of published models, is proposed with considering interface
slip rate and shear resistance degradation. The model modifies the classical isotropic Coulomb’s
law used to define the onset of interface slip. In the finite element approach to the contact
problem, it is assumed that two deformable bodies in contact are subject to the given boundary
conditions. Special considerations are also given to the post-separation and post-slip interface
phenomena which are discussed in a context of numerical analysis. Finally, two numerical exam-
ples are presented for the validation of the proposed interface model and numerical procedures.
The numerical results closely resemble the experimental ones.

2. Frictional contact under large deformations

Slab-on-steel girder bridges are essentially composed of thin concrete slabs and steel plates.
When subjected to heavy loading, these two major components may undergo large deformations,
and the concrete slab behaves like a plate on a deformable foundation, especially as no mechani-
cal connection is provided at the interface. Unlike the classical contact problem. in which the
contact surface increases monotonically under different load levels. the contact area at the interface
in our problem can either increase or decrease, varying with the geometrical configuration and
material state of two deformable bodies in contact. Therefore, an appropriate description of
variation of contact surface and frictional features between two deformable bodies requires proper
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paired nodes
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Fig. 1 Interface relative displacements under large deformations.

definitions of relative displacements and frictional contact forces at the interface. The following
description assumes large geometrical deformations and small interface displacements.

Fig. 1 shows two deformable bodies C and S in contact. The coordinate and displacement
vectors are “x and “u¢ respectively, and “n* is the outward normal boundary vector with
n; oriented in the direction of the corresponding coordinate axes x;. The right superscript a
(=1, 2) refers to configurations C' and C? of the deformable bodies. Configuration C " is consider-
ed as a previous loading step in equilibrium. To make description easier, the increments of
relative displacements for the establishment of constitutive relationships and the total relative
displacements for the definition of the interface contact conditions under current configuration
C? in two dimensional space (either x-y or n-t plane) are defined. These descriptions can be
extrapolated to three dimensional space by considering that ¢ has two components, 7, and ¢,
in the tangential plane. Note that we use “x; for “x;* and “n, for Pn? (i, summation convention)
in the following descriptions.

2.1 Relative interface dispiacements
The increment of normal relative displacement at the interface between two configurations
can be expressed as:
Ad,=d,—d,. (D
The total normal relative displacement is
d,= —(‘n;%+"n;x;), (2)
with #n, defined on configuration C* and
by =M+, B=c s, (3)

where #u; represents the incremental displacements between two configurations.
Similarly, the increment of relative tangential displacement can be defined as

Ad,=d —d, )
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The total relative tangential displacement is:
d=x= (%)
with components of “x, in the direction of axes x; given by:
O, =P, == Py P, B=c s, (6)
We further define the normal and tangential contact stresses as

G” f ('O',/(n’(n/: \o’[}\nl\n/
g/:(gl: “'gh (7)

where #0,=80,/p,—0,%n, and 0, is the interface stress tensor at configuration C*
2.2 Interface boundary conditions

Interface constraint variations, such as contact-separation and sticking-sliding phenomena, cause
structural nonlinearity and rigid motion. For a candidate point at interface I the possible changes
of boundary condition may be either one of the following:

At configuration C' At configuration C*

{separation d,'>0 {separation d,'+Ad,>0
contact  d,'<0 " lcontact  d,'+Ad,<0 (8)

where 0={0,, o/}, The case d,<0 indicates that relative normal deformation is allowed in
the normal direction if the deformation of interface asperities is considered. The case d,=0
with 6,=0 implies the existence of a special neutral condition between contact and separation.
In the proposed model, the neutral condition is associated to separation since it is later assumed
as in contact that d, can be less than zero due to the adoption of the penalty method.

Interface separation means the loss of interface rigidities and the elimination of contact forces
and as well as the introduction of plastic displacement flows in the tangential and normal
directions. On the other hand, when bodies are in contact at the interface, either sticking or
slipping occurs in the tangential direction and can be justified by:

if |lo,l <o, sticking:||Ad"Ii=0,
if 119120, slipping|l A"l #0. ©)

where 0, is the limit of interface shear resistance. The determination of the onset of slipping
requires the introduction of a proper yield function F, and the determination of its magnitude
and direction requires the selection of an appropriate plastic displacement potential @ whose
gradient defines the plastic displacement:
od
P— z =
Ad"=dA Era (10)
In this equation dA>0 is a scalar. The selection of these two functions will be discussed in
the following section.
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3. Interface constitutive approach

In the constitutive modeling of interface contact features, proper relationships need to be estab-
lished between the interface stresses (forces) and displacements, as well as the criterion to account
for the variations of the interface boundary conditions. In order to establish these constitutive
relationships, the following assumptions are made:

(i) The interface media can be treated as orthotropic material in the normal and tangential
directions and the constitutive relationships are assumed independent in the normal and
tangential directions.

(i) When a pair of nodes is in contact at the interface, the behavior remains elastic in the
normal direction. Separation at the interface is analogous to concrete crushing which
means that rigidity and internal forces vanish in both directions.

(iii) The change of state (contact or separation) of the interface only depends on the contact
force or relative displacement in the normal direction. It does not depend on the state
of sticking or sliding in the tangential direction under current configuration.

(iv) Material properties are assumed isotropic in the tangential plane of the interface. The
interface frictional forces are only associated with the corresponding relative displacements
of the two contact nodes.

The incremental constitutive relationship of an interface can be written in the form of the

well-known Hooke’s law

Aok:hZ/Ad/ L l=n, L, (11)

where hj, is the elastic interface stiffness matrix.

However, Hooke’s law only holds for the elastic portion. Since the analysis is nonlinear, elasto-
plasticity has to be used as framework for the constitutive law. The interface relative deformation
in Eq. (11) is therefore decomposed into a recoverable elastic component and a nonrecoverable
plastic component in the following incremental form:

Ad=Ad + Ad', (12)

It is noted that Ad={Ad, Ad;}". The incremental elasto-plastic constitutive relationship can
be formulated in a general form (Zienkiewicz 1977):

L1, )
Ack:( i~ k,-—gf jGF ,,,,)Ad, (13)
' m

where scalar /4 is given by (Yamaguchi and Chen 1990):

OF .. 0@, It JF 00,
do, " do; ¢, do, do;

h=

(14)
in which &, is the effective contact stress and A7 is the plastic modulus.
From assumption (i) and (ii), Ay is zero if k#I. Also, the constitutive relationships and yield

conditions can be defined separately for the normal and tangential directions.

3.1 Normal direction

The interface separation and contact are normally defined in many publications by the use



262 Jian Jun Lin, Mario Fafard and Denis Beaulieu

of the interface total displacement d,. However, the situation may be ambiguous if the nonpenetra-
tion condition is imposed in the normal direction, since d,=0 may indicate that the interface
is in a state of either contact or separation. By examing Eq. (8), it is found that the normal
contact force may be more suitable to characterize the boundary conditions in the normal direc-
tion. In this study, the criterion describing the condition in the normal direction is:

F,(0,)=0, (15)

If a finite negative normal relative displacement is allowed to represent the normal deformation
of the interface asperities, Eq. (15) can also be expressed as a function of the normal deformation
d,. The interface contact conditions can be described as:

[ F,<0 @<0) lgl>0,
=
< contact h,=h,*
F,=0 d,>0) lall=0,
=
\ separation h,—=h,=0 (16)

In the above equations, Assumption (iii) is considered. As the deformable bodies are in contact
at the interface, the normal displacement d,<0, if allowed, only contains the elastic component.
On the other hand, the separation of the deformable bodies at the interface causes the loss
of both normal and tangential rigidities and the vanishing of the corresponding contact forces.
If the normal plastic displacement potential function @, is set identical to F, (associated flow
rule) for the state of separation, the incremental normal plastic displacement can be written
unilaterally on the basis of Assumption (ii) as:

Aﬂzd&(ig>:dh<dﬂ>:dm. (17)

o, do,

In this equation, dA is physically associated to the incremental normal displacement but no
explicit expression exists since separation indicates the loss of interface rigidities and rigid body
motions between paired nodes. However, for a system previously in equilibrium, a definite value
for dA exists if the loss of partial interface rigidities does not affect the achievement of a new
equilibrium state and if the released forces can be dissipated. The dA value generally depends
on the history of the interface stress state and boundary conditions.

3.2. Tangential direction

Deformable bodies in contact can stick to each other or slide under loading. The situation
depends on the current interface stress (or contact force) state and the current interface shear
resistance 6,>0. If the classical isotropic Coulomb’s law is used, the shear resistance can be
expressed as: )

O™ ol G- (18)
where 1 is a constant friction coefficient. This law is restricted to elastic contact problems with
finite slip (Curnier, 1984). However, experimental results showed that the coefficient of friction
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A classical coulomb's friction law
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Fig. 2 Interface friction law.

decreases with increasing relative displacements between rough concrete and steel surfaces in
contact (Rabbat and Russel 1988, Labonte et al. 1991) A similar phenomenon has been observed
at the interface between different other materials (Plesha and Belytschko 1985). Several researchers
showed that the variation can be attributed to the deformable asperities, the sliding velocity,
or the interface stress history. Two approaches have been proposed to simulate the interface
frictional mechanism. In the first approaches, the interface shear resistance is assumed proportio-
nal to a weighted measure of the normal stresses in the vicinity of the candidate point (Burdekin
et al. 1978, Michalowski and Mroz 1978). In the second, the shear resistance is either associated
with the normal deformation of interface asperities or with the sliding velocity (Fredriksson
1976, Plesha and Belytschko 1985). A few realistic friction laws, analogous to general granular
material stress-strain diagram are depicted in the literature (Panagiotopoulos 1985, Klarbring
1985) and have qualitatively described the relationship existing between interface friction force
and tangential slip.

Based on experimental results and the Curnier's study (1984), the interface shear resistance
may explicitly be expressed as:

G,= O nax — Ow- (19)
in which 0,,,, can be obtained using classical Coulomb’s law given by Eq. (18). The condition
that 0,>0 recognizes irreversible degradation of the interface shear resistance, and is a funtion
of the previous contact stress history and slip velocity. In this study, it is simply assumed that
o, is given by:

0, =0, —ulo,. (20)

where:

(¢}
u=mep]-ollag) L& |

Parameter  is the degradation constant and has units force/ (length-force). It reflects properties
of contact surface for the given materials of two contact bodies. The plastic tangential work
W!=11Ad !i-11g.ll in Eq. (20) is the plastic tangential work W/ and implies that interface degrada-
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tion can occur with either high tangential force or large slip velocity (Plesha and Belytschko
1985) The term O, in the previous expression moderately reflect its effect on the interface shear
resistance due to the change of contact area at a candidate point or region, as the normal
contact stress varies (Burdekin et al. 1978)

The value of ||g,]l/|0,] can be taken as the effective value of u at previous configuration
C'. When the structure is loaded statically, this value gradually decreases with the increase of
slip. This also matches the experimental observation that the deterioration of the interface shear
resistance is accompanied by gradual slip increase, as shown in Fig 2a.

It is now possible to construct the yield function to define the onset of interface slip. The
classical form of the isotropic Coulomb’s law is used with interface degradation considered by
using assumption (iv):

F,:uon—‘o
21
=g, =~ ulo,]. 1)

where 1 is defined by Eq. (20) and represents the degenerated coefficient. The stick-sliding condi-
tion is then explicitly defined as:

{ F, <0 = sticking def =0,

F=0> sliding 34, dg’zda,-g-? . h=0. (22)

o~

The yield function F,=0 defines the slip surface, as shown in Fig. 2b. It can be seen that
the interface shear resistance deterioration is no longer linear with the increase of normal pressure.
It the tangential plane, 0, can be treated as the effective stress and is expressed as:

Gz: Hg/” = V 0'”2—+-O',22. (23)

A function identical to F, for the plastic displacement potential function @, Its derivative
can be easily expressed as:

db_ OF,_ 9P o, 0P, u
ﬁo’n‘ dO’,i dO’, 50',[ a,u 0.’0',,-'

The interface slip increment is obtained by substituting Eq. (19) into Eq. (24), then into Eq.
(21).

24)

deb =d\ gz’ :di'ﬁ sign(c,;) i=1, 2 (no sum on i), (25

with
dA'=d A(1+ pwll Ad? {1)>d 2>0.

Parameter dA in Eq. (25) indicates that the interface slip components are proportional to
the interface frictional forces and uwllAdjll is the rate of slip caused by the interface shear
deterioration.
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4. Finite element approach

In the finite element modeling of frictional contact, the interface media I" between two subdo-
mains C and S is discretized by sets of paired nodes along the span, as shown in Fig. 1. The
notation C and S denote concrete and steel, respectively. The properties of the contact elements,
which link paired nodes with'linear interpolation, are assumed to properly characterize the inter-
face media. The vector {Ad,., Ad "', defined in Egs. (1) and (4) represents the set of updated
relative displacement increments of a considered pair of nodes. The contact stresses are transferred
by finite element approximation to the set of equivalent nodal forces with its components {f,,
f."} expressed in the local coordinate system. Correspondingly, the moduli 4 and 4’ in Eq.
"(13) are replaced by k and k.

4.1. Updated Lagrangian formulation

The finite element approximation of the entire system can be obtained from the variational

principle (Lin ez al. 1991, Fafard et al. 1993). It can be written in an incremental updated formula-
tion as:

W=W2+(AW),=0, (26)

where W,? defines the contribution of residual forces in the estimated configuration C? (superscript)
using the C? geometrical space descriptions (subscript), and (AW), is the improvement required
to achieve system equilibrium at step C()-C*. The discretized form of Eq. (26) is expressed as:

(K:JAU=R, @n

where [K;] is the updated tangential stiffness matrix and R is the residual vector. If no interaction
exists at the interface of subdomains S and C, Eq. (27) represents two independent groups of

equations:
K s 0 { AQS } — { ES }
[ 0 Kc ] AUc Re 9

Eq. (28) is modified to include the contribution of the interface media by introducing equilib-
rium conditions at the common boundary of C and S. It is assumed that the following equilibrium
condition in incremental form is satisfied at interface I

L (¥)+R,=0 (29)

where L is a simple linear operator since linear interpolation is adopted, and ¥ is the vector
of interface incremental displacement equivalent to Ad. Vector R, is the vector of residuals acting
on interfact I' Another incremental variational formulation can be written for the entire system
by introducing Eq. (29) into Eq. (26)

W=Wc+Ws+ f (AL (+RYdT (30)
r

where W, and W are the incremental virtual work related to C and S, respectively. The multiplier
A* is a virtual displacement vector and has to be boundary admissible. In the present case,
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A is identical to the relative interface displacement vector ¥ so that Eq. (30) can be written
as:

f (AL (D+RHAT=(1*Y f L()dI+(1* j Rdl 31)
r r I

where ¥={Ad,, Ad}". A linear interpolation between the interface paired nodes is adopted
and given below:

L (=[x (R¥u—~[RIu), (32)

where [ k7] is the constitutive matrix for the interface in the local coordinate system. Matrices
[‘R] and [‘R] are the transformation matrices which transfer the boundary displacement incre-
ments ‘u and " respectively to the local system defined by vector {#, ¢ }. These matrices are derived
from Egs. (1) to Eq. (5). Substituting Eq. (32) into (31), the virtual work of the whole system
in a discretized incremental form is obtained as:

W=Wet+Ws+(u* R u* TR kr J(CRYu —RIu)

_+_(c!i*T[rR]T._.\"Li*TE\.R] T)f Eldr (33)

Let AU and AU be the displacement increments of subdorl;lains C and S. Note that uS AU,
and ‘uSAU;. The third and fourth terms in Eq. (33) only modify the elements in the global
stiffness matrix and the global nodal force vector associated with ‘¥ and ‘u. The modification
will not increase or decrease the number of equations of the global system (Zienkiewicz 1977).

Displacement sets AUc and AU can be partitioned as A Q(:{ U, ‘U }7 and A QS:—{"’,%,
u,}" and corresponding nodal force vectors as R, ={r,,‘r}” and Rs={’r, r,}". Invoking equibrium
for the whole system in the discretized form of Eq. (33), by setting virtual work W equal to
zero and recalling that » * u*, *u* and u* are arbitrary virtual displacement sets, the following
is obtained:

K 11 K le - 0 0 ,LL ¢ L
Klz‘ Ka‘ +1u ”Ixz‘ 0 ‘.1'!_, — LI_,~ [(R:I T_B_,I
O - 1(:\' K\'x + IS\‘ K 2 A_l:l_/ I+ [,\' R:l TB_ 1
0 0 K, K> U, Iy (34)

where ‘r and ‘r are modified as ‘r—[‘R]'R, and *r +[*RJ"R,, respectively. In Eq. (34), the
term of the matrix modified by 7 represent the interactions at the interface between S and C.
If (k7] is a zero matrix, the stiffness matrix becomes to [K;] as in Eq. (28).

In this study, the contact mechanisms and mechanical connections are simulated by the use
of a bar element linking to two nodes (Lin et al. 1991). The bar element can be treated as
two independent linear springs having a siffness &, perpendicular to the longitudinal axis of
the bar and k,, parallel to the longitudinal axis of the bar. Bar rigidities k, and k, should
represent the average interface behavior of the materials in contact.

For a pair of nodes currently in contact, the non-penetration condition in the normal direction
is physically simulated with penalty approximation by assigning a large value to the initial
rigidity k,. From a numerical point of view, the rigidity of the contact element in the normal
direction should be larger than the local rigidity of the bodies in contact. A reasonably large
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value of k, is assumed to make the interface act as a linear spring before slipping. A proper
choice of values for these two parameters depends upon the type of structure analyzed and
individual experiences.

4.2. Numerical considerations

As previously mentioned, contact problems often imply variations of the interface boundary
conditions. In the finite element approach, these variations are not known in advance for a
given load increment. An iterative procedure should ensure the verification of the physical changes
and proper numerical considerations should be given to account for the post-separation and
post-slip performance of the interface media. The following set of incremental formulations is
evaluated iteratively on the basis of the updated configuration C*. Any variation of contact and
separation of a paired node in the normal direction is verified by:

~f;’:‘ﬁll+knAd"ZO f;lzz’fr}:o

=gseparation, SO
or d,,ZO} separatio k. =k’=

f=f"+k,Ad, <0
or d,<0

} fi=1<0
=contact, then ,,
infil +k?Ad,#0

(35)

in which k, is the initial normal rigidity. The superscripts 1 and 2 refer to the terms evaluated
at C' and C? respectively. The f, and d, values play an equivalent role in the verification
of the interface boundary conditions since d, can be a finite negative value as long as k, is
not equal to infinity. The ambiguity attributed to d,=0 disappears in the finite element analysis
since the direct stiffness method is used.

In the tangential direction, the discretized form of Eq. (21) is used as yield function to define
the onset of interface slip:

F=IfIl—ulf.1=0, (36)

As in Eq. (21), u is used instead of u, to reflect the interface degradation with 0, and O,
replaced by f, and f, respectively.

£l <ulfil = Adr =0

15 >ulf, 1= Adf =dA, gfi;&o. 37
It is assumed that f, lies in a plane defined by {1, 1} with two corresponding components,
Jfu and fo. The following function gives a yield surface in the tangential plane:

F=V/(foy +(foy —ul £l =0 (38)

4.3. Post-separation and post-slip

Since interface separation and slip introduce rigid body motions which may cause singularities
in the solution of a problem, special considerations are required during the interface separation
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Fig. 3 Reduction of frictional residuals.

and slip. This problem occurs in the analysis of a concrete slab-on-steel girder bridge when
a substantial drop on contact surface area with increasing material plasticity leads to an ill-
conditioned stiffness matrix [K7 ]. Moreover, separation and slip indicate the release of interface
contact forces. The redistribution of these forces requires the knowledge of the contact history
and the use of a proper solution technique of iterative nature.

For a candidate pair of nodes in contact at a given load step and separated at the following
step, loss of rigidity and free motions in both normal and tangential directions occur. Physically,
rigidities should be set to zero to satisfy the compatibility of displacements at the interface.
However, this often-leads to numerical difficulties and. as a result, the solution diverges. The
stiffness matrix may be seriously ill-conditioned as more paired nodes lose contact. To avoid
these potential numerical problems, it is preferable to use very small fictive values k', (I=n,
t) instead of zero for the interface rigidities.

The excess tangential force || Il — ul £, must be eliminated by bringing the estimated tangential
forces back to the yielding surface defined by F. Since the ||£ll value is initially calculated
by assuming elastic behavior for the incremental (lisplacement~Ai,. the portion of tangential
force which needs to be reduced is:

NArll=k lAd/ 1=l =ulf ] (39)

For a pair of nodes previously in contact, the reduction procedure for the nodal force residues
requires to consider two cases, as for a general elasto-plastic continuum. The first is the reduction
of shear resistance due to degradation or deloading of the normal contact force which occurs
in the current load step, ab, as shown in Fig. 3a. In this case, the out-of-balance forces, lAr, Il
in Eq. (39). include the portion ab due to the variation of the yielding value between two contfi-
gurations and the portion b¢ (k. d) with d/ paralled to the tangential force. In the second
case, the slip only occurs at the current load increment (initial yielding), as illustrated in Fig.
3b. The elastic behavior assumption would define the final nodal force by point ¢. However,
according to the yield criteria, the nodal force point cannot pass the yield surface and the portion
between points b and ¢ has to be reduced. The reduction procedure has to satisfy both the
normality rule and the yield condition defined by Eqgs. (25) and (38). Any elastic nodal force
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Fig. 4 Frictional contact bridge model.

increment has to move on a surface tangential to the yield surface or inside the area determined
by F,<0 to satisfy the yield condition. After a number of iterations for which both equilibrium
and interface displacement compatibility are satisfied, the tangential force may reach a point
on yielding surface, such as point d. Note that slip hardening has been considered in plotting
Figs. 3a and 3b.

The residual of tangential force components for distribution, Ar,, is written on the basis of
the normality rule and Assumption (iii) as:

Ar11 . Ad(l
Ar, Ad, (40)

5. Numerical examples

To evaluated the importance of frictional contact, the finite element method based on the
proposed model is used to simulate the behavior of some of slab-on-steel girder bridge specimens
tested at Laval University (Dionne et al. 1991). Two numerical simulations are briefly reviewed
in the present paper. The concrete slab and steel girders are discretized by using six node triangle
plate/shell elements, called DLTP (Dhatt er al. 1986). Detailed description of the formulation
of this element and constitutive relationships for concrete and steel can be found elsewhere
(Lin et al. 1991). Properties E. and €., based £/, are calculated according to the equations proposed
by ACI Committee 363 (1984) and are identified by ‘*’. The tensile strength f', also based
on /., is calculated from the relationship proposed by Collins and Mitchell (1987) and is identified
by “**’. The initial rigidities for the contact elements are set to 1X10° for k, 1X10° for k,
The coefficients for post-separation and post-slip are 10~ for ¢, and 10™* for ¢, Based on Rabbat
and Russel’s (1988) test results, the initial Coulomb’s coefficient u, used is 0.5, The degradation
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coefficient @ in Eq. (20) depends on the properties of the interface media and is practically

Load (kN})

150.0

Jian Jun Lin, Mario Fafard and Denis Beaulieu

3

1200 [
90.0 |

[
60.0 |

30.0

0.0 L

Experimental

—e— vertical

—a— lateral

Numerical

—o— vertical '°Pfiange
—o— lateral

1 ISP SN |

-125.0-100.0 -75.0 -50.0 -25.0 0.0 250 50.0 75.0

Midspan deflections (mm)

{a) Load vs midspan deflections (u=0)

150.0 [
1200 | o

%00 F

Load (kN)

60.0 |
[ At left support
300 F

At right support

150.0
120.0 +
—o-o0-a-ood
900 |
z
=
8 60.0 |
5 —®— Experimental
—0— Numerical
30.0
0.0d 1 " 1 " 1
0.0 20.0 40.0 60.0 80.0
Midspan deflection (mm)
(b} Load vs midspan deflections (uo=0.5)
Experimental
Numerical

0.0 L

1 e i
-10.0 -75 -50 -25 00 25 50 7.5 10.0

Interface slip (mm)

(c) Load vs interface slip at supports (u="0.5)
Fig. 5 Experimemal and numerical load displacement curves of Model L

unknown. In the present study, we use @=0.1 obtained from trial tests.

Steel
£, =350 MPa (beam)
=400 MPa (steel bar)

5.1. Bridge specimen with frictional contact only (Model )

Three identical slab-on-steel girder bridge specimens were tested to examine the beam stabilizing
effect and the degree of composite action developed by interface friction. The model comprised
a concrete slab of 5000X1120X 100 mm concrete slab and two I-section steel beams, as shown
in Fig. 4. The concrete slab was cast directly on the steel girders. No mechanical connections
were provided at the interface. The loads were located at third points in the longitudinal direction
and at the center of the slab in the transverse direction. The material properties are given below:

Conrete

f.=35
/=3

MPa
MPa**
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Fig. 6 Experimental and numerical load-longitudinal microstrains at midspan of Model L

E=2X10° MPa E.=3X10* MPa*
h =0.005 (hardening factor) ¢,=0.0027*
vo=02 (assumed)

The experimental results show that these models give rather close loading responses (Dionne
et al. 1991). The first specimen was selected for analysis and discussion since its test results
represent the average responses of the tree specimens. The specimen failed at P,=122 kN, as
shown in Fig. 5. Yielding of the steel beam was observed at the final loading stage before the
top flange of one of the steel beams buckled laterally. One half of the bridge model was analyzed.
The finite element discretization of the cross section is shown in Fig. 4c. Forty one contact
elements were used at the interface along the span.

The specimen was first analyzed numerically without considering the interface shear resistance
(10=0). The model failed at 82 kN, which is 2/3 of the experimental ultimate load, while both
material structural responses were still in the elastic range. The failure was caused by buckling
of the beam top flange. This is confirmed by the large lateral displacements at the final loading
stage and the shape of the midspan load-deflection curves against the experimental results in
Fig. 5a. The model was further analyzed by taking into account the effect of interface friction
with 1y=0.5. Fig. 5b presents the load vs midspan deflection curve obtained numerically and
the corresponding experimental curve. It is observed from Figs. 5a and 5b that the initial loading
responses are almost similar up to about 2/3 of the ultimate load for u,=0.0 and 0.5. However,
the curve for py=00 diverges from the experimental result at about 80 kN while the curve
for py=0.5 follows the experimental result up to 117 kN, which corresponds to 97% of the ultimate
experimental load. These results indicate that interface friction considered in the analysis does
not contribute significantly to the composite action in the early loading stages because the interface
separation occurs as soon as the bridge is loaded. As loading increases, large interface portions
lose contact and interface friction disappears quickly. However, although the interface friction
is small, it still plays an important role in stablizing the steel girder. Much larger girder capacity
is achieved by using u,=025.

Some numerical and experimental results are compared in Figs. 5c, 6a, and 6b. Fig. 5¢c shows
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Fig. 7 Experimental and numerical load displacement curves of Model IL

load vs interface slip curves at two supports for model L. Figs. 5a and 5b illustrate the average
concrete strain measured and calculated on the top and bottom surfaces of the slab and the
longitudinal steel strain measured and calculated on the top and bottom flanges at midspan.
A good agreement between the numerical and test results is oberved.

5.2 Bridge specimen with frictional contact enforced by prestressing (Model [l)

Specimens were tested with the same characteristics as in the previous example except for
the interface which was reinforced by 20 prestressed high strength rods. The rods connected
the concrete slab to the top flange of the steel girders through drilled oversize holes. The stress
in the rods was set at 400 MPa. The objective of this study was to investigate the beneficial
effect of friction provided by prestressed rods on the overall specimen behavior. The experimental
ultimate load P, obtained was 182 kN. The failure was initiated by yielding of the steel girders.

The finite element idealization is as shown in Fig. 4c. The rods are simulated by bar elements
with the assumption that they do not carry any interface shear. Shear forces are solely resisted
by interface friction resistance. Considering the significant loss of prestress due to relaxation
and creep for short bars (Collin and Mitchell 1987), the effective prestress for analysis is taken
as 280 MPa (70% of the initial value). Furthermore, only prestress is applied at the first loading
step to represents the real case for which prestress is applied before the model is loaded.

The failure load obtained numerically is 173 kN, which is 5% lower than the experimental
value. For comparison, the bridge model is analyzed by considering the classical Coulomb's
law and the proposed slip function given by Eq. (19). The resulting load vs midspan deflection
curves are depicted in Fig. 7a. It can be seen that the load capacity is overestimated if the
classical Coulomb’s law is adopted. On the other hand, the model closely simulated the experimen-
tal results when the proposed slip function is used. Numerical and experimental results are
compared in Figs. 7b and 8 Curves for load vs interface slip at supports are plotted in Fig.
7b, while load vs concrete and steel microstrain curves are compared in Figs. 8a and 8b, respecti-
vely. Strains were measured and calculated at midspan on the upper and lower fibres of both
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Fig. 8 Experimental and numerical load-longitudinal microstrains at midspan of Model II.

the concrete slab and the steel girders. These results, once again, prove the validity of the proposed
model.

6. Concluding remarks

In this paper, the contact problem between two deformable bodies has been described in
the updated geometrical configuration to account for the effects of possible large deformations
and kinematic motions on the interface boundary conditions and compatibility. The interface
constitutive models are assumed to act independently in the normal and tangential directions.
The new interface constitutive models are established considering previous analytical, numerical
and experimental investigations- and include the effects of the degradation of interface shear
resistance. The finite element model is formulated on the basis of an incremental updated Lagra-
ngian procedure with consideration of interface compatibility and possible variation of interface
boundary conditions by invoking the variational principle.

The proposed interface constitutive models and the finite element procedure deformable bodies
in contact have proved to be very efficient in the simulation of concrete-slab-on-steel-girder bridges
with frictional contact. It is shown that ignoring the influence of interface friction leads to an
underestimation of the ultimate resistance of slab-on-girder bridges. On the other hand, the
use of the classical Coulomb’s friction law without considering the degradation of the interface
shear resistance, such as the slip function, may lead to an overestimation of the ultimate load
capacity of these bridges.

The proposed finite element procedure which incorporates a new interface friction law -can
therefore be readily used to study the load performance of slab-on-girder bridges with frictional
contact. Future studies will focus on the influence of certain other factors such as materials,
geometrical configurations, load types and positions, relative rigidities of the components in con-
tact, etc. These studies will ultimately result in a series of practical recommendations for a more
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realistic evaluation of the behaviour of slab-on-girder bridges and for the strengthening of these
bridges.
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Notation

d relative interface displacement vector of a candidate pair of nodes
Ad increments of vector d

E. Young's modulus of concrete

E; Young's modulus of steel

f interface nodal force vector

f ultimate compressive strength of concrete
f yield strength of steel

F criteria function at interface

h interface material modulus

k interface elementary stiffness

Ky tangential stiffness matrix of global system
n outward normal boundary vector

R residual vector of global system

[R] transformation matrix

u vector of displacements in local system
U displacement vector of global system

X coordinate vector of a candidate pair of nodes
superscripts

¢ refers to concrete

s refers to steel

* refers to virtual

symbols

a index referring to configurations

B index referring to concrete and steel

£ strain vector at the interface

¥ interface displacement vector

[x] stiffness matrix of interface

u friction coefficient

dA scalar

A* virtual displacement vector at the interface
163 interface slip potential function

o stress tensor at the interface

o, interface shear resistance

o, interface degradation constant

@ degradation of interface shear resistance
subscripts

c refers to concrete
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i j k | m indices referring to coordinate axes

n t refers to normal and tangential directions. respectively
eq refers to equivalent value
1 refers to interface

S refers to steel





