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Thermomechanical postbuckling of imperfect
moderately thick plates on two-parameter
elastic foundations
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Abstract. A postbuckling analysis is presented for a simply supported, moderately thick rectangular
plate subjected to combined axial compression and uniform temperature loading and resting on a two-
parameter elastic foundation. The two cases of thermal postbuckling of initially compressed plates and
of compressive postbuckling of initially heated plates are considered. The initial geometrical imperfection
of the plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory
considering the first order shear deformation effect, and including the plate-foundation interaction and
thermal effect. The analysis uses a deflection-type perturbation technique to determine the buckling
loads and postbuckling equilibrium paths. Numerical examples cover the performances of perfect and
imperfect, moderately thick plates resting on Winkler or Pasternak-type elastic foundations. Typical results
are presented in dimensionless graphical form.
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1. Introduction

The postbuckling response of a moderately thick plate subjected to combined axial loads
and thermal loading is current interest to engineers engaged in civil and other structural engi-
neering practice. These plates are often supported by an elastic medium and may have significant
and unavoidable initial geometrical impertections. Therefore, there is a need to understand the
thermomechanical buckling and postbuckling behavior of imperfect moderately thick plates res-
ting on elastic foundations.

Although considerable literature has been devoted to the postbuckling and thermal postbuckling
analyses of isotropic and anisotropic thin plates subjected to either mechanical loads or thermal
loading, published literature on postbuckling or thermal postbuckling of thick plates is very
limited and addresses only perfect plates. Thermal buckling loads for initially stressed transversely
isotropic and antisymmetric cross-ply laminated thick plates were evaluated using the Galerkin
method by Chen er al. (1982) and by Yang and Shieh (1988). Thermal buckling analyses of
composite laminated thick plates subjected to uniform or nonuniform temperature loading have
been made by Tauchert (1987). Sun and Hsu (1990) and Chen et al. (1991).

Recently, Librescu and Souza (1993) analyzed postbuckling of an imperfect, shear-deformable,
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transversely isotropic plate under combined thermal and compressive edge loading.

For elastic foundations, the simplest of which is that of Winkler model, which assumes that
the surface displacement of the elastic foundation at every point is directly proportional to the
load applied at that point and completely independent of the load applied at any other point,
even in its neighbourhood. The Winkler model does not accurately represent the characteristics
of many practical foundations, this leads to the development of so-called two-parameter model.
Ariman (1969) studied the compressive buckling of a moderately thick plate on a Winkler elastic
foundation. Raju and Rao (1988) calculated the thermal postbuckling response of a thin isotropic
square plate resting on a Winkler elastic foundation by the finite element method. Dumir (1988)
analyzed the thermal postbuckling of a thin isotropic rectangular plate resting on a Pasternak-
type elastic foundation using the Galerkin method, but his numerical results were only for Winkler
elastic foundation case.

More recently, Shen (1995a, 1995b, 1995¢) analyzed the postbuckling of perfect and imperfect,
isotropic and anisotropic, thin and moderately thick plates resting on two-parameter elastic foun-
dations, from which results for Winkler elastic foundations follow as a limiting case. To the
author’s knowledge, there are no research works dealing with the postbuckling of moderately
thick plates under combined axial and thermal loading and resting on two-parameter elastic
foundations.

A postbuckling analysis of perfect and imperfect, moderately thick plates under compressive
loads or thermal loading has been presented by Shen(1990) and Shen and Zhu (1995) using
a deflection-type perturbation technique. This work is extended here to the case of perfect and
imperfect, moderately thick plates subjected to combined axial loads and uniform temperature
loading and resting on two-parameter elastic foundations. The present analysis is based on the
four assumptions of:

(1) Reissner-Mindlin plate theory, ie. the first order shear deformation effects are put into

consideration;

(2) uniform temperature distribution throughout the plate thickness:

(3) the longitudinal edges are immovable and;

(4) the material properties being independent of temperature.

The initial geometrical imperfection of the plate is taken into account but, for simplicity, its
form is taken as the buckling mode of the plate.

2. Analytical formulation

Consider a moderately thick rectangular plate of length a, width b and thickness ¢ which
is subjected to uniaxial compression P, and a uniform temperature rise 7; and rests on a
two-parameter elastic foundation. Let U, V" and W be the plate displacements parallel to a right-
hand set of axes (X Y, Z), where X is longitudinal and Z is perpendicular to the plate. Then
the load-displacement relationship of the foundation is assumed to be p=K, W—K, V> W, where
p is the force per unit area, K, is the Winkler foundation stiffness and K, is a constant showing
the effect of the shear interactions of the vertical elements, and V? is the Laplace orerator in
X and Y. Denoting the initial deflection by W* (X, Y), let W (X, Y) be the additional deflection,
and F (X, Y) be the stress function for the stress resultants, so that N\:F_m Nl:l_i\.,\. and N, = ‘F,\z,,.

From the Reissner-Mindlin plate theory considering the first order shear deformation effect.



Thermomechanical postbuckling of imperfect moderate thick plates 151

including the plate-foundation interaction and thermal effect, the governing differential equations
are

DV I+ VZMT:(l—?% VZ)[L(L_V+ W F)— & W—FK, V)] (1)

VAF+(1—W)VANT= — %EtL(v_H 20 W) Q)
where

vi= aa;‘* +2 aXf;YZ * ad;“

L():Edfzz ai;z_z &/\?;Y a)?zay * aa;z aiiz

in which D is flexural rigidity and D=Er/12(1—v?). E is Young’s modulus, G is the shear modulus
and v is Poisson’s ratio. Also & is the shear factor, which accounts the non-uniformly of the
shear strain distribution through the plate thickness, and for Reissner plate theory x=5/6 while
for Mindlin plate theory &K=nr%12.

The thermal force and moment are defined by
Ea 1/2 )

—1/2

WNT, M")=

in which @ is thermal expansion coefficient for a plate. Because of Eq. (3) it is noted that
the thermal moment M"=0 and V’N'=0.
The unit end-shortening relationships are
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All the edges are assumed to be simply supported and the longitudinal edges are restrained
against expansion in the Y-direction (immovable), so the boundary conditions are

X=0, a; W=0 (5a)
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N, =0, M,=0 (5b)
b
J N.dY+a.b1=0 (5¢)
o
Y=0, b; W=0 _ (5d)
~ N,=0, M,=0 (Se)

where o, is the average axial stress and M, and ]\_/[y are, respectively, the bending moments
per unit width and per unit length of the plate.

Egs. (1)~(5) are the governing equations describing the required large deflection postbuckling
response of the plate.

3. Analytical method and asymptotic solutions
Introducing the dimensionless quantities (in which the alternative forms k, and k, are not
needed until the numerical examples are considered)
x=nX/a, y=nY/b, B=a/b, y=n*D/x*a’Gt,
(W, WH=(W, W*\/120— )i, F=F/D.
(M., M)=M,, M)a*>/12(1—v)/n*Dr,
(K. k)=(a*, b)K/7*D, (K>, k-)=(a> b)K./m*D,
Ar=12(1=v)b* aly/m’F, A=o.b’t/4n*D

(6 8)=(AlJa, A/DI2(1—Vv)b*/An*/4n’t? (6)
enables the nonlinear Eqgs. (1) and (2) to be written in dimensionless form as
VW+(l—y V(K W—K, V!W)=B2(1—y V) )L(IW+W*, F) (7)
ViF= —%,BzL(W+2W*, W) )
where
A J* J*
4 O 2 4 O
M e ¥ TE
— 0‘»2 5 d:
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and the unit end-shortening relationships become

L()




Thermomechanical postbuckling of imperfect moderate thick plates 153

1 ([ F_ _&F\_1{oW\> oW ow* )
0.,= 4n2ﬂzjof0[<ﬁ oy’ vo"x-’) 2<c9x> ox Ox +/1Tﬂ]dxdy (a)
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(Note that Egs. (7) and (8) are identical to those of moderately thick plates under pure axial
compression and resting on two-parameter elastic foundations (Shen 1995¢c), but that Eq. (9)
contains terms in Az) The boundary conditions of Eq. (5) become

8,=—

x=0, m; W=0, (10a)
Fo=0, M,=0 (10b)
iﬂf:ﬁl ?yF dy+44, =0 (10c)
y=0, 7 W=0, (10d)
Foy=0, M,=0 (10¢)
8=0 (106)

To construct an asymptotic solution for the moderately thick plate, the additional deflection
and stress functions in Eqs. (7) and (8) are taken as the preturbation expansions

W, y. 0= Z &w;x y) Fix, y, &= X e'fix y) (11)
J=1 =0

where ¢ is a small perturbation parameter, and the first term of w; (x, y) is assumed to have
the form

wi(x p)=A\) sinmx sinny (12)
The initial geometrical imperfection is assumed to have a similar form to w,(x, y), ie.

W*(x, y, e)=eA*, sinmx sinny=guAd!] sinmx sinny (13)

where the imperfection parameter y=A%/4\)

Substituting Eq. (11) into Eqgs. (7) and (8), we get a system of perturbation equations. By
using Egs. (12) and (13) to solve these perturbation equations of each order, the amplitudes
in terms of w;(x, y) and f;(x, y) can be determined step by step. and hence the asymptotic
solutions are obtained as

W=g[A\) sinmx sinny]+e*[4}) sinmx sin3ny+A4,) sin3mx sinny]+0(s%) (14)

F=—BY % —b{) %+ e’ [—By J;— —b{) % + B cos2mx

+ B} cos2ny+e*[ —B&?% - b(‘}g’% + B cos2mx

+ B cos2ny+BY cos2mx cos2ny+BY,) cosdmx+BS cosdny
+BY) cos2mx cosdny+BS) cosdmx cos2ny]+O(e?) (15)
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It has been shown by Shen (1990, 1995¢) and Shen and Zhu (1995) that all coefficients in
Eqgs(14) and (15) are related and can be written as function of A!!.

Next, substituting Eqs. (14) and (15) into boundary conditions Egs. (10c) and (10f) enable
the interactive postbuckling equilibrium path to be written as

A . Ar
AT

=S+ S, Wi+ S, Wi+ (16)

in which W, is the dimensionless form of the maximum deflection of the plate, which is assumed
to be at the point (x, y)=(7/2m, n/2n), and A?, and A’ are the critical values of the non-dlmensmnal
uniaxial compressive stress and thermal stress respectlvely, such that

a __ @1 T @l
A‘cr 4BZ(m2+m2ﬁ2) A 2[34 (17)
where the @, So, S5, S, &, &, &, and §, of Egs. (18)~(21) are given in detail in the Appendix.
From Eq. (17), equations for the critical value of compressive load P, or temperature rise

T,, can easily be found. Then substituting A/A,=Ty/T,, in Eq. (16) for the initilly heated plate
case gives the postbuckling equilibrium path as

_ 0, 2 i Ty
G Ry |_S°+S2W S W T:'r:l 1s)
and
E=8 A+ S Wit 8 Wb (19)

Similarly, substituting A/A,=P./P, in Eq. (16) for the initially compressed plate case gives
thermal postbuckling equilibrium path as

n=—2 34 [S(,—f-Sg W2t S, Wi— ;: ] 20)
and
8= 8yt 8 Wi+ B W+ 8 el

Egs. (16)-(21) can be employed to obtain numerical results for the postbuckling load-deflection
or load-shortening curves of moderately thick plates under uniform thermal loading combined
with uniaxial compression, specially for the two cases of:

(1) thermal postbuckling of initially compressed thick plates; and

(2) postbuckling of initially heated thick plates.

In the second case, if the initial thermal stress is zero, Egs. (18)<(19) are reduced to the equations
for postbuckling equilibrium path of moderately thick plates loaded in uniaxial compression
with longitudinal edges restrained and resting on two-parameter elastic foundations. The buckling
load of perfect plates can also readily be obtained numerically, by setting u=0 (or W*=0),
while taking W, =0 (or W/t=0). In all cases, the minimum buckling load is determined by
considering Eq. (18) or (20) for various values of the buckling mode (m, n), which determine
the number of half-waves in the X-and Y-directions. As expected, there are three special cases:
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(1) if K,=00, Egs. (16)-21) are valid for the thermomechanical postbuckling of moderately
thick plates resting on Winkler elastic foundations;

(2) if K,=K,=00, Egs. (16)+21) reduce to thermomechanical postbuckling equilibrium paths
of moderately thick plates without any elastic foundations and,;

(3) if the plate is thinner enough, then y approaches to zero, Egs. (16)«21) are brought into
a form suitable for the solutions of von Karman plate.

4. Numerical results and discussion

A postbuckling analysis has been presented for moderately thick plates under combined axial
and thermal loads and resting on two-parameter elastic foundations. A number of examples
were solved to illustrate their application to the performance of perfect and imperfect, moderately
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isotropic plate(v=0.15)
ed f3=1.0,(m,n)=(1,1)

~ b/t=100.0

° (k, .k,)=(0.0,0.0)
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x Librescu & Souza(1993)
| ] |
0.0 0.65 - 1.2

W/t

Fig. 1 Comparisons of thermal postbuckling load-deflection curves of a single-layer
isotropic square plate without an elastic foundation.

1:(k, ,k,)=(5.0,2.0), (m,n)=(1,2)
T [0.00 2:(k, ,k,)=(5.0,0.0), (m,n)=(1,2)
i T  10.05 —] 3:(k11k2)=(0'010-0)l(mln)z(lll)
o . .
o 05 1 _
W/t
Fig. 2 Thermal postbuckling load-deflection curves of intially compressed moderately
thick plates with and without elastic foundations.
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Fig. 3 Effect of initial compressive load proportion P./P., on the thermal postbuckling of
moderately thick plates on two-parameter elastic foundations.
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Fig. 4 Effect of plate aspect ratio B on the thermal postbuckling of initially compressed
moderately thick plates on two-parameter elastic foundations.

thick rectangular plates resting on Winkler or two-parameter elastic foundations. Throughout
these numerical illustrations v=03, a=1.0X107%°C and the transverse shear correction factor
was considered K©=%/12.

To validate the present method, the thermal postbuckling load-deflection curve of an isotropic
square plate with its longitudinal edges restrained is compared in Fig. 1 with results given by
Librescu and Souza(1993), from which the good agreement is apparent.

Fig. 2 gives the thermal postbuckling load-deflection curves of initially compressed moderately
thick plates with b%7=10.0 either without foundations or resting on Winkler or two-parameter
elastic foundations. The stiftnesses are (k. k,)=(5.0, 2.0) for the two-parameter elastic foundation,
(k1, k2)=(5.0, 00) for the Winkler elastic foundation, and (k;, k;)=(0.0, 0.0) for the plate without
an elastic foundation. It can be seen that the elastic foundation increases the thermal buckling
load and it has a singnificant effect on thermal postbuckling behavior. The buckling modes
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"
Fig. 5 Effect of transverse shear deformations on the thermal postbuckling of initially
compressed moderately thick plates on two-parameter elastic foundations.
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Fig. 6 Postbuckling load deflection curves of initially heated moderately thick plates
with and without elastic foundations.

A (k,.k,)=(5.0,2.0)

b/t=10.0
5| B=1-0 (MM =(2,1)

1:T /T =0.00

W _ fo.00
: t " lo.os 2:T /T =0.25
- 0 er
ol e | 3:T /T =0.50
o er
0 0.5 1 1.5

Wit
Fig. 7 Effect of initial thermal load proportion 75/7,, on the postbuckling of
moderately thick plates on two-parameter elastic foundations.
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Fig. 8 Effect of plate aspect ratio 8 on the postbuckling of initially heated moderately
thick plates on two-parameter elastic foundations.
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Fig. 9 Effect of transverse shear deformations on the postbuckling of initially heated
moderately thick plates on two-parameter elastic foundations.
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Fig. 10 Postbuckling load-shortening curves of initially compressed and initially heated
moderately thick plates on two-parameter elastic foundations.
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can also be seen to change as the foundation stiffness is increased, e.g. (m, n)=(1, 2) for the
two-parameter and Winkler elastic foundation cases, whereas (m, n)=(l, 1) for the foundationless
case.

Fig. 3 shows the thermal load-deflection curves of moderately thick square plates with 57=10.0
for the different values of initial compressive load P, shown, when the plates are supported
by two-parameter elastic foundations. Clearly the initial compressive stress decreases the thermal
buckling load and affects the postbuckling response singificantly.

Fig. 4 shows the effect of plate aspect ratio f (=1.0, 1.5) on the thermal postbuckling response
of initially compressed moderately thick plates with b/%=100 resting on two-parameter elastic
foundations. As expected, these results show that the thermal buckling load and postbuckling
strength are increased by decreasing the plate aspect ratio f.

The effect of transverse shear deformation on thermal postbuckling response of initially com-
pressed moderately thick plates resting on two-parameter elastic foundations is shown in Fig 5.
It is found that the thermal buckling load of thick plates with 57=100 is 7.8% lower than
that of thin plates. It can be seen that, like moderately thick plates without any foundations
(see Shen and Zhu 1995), in the postbuckling range (W/t<1.0) the deflection of thick plates
is larger than that predicted by thin plate theory, and in the deep postbuckling range the effect
of transverse shear deformation is insignificant. In Figs. 4 and 5 (as in Fig. 2), the compressive
load is 25% of P.. and in Figs. 3-5 the foundation stiffness is characterized by (ki, k,)=(50,
20).

Figs. 6-9 are postbuckling results for initially heated plates analogous to the thermal postbuck-
ling results of Figs. 2-5. Note that now the compressive postbuckling equilibrium path becomes
flatter and flatter with the increase in foundation stiffness. In contrast, the effect of transverse
shear deformation is more significant in the deep postbuckling range (see Fig. 9).

Fig. 10 shows the load-shortening curves of initially compressed and initially heated moderately
thick plates resting on two-parameter elastic foundation with (k;, k,)=(5.0, 2.0). The results show
that the initially compressed plate exhibits negative end-shortening, i.e. extension, in the thermal
postbuckling region.

Postbuckling load-deflection (or load-shortening) curves for initially compressed and initially
heated imperfect moderately thick plates have been plotted, along with the perfect plate results,
in Figs. 2-10. The imperfect curves show that the effect of initial geometrical imperfection on
moderately thick plates of initial geometrical imperfection on moderately thick plates under
combined axial and thermal loading is substantial, as was already known to be the case (see
Shen, 1990, 1995¢) for moderately thick plates under pure axial compression with or without
elastic foundations.

5. Conclusions

The postbuckling of moderately thick plates subjected to uniaxial compression combined with
a uniform temperature rise and resting on two-parameter elastic foundations has been studied
by a perturbation method. The two cases of thermal postbuckling of initially compressed plates
and of compressive postbuckling of initially heated plates have been considered. The numerical
examples presented principally relate to the performance of perfect and imperfect, moderately
thick plates resting on Winkler or two-parameter elastic foundations. They show that the character-
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istics of postbuckling are significantly influenced by foundation stiffness, initial geometricl imper-
fection and the amount of initial compressive or thermal load present for, respectively, thermal
and compressive buckling. In contrast plate aspect ratio f and the plate transverse shear deforma-
tion have rather less effect.
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Appendix

In Egs. (16)421)

So=1/(1+ 1), SZ:% 8.(1+21)/@..

Se= 55z (mi+w* ) [1+ ym'+n” B3] (C— Co)/ @) (22a)

where
@1 = @11/[1 + y(m3+nzﬂl)]
&=(m*+3n*pH
O =m*+n’ B+ K+ K:(m*+n* BH] [1+ y(m*+n* 3]
Co=2(1+ w1+ 2 & Lm* [ 1+ y(m*+9n° B) /g1
+n*B1+yOOm*+n* B3)]/gx]
Co=(1+w A +2w201+ w)*+ (1 + 2] Um* L1+ y(m*+9n° B7) /g1
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+rnt B 1+ y(9m>+n? ) 1/ga1]
g3= 0+ w1+ y(m*+n2 BHI1+ 1)~ &, Ci3s [ 1+ y(m*+ 912 B3]
g51= O (m*+wi? BHL 1+ y(m*+n? A1+ p)— 0, Cs, [ 1+ y(Om* +n’ )]
O;3=(m*+9n? B+ (K, + K2 (m*+ 902 BH] [ 14 y(m*+ 912 )]
&y =Om*+n? B+ K, +K:(9m*+n? B)] [ 1+ y(9m*+n? )]

2 202
&:B%MB_‘EM_Q (]+2ﬂ)

=55 1+ w1+ 22 - 1y )]
X[m*[1+ y(m*+9n” B3)/gis+n* B[ 1+ y(9m*+n? B7)]/gs1] (22b)

in above equations, for the case of initially compressed plates

C13:(mz+9vnz,82)+8[l - ﬁ* a +p)]m3

Ca=09m’>+ vnzﬂz)—8[l — II;" 1+ ,u)]m3
&h=— 711-(1 +W)Ar
o l 1— V2!@]
& 4B (m*+ wi’ B (22¢)
and for the case of initially heated plates

T,

Cia=(m*+ 9w B — = (1 +4) [om?*+9we? )= O™+ wm* )]

T

Cy=Om*+wm?*p?)— T" 1+ LOm*+ w? B —(m*+ wi* 7]

&= (1 - Vz)ﬂvx

—%:TVW@ 22d)

Notations

o

plate length and breadth
flexural rigidity for a plate
elastic modulus for a plate
F stress function and its dimensionless form
shear modulus for a plate
K., K|, k, Winkler elastic foundation stiffness and its two alternative dimensionless forms
K-, K>, k>Pasternak elastic foundation stiffness and its two alternative dimensionless forms
thickness of a plate
W. W  deflection of plate and its dimensionless form
W* W* geometrical imperfection of plate and its dimensionless form

QMo R

~

a thermal expansion coefficient for a plate
B aspect ratio of plate, =a/b

A b end-shortening and its dimensionless form
£ a small perturbation parameter
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shear factor for a moderately thick plate
dimensionless form of thermal stress
dimensionless form of compressive stress
imperfection parameter

Poisson’s ratio

average axial stress in the X-direction





