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A spectrally formulated finite element method for
vibration of a tubular structure
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Abstract. One of the major divisions in the mathematical modelling of a tubular structure is to include
the effect of the transverse shear stress and rotary inertia in vibration of members. During the past
three decades, problems of vibration of tubular structures have been considered by some authors, and
special attention has been devoted to the Timoshenko theory. There have been considerable efforts,
also, to apply the method of spectral analysis to vibration of a structure with rectangular section beams.
The purpose of this paper is to compare the results of the spectrally formulated finite element analyses
for the Timoshenko theory with those derived from the conventional finite element method for a tubular
structure. The spectrally formulated finite element starts at the same starting point as the conventional
finite clement formulation. However, it works in the frequency domain. Using a computer program,
the proposed formulation has been extended to derive the dynamic response of a tubular structure
under an impact load.
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1. Introduction

In recent years, both researchers and practising engineers have recognised the efficiency of
the spectral approach for solving a large vibrating structure. Most structures can be analysed
and designed by using the conventional finite element method. However, in order to guarantee
stability and accuracy of the solution, the number of elements used to model the structure may
be very large indeed; more precisely, accurate results can be obtained after a substantial computa-
tional effort. As a consequence, it appears that for problems when the structure is large, it may
be more effective to use alternative mathematical modelling. In this respect, attention is paid
to the alternative spectral approach which works in the frequency domain, and draws its robust-
ness from the speed and switching capabilities of the Fast Fourier Transform.

The conventional finite element method starts with the derivation of element matrices. Based
on the Euler-Bernoulli theory for flexural vibration of the perfectly elastic undamped beam,
the formulation can normally be started with the kinetic and strain energy considerations.
However, in this formulation, the mass and inertial properties of the system are concentrated
at the nodes. There are two popular ways for determining mass matrix of the system, the lumped
mass method and the consistent mass method. In the lumped mass method, the mass matrix
is a diagonal matrix in which all the terms in the diagonal directly represent the mass at the
each degree of freedom. Another popular method is the consistent mass method, in which all
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the terms in the mass matrix are obtained from the kinetic energy of the element.

For the sake of clarity, the first part of the paper herein contains an analytical development
of spectral method, while the second part deals with two examples which highlight the efficiency
of the spectral method in the case of a beam and tubular structure. In the first part, the basic
aspects of the spectral method are discussed, then its versatility in the case of the Timoshenko
beam theory is presented and discussed. The first part ends with a presentation of a modified
shear factor for the Timoshenko beam theory which takes advantage of the exact method proposed
by Hutchinson (1986). In the second part, the vibration of a tubular clamped-free Timoshenko
beam is investigated which has a practical interest. Finally, a fully documented example of
a tubular structure is solved and discussed in order to show the efficiency and stability of the
spectral method.

It is been mentioned that the efficiency and numerical stability of the spectral method arises
directly from its mathematical modelling characteristics. These characteristics of the method can
be shown using a program which has been written in the symbolic environment of the Mathema-
tica* computer package. The graphic capabilities of the Mathematica package allows investigation
of the algorithmic features of the computed solution in relation to numerical analysis. In this
way, the method feasibility can be shown in the form of flow charts, and it can be seen graphically.

The most practical difference between the spectral formulation and the conventional finite
element method is that the number of elements needed in the spectral method to model a
structure, which has no load or ‘discontinuties between nodes, is much less than the number
of elements in the conventional method to get the same accuracy. Thus only one element is
needed to be used for a uniform segment. Using the spectral and conventional finite element
methods, a comparative study has been carried out. One of the main contributions of this paper
is to show the advantages of the spectral method. The length of the spectral element is not
a limiting factor. and it allows a huge reduction in the number of elements needed for accurate
results. The present method, which uses Timoshenko beam theory, reduces the subdivision requi-
red in a structure, and also, it treats the mass distribution exactly, which eliminates any additional
effort to model the continuous mass distribution in a structure.

2. Conventional finite element review

Consider the conventional time domain method which is based on dynamic equilibrium satisfac-
tion at selected time intervals. Based on the Euler-Bemoulli theory for flexural vibration of
the perfectly elastic undamped three dimensional beam element (Fig. 1), the formulation can be
started with the kinetic and strain energy consideration as follows:

L.
T— % f PAV?dx  (kinetic energy) (N
0
1 'L
=5 f EIV”dx (strain energy) )
4]

Where v is a lateral displacement. Note that the effects of shear deformation and rotary inertia
have been neglected in the calculation of the kinetic and strain energy. Using Hamilton’s principle

*Mathematica is a trade mark of Woliram Research Inc.
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Fig. 1 Typical beam element.
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If it is assumed that all of the mass is concentrated at the end nodes (lumped mass) and that
there are no applied loads between these nodes. Eq. (5) can be rewritten as:

‘v _
ox* =0 (6)
The simple solution of this equation can be
vix)=a,+ta,x+ax*+a;x* (7

where all coefficients are time dependent. The boundary conditions are:
v(0)=w, v(h=w ®)
VO)=vy  V(IO=Vvh )

Eq. (7) also can be written in terms of the nodal displacement as:
=3 XV o 2V 2 X 2 (2 v+ X 3—of X
veo=[ [ 3(L) o £ ] 2L+<L)]Lvl+(L) E z(L)]
x \? X ,
+<L> [ 1+(L)]Lv2 (10)

From elementary theory of structures we have:

2 3
“dpx‘j L V)= ~E1% (11)

Mx)=ET

For a four degree of freedom system, these equations can be written in matrix format as:
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Vv, 12 6L —12 6L Vi
M,| _ EI 6L 4l —6L 21? V)
v, | L | —-12 —6L 12 —6L Vv,
M, 6L 217 —6L 2 vh

3. Modified finite element formulation

To include the shear-deflection effect which is significant in the flexural vibration of a short
member of a frame structure, the finite element formulation can be modified. This modification
can be adapted into the finite element method through the stiffness matrix by introducing a
shear coefficient. The shear coefficient is defined as the ratio of the actual beam cross-sectional
area to the effective area resisting shear deformation (Przemieniecki 1968). The element shear
stiffness generally decreases with increasing value of the shear coefficient. The significance of
this coefficient decreases as the ratio of the radius of gyration of the beam cross-section to
the beam length (r/1) becomes small compared with unity. As a result of this modification,
some of the terms in the element stiffness matrix change. For a twelve degree of freedom 3-
D tubular beam element (Fig. 2) the stiffness matrix in element coordinates can be drived as
(Przemieniecki 1968).

- AE/L .
0 X
0 0 X Symmetric
0O 0 0 26GIL
o 0 zZ 0 Y
e | 0 voo 0 0y
“EAL 0 0 0 0 0 EAL
0O W o 0 0 Z 0 X
o o0 W 0 ¥V o 0 0 X
0 0 0 -2G/L 0 0 0 0 0 2GIL
o 0 Z 0 T o0 0 0V 0 Y
L 0 v o 0o 0T 0 Z O 0 0 Y] 13
where
_ DEI ., EIK4+X) . —6El . 6El
X=raen i T maa U s

=]

%

Fig. 2 Twelve degree of freedom tubular beam element.
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and F is the shear coefficient. Shear coefficient values for several common sections are as follows:
rectangle 6/5, solid tubular 10/9, hollow thin tube 2. hollow thin walled square 12/5.

A popular method of deriving the mass matrix is the consistent mass method, it which all
the terms in the mass matrix are obtained from the kinetic energy of the element.

L
= %f PAvidx  (kinetic energy) (14)
0
_ 0T :
M,-v—————a‘./i o (mass matrix) (15)

The consistent mass matrix in the case of a tubular beam element with twelve degrees of freedom
is:

RE 7
0 X
0 0 X Symmetric
0 0 0 234
o 0 Z 0 W
B o Z 0 0 0 W
M=PAL | 16 0 0 0 0 0 153
O Y 0 0 0 V 0 X
0O 0 Y 0O T 0 0 0 X
0 0 0 2/64 0 0 0 0 0 2/34
o o T O P O O 0 Z 0 W
_OTOOOPOZOOOWJ (16)
where
ye L20/L)+0332°+074+037
(1+A)
y=— 1.2(/LY +0.17212+ 031 +0.13
(1+A)
— [01—05A)r/LY +0.04242+0.092A 4+ 0.052]L
Z= 5
(1+ 1)
7= L=(01=052)p/LY +0.0422°+00752 +0031L
- (1+A)
_ [013+0.17A4 +0.33A3)(/L)*+0.008342+ 0.0174 + 0.0095 1L
W= >
(1+ 1)
~ —[(0033+0.17A —0.17A%)/L)*+0.008312+ 0.0174 +0.0071]L?
= REY:

r=y/ %
A
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In the next section, the spectral approach for the elementary theory of vibration is presented
which can be extended to a higher vibration theory like the Timoshenko theory for any tubular
structure.

4. Euler-Bernoulli spectral method

Consider a different type of solution (spectral solution) for the transverse motion of an elastic
beam (Eq. (3)) as Doyle and Farris (1990):

VX, D=V @) n @)t o) (17)
where v, are essentially a set of discrete Fourier coefficients. In the spectral case, we obtain
a method similar to classical modal superposition with some advantages. The stability of the
Fast Fourier Transform allows use of a larger time step, and all frequency-dependent characteri-
stics can be solved linearly. From a comparison between Eq. (17) and Eq. (10), it is clear that
in the spectral formulation the time variational terms are formulated in the frequency domain

instead of a direct formulation in the time domain. If the spectral method applies to the conventio-
nal method, it gives the following relationships:

[K]=[K]— ' [M] (18)
(KILU1=[F] (19)

Where [K] is sometimes called the dynamic stiffness and is frequency dependent. At this stage,
the flexural vibration equation can be written in spectral format as follows:

d*v, s

EI" —w,’ PAV,=0 (20)

One of the solutions of this differential equation is:

V,(X)=A,e” "+ B, ek +Ce a0 4 P o hyl) (21)

k=\/a, [%‘ ] v (22)

Using Eq. (21) as a shape function, Eq. (12) can be rewritten in spectral format as:

where

[F]= 2% (K, )@, 03)
V) 1
M El o] ¢
b | oK) (24)
M; &

The [k] martrix can be determined using the boundary conditions (Doyle and Farris 1990).
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Fig. 3 Computer flow-chart for the spectral method.
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kyu=(—zn122+iz1222)S LY/ det

where

zp=1—e e zp=e et
231:6’7'{‘*’67 g; 222:l+€7i§€_{ (26)
det=(z},+z})/(1+10); (kL

The stiffness matrix is symmetrical, as for the conventional finite element method, and terms
are mostly complex. The spectral method can be constructed mainly by two concepts:
1) assembling of the dynamic stiffness matrix based on the spectral shape function for elements:
2) evaluation of the frquency-dependent quantities (damping, load) using the stable Fast Fourier
Transform.
The computer algorithm for the spectral method is presented in Fig. 3 and it can be compared
with the conventional finite element computer procedures.

5. Comparative study

For comparison between the results derived for the spectral Euler-Bernoulli beam element
with those derived for the conventional finite element, the stiffness matrix can be closely examined.
When the damping is zero, k is real and the first term in the dynamic stiffness matrix can



216 AM. Horr and L.C. Schmidt

? (]
5. 10 \ 10 000 6000 8000 10000
o -2. 10
7 100 200 0 400 500 10
-5 10, 4. 10,
110, -6. 10
-2 10 -1. 10
Fig. 4 Conventional finite element dynamic stiffness versus frequency.
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Fig. 5 Euler-Bernoulli dynamic stiffness versus frequency.

be written as Doyle and Farris (1990):

e (c(kL)sh(kL)+ s(kL)ch(kL)XkL)’
" 1 —c(kL)ch(kL)

@7

where
‘c=cos; s=sin; ch= cosh, sh=sinh

The first term in the dynamit stiffness matrix for the conventional finite element formulation
(Bathe 1982):

1EI _ 13041
L 35

- 5 _
knw=ky—w'm,=

(28)
Substituting Eq. (22) into Eq. (28), the spectral form of the first stiffness matrix term of the
conventional finite element formulation can be written as:

- 12EI  13(kL)Y'EI
s 3507

(29)

Figs. 4 and 5 show respectively, the first term of the dynamic stiffness matrix for the conventional
finite element and the Euler-Bernoulli spectral method versus the frequency, using the graphical
capability of the Mathematica package. A comparison between the spectral and conventional
finite element methods shows that while the spectral dynamic stiffness intersects the zero axis
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Fig. 7 Dynamic stiffness versus frequency and element length fot the FM method.

a number of times in a certain range of frequency, the conventional finite element formulation
shows a single intersection with the zero axis only. (It should be noted that as the first term
of the dynamic stiffness matrix is plotted against frequency, the frequencies at intersections are
not resonant frequencies). Figs. 6 and 7 show the three dimensional plots for the first term
of the dynamic stiffness matrix versus the frequency and element length, which have a significant
physical meaning. For a constant element length in Fig. 6, as the frequency increases the number
of intersections increase, and it is also true for a constant frequency and various lengths. The
interaction between the frequency and element length in the first dynamic stiffness term is such
that it behaves like a conventional dynamic stiffness term up to a certain limit of frequency
and element length, and then it starts to behave differently. Thus, with the single formulation
in the spectral method, it is possible to model a very large element in a given range of frequencies.
In physical terms, it means that for the conventional finite element formulation to have the
same accuracy as the spectral method, it is necessary to subdivide a member. The degree of
subdivision depends on the range of required frequencies. Only with an infinite number of
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elements would the conventional method match the spectral method. Thus, for a uniform beam
which has no inter-span load, only one element need be used for modelling.

6. Timoshenko theory

In the previous section it was assumed that the cross-sectional dimensions of the beam element
were small in comparison with its length (neglecting shear and rotary inertia effects). Corrections
to the theory have been given by Timoshenko (1921) for the purpose of taking into account
the effects of the cross-sectional dimensions on the frequency. With the introduction of shear
deformation, the assumption of the Euler-Bernoulli theory that plane sections remain plane
is no longer valid. It means that the slope 6 of any section along the length of the beam simply
cannot be obtained by differentiation of the transverse displacement v. Consequently, there are
two independent motions €, v. These corrections may be of considerable importance for studying
the modes of vibration of higher frequencies (Horr and Schmidt 1955) when a vibrating beam
is subdivided into comparatively short length portions. Timoshenko (1921) gave the equations
of motion for a beam as:

pa\olv . (v 90\

( . ) " KAG( IR )-0 (30)
2’6 av_\ [(Ip\ 2*6 _

EI-53 +KAG< o 0) (g) o =0 31)

Where K is a factor depending on the shape of the cross-section, and G is the modulus of
shear rigidity. The shear force and bending moments acting on any section of beam are:

_ OV _\__ .00 (1P 36 ,
V—KAG( N e) EI- 55 +< p > o7 (32)
sl
M=EI-5° (33)
As shown in the previous section, the spectral solutions can be found as:
vy, D= @)e ®TOHn(x, @)e b4y (0 w,)e @ (34)
(,D(X, t)ngl(x. ml)efi(i\'.\'ﬂulz)_*_&sz(x, a}l)ewi(k\-ﬂoy)_}_,,,_+_('i>n(x’ w”)efi(kx*m”r) (35)

These solutions can be substituted into the equations of motion, which result in the following
relationship between the motions for each mode (Gopalakrishnan, Martin and Doyle 1992):

~ [Ek*+GAK—plor ]
V= [ GAKk ]‘p (36)

s [yerf( (@ VA& S raoll )] o

where

and
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—./PL. —\ /-EL. =, /K
“Voat Voa © PA

As the two motions are dependent, it is possible to take one of the motions as the unknown.
p(x)=Ae *r'+Be "2+ Ce 1"+ D"
v(x)=P,Ae **+ P, Be " — P, Ce** — P, De™*? (38)

If it is assumed that PI=0 (no rotational inertia), and K=o (no shear deformation), and
substituting these two conditions into Egs. (30) and (31).

1/4 1/4
k.z\/a{%] kzzi\/a[%] (39)

which are the same as Eq. (22) in real and imaginary space. Using Eqgs. (38) as a shape
function which are the exact solutions to the governing Eqgs. (30) and (31), the four unknown
coefficients can be written in terms of nodal displacements. For the element of length L, with
no load applied between nodes, the spectral shape function can be written as:

qD"(X)___Aé,—i/\]x + Be~#*2¥ 4 Celk1 &9 4 Dpika (=) (40)
V(x)=P,Ae *1*+ P, Be” *»— P, Ce*1 (L — P, Dot
vi=v(0); ¢1=0(0). v,=v(L). ¢,=o(L) (41)

It is noteworthy that there are four unknown coefficients as opposed to a minimum of six
that are normally used in the conventional finite element method. Also these shape functions
are different from interpolating functions as commonly used in the conventional finite element.
The matrix format for the relation between the coefficients and the nodal degrees of freedom
can be written as:

A Vi
B | _aq| &
¢ 712 %
D o 42)

After finding these coefficients, the end shear forces and end moments can be written in terms
of the displacement matrix as:

V1 :VI
M, EL oq) &
2 A
M, & (43)

Where K is the stiffness matrix. The boundary conditions can be imposed exactly as for
the conventional finite element method. These boundary conditions can be treated with the
usual partitioning procedure of the system matrices.



220 AM Horr and L.C. Schmidt

Table 1 Timoshenko shear coefficient for a range of frequen-
cies

Frequency[Hz] Shear Coefficient K
0.0 09310
0.26 0.9293
052 0.9284
1.3 0.9259
2.6 09183
39 0.8931
5.2 0.7832

Table 2 Dynamic stiffness (ki) for range of wavenumbers

kL F.E Dynamic Stiffness E-B Dynamic Stifness Timoshenko Dyamic

Stiffness
0 12 12 12
0.5 11.977 11.977 11.975
1.0 11.629 11.628 11.626
1.5 10.12 10.11 10.08
2.0 6.057 5.961 5324
2.5 —25 —3.H —4.127
4 83.085 —130.733 —196.670

7. Calibration of shear coefficient for tubular elements

One of the main purposes of the development of a more refined theory is to check solutions
based on elementary theories. One of the accurate theories of vibration is the Timoshenko theory,
which was given in the spectral form earlier.

A shear coefficient based on Timoshenko (1921) was found best for long lengths of solid
shafts and was given as:

_ (1 12v+6vY

K= v rav

(44)

where v is Poisson’s ratio. For v=0.33, the shear coefficient is K=0.9314. Cowper (1966) found
shear coefficients for a wide range of shapes of cross-section based on comparisons with static
three dimensional elasticity theory. Cowper’s shear coefficient for beams of hollow circular cross-
section s,

K= 6(1+v)(1+m?)?
(761 +m P+ 20+ [2v)m?

(45)

where m is the ratio of external to internal radius. For a thin-walled tubular member, the Cowper’s
shear coefficient is,

_ Al+v)
K=—413 (46)
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Fig. 9 k Versus frequency and shear coefficient for the Timoshenko method.

Timoshenko'’s shear coefficient was derived by matching with the plane stress solution for long
wavelengths.

However, If is interesting to note that for the Timoshenko model, the shear coefficient is
also frequency-dependent. Table 1 shows the variation of shear coefficient with frequency, in
which the value corresponding to the shear coefficient is derived so as to give the same result
for the Timoshenko model as an exact series solution proposed by Hutchinson (1986).

Hutchinson’s exact solution is a series solution in which each term of the series identically
satisfics the linear elasticity equation of the flexural vibration of a beam. This solution leads
to a matrix of coefficients whose determinant must be zero. The coefficents are transcendental

functions of the natural frequency. For any discrete number of frequencies over the frequency
range, K can be determined and substituted into Eq. (36).
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Table 3 Beam data

E[GPa] 200
G[LGPa] 116
L{mm] 400
DI{mm] 50
plkg/m’] 7800
m 0.99

50

—
P =

t [sec]

(@ ()

Defelectionf/mm/

s1:F.E.
82 :Timoshenko e

s3 : Euler-Bernoulli Timefsec.] -

(©
Fig. 10 (a) Cantilever beam: (b) Impulsive load; (c) Response of the beam.

8. Timoshenko dynamic stiffness matrix

For the Timoshenko theory, Eq. (37) can be substituted into Eq. (28) which gives a similar
multiple zeros result as for the Euler-Bernoulli theory. Table 2 shows the values of the dynamic
stiffness for the Timoshenko beam (with a frequency-dependent shear factor), the Euler-Bernoulli
beam, and the conventional finite element model. They all have the same origin at kL=0 (low
frequency), but at higher frequencies the behaviour is different. For the Timoshenko dynamic
stiffness, there are a greater number of zeros in a given range than the Euler-Bernoulli dynamic
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Fig. 11 (a) Impulsive load; (b) Tubular structure.

Table 4 Structure data

E[GPa] 200
G[GPa] 116
D{mm] 500
m 0.99
plkg/m’] 7800

stiffness, which means that it can give even more accurate results.

The variation of & with frequency for both of the Euler-Bernoulli and Timoshenko theories
is shown in Fig. 8. It can be seen that there is a noticeable difference between these two theories
as the frequency increases. If k is plotted against the frequency and shear factor (Fig. 9), it

can easily be seen that the Euler-Bernoulli theory is a limit of the Timoshenko theory when
K—1.
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(b)
Fig. 12 Third (a) and sixth (b) mode shapes for the structure.

(a)

Deflection [Log mm]
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Fig. 13 Response of the structure.

9. Examples

9.1. Example /

In the first example, a clamped-free beam is considered and a simple impulsive load is applied
at the tip of the beam (Fig. 10a). Using the numerical data given in Table 3, the three dimensional
finite element model can be generated using three dimensional pipe elements in the ANSYS®
finite element program. The length of the beam was divided to 20 elements.

The spectral model for the beam consists of one spectral element of length 400 mm and
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at the fixed boundary all the DOF are constrained. The beam is impacted at the tip using
a rectangular pulse (Fig. 10b), and the response is measured at the free end. Fig. 10c shows the
response of the beam at the free end for the spectral and the conventional finite element methods.

9.2. Example I/

The second example is a three dimensional tubular structure. Fig. 11 shows the finite element
model of the structure which consists of 232 three dimensional pipe elements. The same simple
impulsive load with 5000 N amplitude is applied as for the first example and the response evaluation
is carried out using the conventional time domain transient analysis (Newmark meth-
od). The data for the structure are given in Table 4 and the maximum response in the x
direction is measured using the ANSYS finite element program.

The spectral model consists of 20 finite spectral elements which benefits from the accuracy
of the Timoshenko spectral shape function and the calibrated shear coefficient. The ratio of
the internal to external radius, m, for all tubular members is 0.99 and the section is assumed
to be a thin-walled section in this respect. It should be emphasised that in frequency analysis,
a frequency-dependent shear coefficent requires only a single solution run and there is no need
for a non-linear analysis. As already explained in the first example, as far as the computational
time and memory allocation are concerned, the spectral approach is well ahead of the conventio-
nal finite element method for a large extended structure. Fig. 12 shows the third and sixth
natural modes for the structure which is the result of a subspace eigenvalue analysis. The subspace
method uses the subspace iteration method, which internally uses the generalised Jacobi iteration
algorithm, (Bath 1982). Fig. 13 indicates and compares the response of the structure for all three
methods in a logrithmic chart. The stability and accuracy of the proposed method provides
a realistic solution without great computational effort.

10. Discussion and concluding remarks

A spectrally formulated finite element method of analysis has been presented which is capable
of making accurate predictions of the dynamic response of tubular structures. The main features
of the frequency domain spectral method were discussed in detail and two numerical examples
have been solved. It was shown that the frequency-dependent characteristic of the shear coefticient
can be modelled using the frequency domain spectral approach. The approach is unique, as
it seems that there is no proper treatment of this problem.

The most practical difference between the spectral formulation and the conventional finite
element method is the number of elements needed in the spectral method to model a structure,
which is much less than the number of elements in the conventional method to obtain the
same accuracy. The conventional finite element is relatively ideal for solving problems where
the structure is small in extent (that is because of the differences in the number of elements
needed to model the structure), whereas the spectral method is ideal when the structure is large
in extent. As far as the stability and efficiency concerned, it can be assessed that even though
the assemblage of global matrices has to be repeated for all frequency components in comparison
with the single assemblage procedure for the conventional finite element method, the spectral
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approach outperforms the conventional method in the large structure cases. Furthermore, cases
such as frequency-dependent damping (a common property of absorber materials) can be dealt
with in a linear manner without need of iteration. The opportunity to investigate the consequences
of the -non-linear damping behaviour in damping devices with in a tubular structure will be
taken, and this will be the subject of a subsequent paper.
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Nomenclature

cross sectional area of beam
viscous damping matrix

beam diameter

Young's modulus of beam material
frequency

force vector

shear modulus

second moment of area of beam
torsional moment of inertia

cross sectional shape factor
stiffness matrix

length of the beam

ratio of the internal to external radius for tubular members
mass of the beam

mass at the free end

\
§§§h5w&~m5 mwam

[M] mass matrix

T time

W deformation energy
B eigenvalue

0] angle by which the stress leads the strain
p density

10} natural frequency
o stress

o, yield stress

€ strain

v Poisson’s ratio





