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Inelastic vector finite element analysis of RC shells
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Abstract. Vector algorithms and the relative importance of the four basic modules (computation of
element stiffness matrices, assembly of the global stiffness matrix, solution of the system of linear simulta-
neous equations, and calculation of stresses and strains) of a finite element computer program for inelastic
analysis of reinforced concrete shells are presented. Performance of the vector program is compared
with a scalar program. For a cooling tower problem, the speedup factor from the scalar to the vector
program is 34 for the element stiffness matrices calculation. 25.3 for the assembly of global stiffness
matrix, 27.5 for the equation solver, and 37.8 for stresses, strains and nodal forces computations on
a Cray Y-MP. The overall speedup factor is 309.

When the equation solver alone is vectorized, which is computationally the most intensive part of
a finite element program, a speedup factor of only 19 is achieved. When the rest of the program is
also vectorized, a large additional speedup factor of 159 is attained. Therefore, it is very important
that all the modules in a nonlinear program are vectorized to gain the full potential of the supercomputers.
The vector finite element computer program for inelastic analysis of RC shells with layered elements
developed in the present study enabled us to perform mesh convergence studies. The vector program
can be used for studying the ultimate behavior of RC shells and used as a design tool.
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1. Introduction

Inelastic analysis of a reinforced concrete (RC) shell needs to be performed to study its ultimate
behavior and to assure that the design methods give a shell that is safe. Finite element methods
to perform such analysis have been developed and the inelastic behavior of shells studied by
many investigators in the past (Hand er al. 1973, Lin and Scordelis 1975, Mang et al. 1983,
Milford and Schnobrich 1984, Akbar and Gupta 1985, Min and Gupta 1992, Mahmoud and
Gupta 1993). As would be expected there are some differences in the modeling and constitutive
assumptions made in the computer programs developed by these investigators. For example,
Akbar and Gupta (1985), Milford and Schnobrich (1984), Min and Gupta (1992) and Mahmoud
and Gupta (1993) allow the crack directions to change according to the principal strain directions
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as the loading is progressively increased, and others don't. A common limitation in all the
past research is that very little, if any, finite element mesh convergence studies have been peformed.
Inelastic analyses are computationally intensive, and performance of such studies using the con-
ventional mainframe computers is practically impossible. For example, analysis of a hyperbolic
cooling tower by Gupta and Maestrini (1986) using a 12X 12 (144 elements) mesh of 4-node
superparametric elements took around 10 hours of CPU time on an IBM 3081, and that of
a nuclear containment vessel by Akbar and Gupta (1986) using a 432 element mesh required
roughly 40 hours on the same machine.

The advent of supercomputers in recent years has provided an opportunity to study problems
that could’t be earlier. It is often possible to migrate a scalar program to a supercomputer with
very few changes. Even scalar operations can be performed much faster in a supercomputer
than in a conventional mainframe both in terms of the clock and the central processing unit
(CPU) time. We solved an inelastic shell problem that ran on a Cray Y-MP using one processor
around 30 times faster than on an IBM 3081 in terms of the CPU time. Even though the
CPU time on the two machines cannot be directly compared, the factor of 30 does give an
idea of their relative efficiency. A much higher level of efficiency can be achieved by writing
a program that would use a specific supercomputer’s vector and parallel processing capabilities
to their maximum possible potential (Lambiotte 1975, Dongarra er al. 1984a, 1984b and 1992,
Noor and Peters 1986, Silvester 1988, Levesque and Williamson 1989, Storaasli et al. 1989, Hutchin-
son et al. 191, Min and Gupta 1991, 1994a and 1994b, Golub and Ortega 1993, Yagawa er
al. 1993, Agrawal et al. 1994, Barragy et al. 1994).

In the present study, we will limit ourselves to vector processing only. Other than the 1/O
(input and output) and some other bookkeeping functions, a finite element program consists
of four basic modules, namely, computation of element stiffness matrices, assembly of the global
stiffiness matrix, solution of the system of linear simultaneous equations, and calculation of
stresses and strains. Out of the four basic modules, the equation solver takes the most computa-
tional effort in the analysis; consequently it needs to be vectorized first. In case of the linear analysis
of a plane stress problem using the 8node isoparametric element, we found that a speedup
factor of 5 to 50 was achieved by appropriately vectorizing the equation solver alone (Min and
Gupta 1991). Vectorizing the rest of the program led to an additional speedup of 10 to 40 percent.

Vector algorithms and the relative importance of the four modules of a finite element computer
program for inelastic analysis of reinforced concrete shells are presented here. Results from
two computer programs are presented. The first program was developed by Akbar and Gupta
(1985). It consists of 4-node superparametric shell elements. The elements do not account for
the effect of bending on the cracking of concrete and the yielding of steel. It is a scalar program,
originally developed for an IBM 3081, and was migrated to the North Carolina Supercomputing
Center's (NCSC) Cray Y-MP with minor changes. The second program is a vectorized program
that consists of the same 4-node superparametric shell elements as in the original scalar program,
except that the vectorized program’s element is discretized into ten layers allow the element
to account for the effect of bending on cracking and yielding.

2. Element stiffness matrix

A vector algorithm for evaluating the element stiffness matrix of a layered 4-node superparame-
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tric shell element is presented elsewhere (Min and Gupta 1994b, 1995). In this algorithm, the
element stiffness matrix is grouped according to three constitutive coefficients. These groups
have lengths of 78, 96 and 36, respectively, for stiffness coefficients in the upper triangular arrays.
The same computation is performed with three vector arrays of 78, 96 and 36 lengths for uncracked
and cracked elements and for all the layers, calculating one element stiffness matrix at a time.
The vector length of the complete upper triangular element stiffness matrix is 210 (=78+96+ 36).
In an earlier vector algorithm for evaluating the stiffness matrix of the unlayered element, a
vector length equal to the number of elements (ne) was used (Min and Gupta 1994a). The
stiffness matrices of the cracked elements were re-evaluated using scalar computations. The 210-
vector length algorithm is more efficient than the ne-vector length algorithm because the stiffness
matrices of the cracked elements are not recalculated in the former.

The peformance of the new vector algorithm for element stiffness matrix calculation is compared
with the scalar algorithm in the Akbar and Gupta (1985) computer program. Because the Akbar-
Gupta program modeled the shell as a single-layer element, the CPU time obtained to calculate
the element stiffness matrix in the scalar program was multiplied by a factor of 10 for comparing
it with that of the present 10-layer element stiffness matrix in the vector program. The scalar
and vector programs are compiled with ‘novector’ and ‘full’-options for the Cray CFT77 com-
piler, respectively. The novector-option activated only vectorization and scalar optimization (Cray
SR-0018 C). The full-option, on the other hand, attempts all optimization and vectorization.
The speedup with the full-option is usually greater than that with the novector-option. The scalar
program is implemented successfully with the novector-option, but it failed with the full-
option. For a cooling tower problem, C24 (see Table 3) the scalar program needs an average
of 1672 ms (milliseconds) of CPU time for each iteration to compute element stiffness matrices,
and the vector program requires only 49 ms when both the problems were run up to the respective
ultimate loads. The speedup factor for scalar-to-vector operations is 34 for this case. The 34-
speedup factor is conservative because we have not accounted for the computational effort for
adding the stiffness of the ten layers in the single layered element, and because the single layered
model (that does not account for the effect of bending on concrete cracking) is likely to have
smaller crack density than would the layered model used in the vector program.

3. Assembly of the global stiffness matrix

The Min and Gupta (1991) algorithm for the assembly of the global stiffness matrix on an
IBM 3090 supercomputer is implemented with a few modifications. On a Cray Y-MP, vectorized-
indirectly-addressed-gather/scatter operations are performed using a compressed index array and
a gather/scatter hardware, thus greatly improving the computational efficiency. The Cray CFT77
compiler assumes that operations containing array elements with subscripts may involve recur-
rences. Therefore, we need to check dependencies of element stiffness coefficients in each element.
If no dependence exists, we can proceed to perform vector operations using a compiler directive:
IVDEP (Cray SR-0018 C). The directive should appear immediately before the indirect gather/scat-
ter loop. Table 1 shows a FORTRAN code for the assembly operation. The arrays K and k
represent the global and the element stiffness matrices, respectively, and index (i j) is an index
array defined for connectivity between global degrees on freedom and local element degrees
of freedom. When a particular degree of freedom is constrained. the corresponding index value
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Table 1 FORTRAN code for the assembly of the global stiffness matrix.

DO 100 j=1, ne ! a loop for the number of elements.
C Check the element has any dependencies,
IF (no dependency) THEN ! vector operation;
CDIR 8 IVDEP ! Compiler directive
DO 10 i=1, 210
K(index(i, j))=K(index(i, )))+k( j)
10 CONTINUE
ELSE ! yes-scalar operation;
DO 20 i =1, 210
K(index(i, j))=K(index(i, )+ k(. j)

20 CONTINUE
ENDIF
100 CONTINUE

is set to zero. A dummy space in the global stiffness array is provided for index=0 to discard
the extra stiffness coefficients.

The creation of the index array is straightforward. In a nonlinear analysis this array will
have to be created only once whereas the global stiffness assembly is performed repeatedly.
Therefore, generation of the index array can be considered a small overhead. As before, the
C24 cooling tower problem is used to compare the performance of the scalar and the vector
programs. The Akbar-Gupta scalar program consumes an average of 139 ms of CPU time for
the assembly of the global stiffness matrix in an iteration and the vector program only 5.5
ms. The vector-scalar speedup factor is 25.3 for this problem.

4. Solution of linear systems of equations

Solution of the system of linear simultaneous equations is computationally the most intensive
part of a finite element program. Accordingly, it has been a topic of vigorous research activity
(Dongarra et al. 1984a and 1992, Lambiotte 1975, Ortega 1988, Storaasli 1989). We (Min and
Gupta 1991) studied and implemented several equation solving algorithms and also reviewed
performance of the DPBF and DPBS routines from the ESSL library (IBM 1987) on an IBM
3090 supercomputer. We found that the DPBF and DPBS routines were most efficient. We
performed a similar study on the Cray Y-MP machine. We developed our own routines based
on the jk and kji algorithms (Dongarra er al 1984a, Ortega 1988, Min and Gupta 1992) and
used two pairs of routines from the Cray UNICOS Math and Scientific Library (Cray SR-2081):
SPBFA and SPBSL from LINPACK and SPBTRF and SPBTRS from LAPACK.

Actual CPU time for solving equations for three problems using four vector equation solvers
is given in Table 2. Two runs were made for each problem using the LAPACK routines, using
four processors and one processor. Various parameters for the problem C24 are given in Table
3. Finite element grids of the problems SM16 and SM32 are identical to those of S16 and
S32, Table 3. However, most of the elements in the former are membrane type with only three
degrees of freedom per node. All the problems in Table 3 have the element that includes bending
with five degrees of freedom per node. SPBFA and SPBTRF perform the Cholesky factorization
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of a symmetric positive definite band matrix. SPBSL and SPBTRS do the forward and backward
substitution. SPBFA and SPBSL routines were developed by Dongarra er al. (1979), and the
routines were ported to the Cray and optimized. The LAPACK (Linear Algebra Package) which
has the SPBTRF and SPBTRS routines was developed by various institutions such as University
of Tennessee, Oak Ridge National Lab., Argonne National Lab., Courant Institute, NAG Ltd.,
and Rice University. The LAPACK codes have been carefully restructured for supercomputers
to reuse as much data as possible in order to reduce the cost of data movement.

Based on Table 2, we can rank the four vector equation solvers from the best to the worst
in the following order: LAPACK (one processor), LAPACK (four processors), kji, ijk, and LIN-
PACK. We used the LAPACK routines with one processor. LAPACK routines with four processors
take less wallclock time than that with one processor. Therefore, it may be desirable to use
all the four processors when the wallclock time is of greater concern that the CPU time. In
case of the three problems used for Table 2, SM16, SM32 and C24, the ratio of the wallclock
time between the runs using four processors and one processor is 2.0, 1.6 and 1.2, respectively
(not shown in Table 2). Table 2 also gives the Cray Y-MP CPU time consumed by the scalar
equation solver in the Akbar-Gupta program. The speedup factor from scalar to the best vector
solver (LAPACK, one processor) ranges from 169 to 27.5.

5. Stresses, strains and nodal forces

The best way to vectorize this module would be to use a vector length equal to the number
of elements, ne. However, parts of the calculations are different for the uncracked and the cracked
elements. For those parts, the only way to vectorize would be to perform one set of vector
calculations assuming that all the elements are uncracked and re-perform another set of scalar
calculations for the cracked elements. Rather than repeating the calculations, we used scalar
calculations in the parts of the routine where the straight vectorization is not possible. In summary,
we used a vector length of ne for the parts of the routine requiring the same type of calculations
for the uncracked and the cracked elements and performed scalar calculations otherwise.

For the cooling tower problem, C24, the Akbar-Gupta scalar program needs an average of

Table 2. Comparison of the CPU time (seconds) for the equation solver on a Cllay Y-MP

Model Scalar Vector equation solvers
() ) 3) 4) LAPACK
Akbar-Gupta ifk kji LINPACK (SPBTRF/SPBTRS)
(SPBFA/ 6 4 © 1
SPBSL) processors processor
SM16 542 17.1 12.0 232 6.4 32
(3.2)* 4.5) (2.3) (8.5) (16.9)
SM32 1141.0 2372 170.0 307.8 79.3 56.9
4.8) (6.7) 3.7 (144) (20.1)
C24 1940.5 3369 237.2 446.0 1259 70.6
(5.8) (8.2) 4.4) (15.4) (27.5)

*Speedup (scalar/vector)
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Table 3. Parameters of the models

Model Saddle shell Cooling tower

S16 S32 C12 C24 C36
Number of elements 89 305 144 432 1,296
Number of nodes 133 389 169 475 1.369
Number of degrees of freedom 448 1.536 743 2,201 6.551
Semi-bandwidth 87 167 70 130 190

2571 ms of CPU time for each iteration to compute stresses, strains, and nodal forces, and
the vector program spends only 68 ms representing a speedup by a factor of 37.8. As we did
in evaluating the scalar-vector speedup for the calculation of the stiffness matrix, the timing
reported for the scalar program here is equal to the actual CPU time multiplied by a factor
of 10 to compare it with the time from the 10-layer vector program.

6. Performance evaluation

To measure the efficiency of the vector program, two problems — a hyperbolic paraboloid
(HP) saddle shell and a hyperbolic cooling tower — are used. The HP saddle shell is discretized
into two models and the hyperbolic cooling tower into three models. Various parameters of
the five models are summarized in Table 3.

In a nonlinear program, various data arrays are saved at the end of a converged step. The
saving serves two functions. When the solution does not converge during any step, an attempt
for reanalysis is often made using a smaller load or displacement increment than was used
in the unconverged step. This is accomplished by restarting the solution at the end of the previous
converged step rather than re-analyzing the complete problem from the beginning, which would
be wasteful and costly. The data saved at the end of the converged step, thus, serves the purpose
of restarting the solutions at the end of any converged step. Equally important is the use of
this data to selectively retrieve information for printing and graphic display purposes. In a large
problem, it is tedious and unnecessary to obtain a hard copy output of the complete solution.

The volume of data that is saved at the end of any step is quite large and may add significant
output overhead. Considerable reduction in this overhead was accomplished by using unformatted
output for the related operations. It resulted in I/O CPU time that was less than one percent
of the total for the solution of any problem. For evaluating the four modules in the program,
therefore, we have neglected the CPU time used for 1/O operations.

It may be argued that vectorizing the equation solver only in a finite element computer program
is sufficient for all practical purposes (Min and Gupta 1991). We are, therefore, evaluating three
programs; Program I-all scalar, Program 2-vectorized equation solver, rest scalar (partially vector),
and Program 3-all vector. The average CPU times per iteration for solving the C24 problem
using the three types of program are given in Table 4. As discussed earlier, the reported timing
for the element stiffness and stresses, strains and residual force calculations in the scalar Akbar-
Gupta program has been adjusted. By vectorizing the equation solver only, we achieve a speedup
factor of 19 (programs 1/2). The additional speedup factor due to vectorization of the rest of
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Table 4. Speedup for the cooling tower problem (C24) with partially
and completely vector programs

CPU time per iteration (ms) Speedup factor
Program 1 Program 2 Program 3 Program  Program
-scalar -Partially -vector 1/2 2/3

vector
8833 4545 286 19 159

Table 5. Performance of various modules in CPU time (ms) for each iteration on a Cray Y-MP.

Model S16 S32 C12 C24 C36
CPU Percent CPU Percent CPU Percent CPU Percent CPU Percent
time of time of time of time of time of

Module (ms) total (ms) total (ms) total (ms) total (ms) total
Element 13 24 44 16 17 25 49 17 139 11
Assembly 2 4 6 2 2 3 6 2 18 ]
Solver 17 31 175 64 22 32 163 57 934 73
Stress 22 4] 48 18 27 40 68 24 194 15
Total 54 100 273 100 68 100 286 100 1285 100
MFLOP/s* 135 202 141 189 232
Performance 41 61 42 57 70
Index(%)**

*Million of floating-point operations per second of CPU time, is obtained
by hpm (Hardware Performance Monitor).
**Percent of maximum possible peak rate. 333 HFLOP/S.

the program (2/3) is 159, which is much greater than that obtained by vectorizing the equation
solver alone. This result is contrary to our earlier observation in conjunction with the vectorization
of a two-dimensional finite element program (Min and Gupta 1991). The change may be attributed
to a relative increase in the computational effort for evaluating stiffness matrices, stresses, strains
and residual forces in the layered shell element as compared to that for a plane element. Even
in the finite element program for plane elements, we had found that vectorization of the non-
equation solver modules was desirable. For the present program with layered shell elements,
it is clearly mandatory to vectorize all the four modules.

Table S gives the CPU time for various modules for the five inelastic problems. The element
stiffness matrix computation takes up around Il to 25 percent of the total CPU time from
the largest to the smallest problem. Only around 1 to 4 percent of the total is now consumed
by the assembly of the global stiffness matrix calculation. The equation solver uses in the range
of 31 to 73 percent of the total CPU time. About 15 to 41 percent of the total is spent by
the stresses, strains and nodal force computation. For smaller problems. such as S16 and Cl2,
the stress module emerges as computationally most intensive, and the equation solver is the
next most intensive module. For larger problems. S32. C24 and C36, the equation solver become

the first and the stress module second in the usage of CPU time.
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The speed of operations of a computer is measured in MFLOP/s (million of floating-point
operations per second of CPU time) units. For a Cray Y-MP, the theoretical maximum possible
speed per procesor is 333 MFLOP/s with a 6 nanosecond clock period, This rate is approached
during a chained vector opgeration with no re-loads, using the add and multiply units continuously.
We define a performance index here, which is a percent of the theoretical maximum speed,
333 MFLOP/s, that a computer program run actually accomplishes. The higher the performance
index the higher is the vector efficiency of the program. The present vectorization scheme achieves
in the range of 135 to 232 MFLOP/s for the five inelastic problems analyzed, which is equivalent
to performance indices of 41 to 70 percent. For reference, speeds of 20 to 50 MFLOP/s (performa-
nce index, 6 to 15 percent) on the Cray Y-MP are quite common for commercially available
finite element software packages.

7. Conclusion

Vector algorithms and the relative importance of the four basic modules of a finite element
computer program for inelastic analysis of RC shells are presented. The performance of the
present vector program is measured against the scalar Akbar-Gupta program (1985) on a Cray
Y-MP supercomputer. For the C24, a cooling tower problem, the scalar-vector speedup factor
is 34 in the calculation of element stiffness matrices, 25.3 for the assembly of global stiffness
matrix, 27.5 for the solution of equations, and 37.8 for stresses, strains and nodal forces calculation.
The overall speedup factor obtained is 309.

Even though the equation solver is computationally the most intensive part of a scalar finite
element computer program, it was found with the layered shell elements that other modules
in the program play a much more important role as far as impact on the scalar-vector speedup
is concerned. For the C24 problem, a speedup factor of only 1.9 could be achieved by vectorizing
the equation solver alone. The program speeded up further by a factor of 159 when the rest
of the program was also vectorized. The present vectorization scheme performs in the range
of 135 to 232 MFLOP/s for the five inelastic problems analyzed. This is equivalent to performance
indices of 41 to 70 percent when compared with the theoretical maximum rate of 333 MFLOP/s.
The commercial finite element programs on the Cray Y-MP achieve performance indices in
the range of 6 to 15 percentage only.

The availability of the Cray Y-MP machine and our ability to efficiently vectorize the finite
element computer program for inelastic analysis of reinforced concrete shells with layered elements
made it possible for us to perform several mesh convergence studies. To our knowledge, such
studies have not been performed and reported in the scientific literature before. Results of the
convergence studies were extremely valuable and have been published elsewhere (Min and Gupta
1993, 1994c). The vector computer program can be used, if necessary, for studying the ultimate
behavior of reinforced concrete shells after the completion of design and before construction.
It can also be used to optimize the shape of a shell.
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