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Structural control of a steel jacket platform

Mohamed Abdel-Rohman t
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Abstract. This paper deals with the application of certain active and passive control mechanisms to
control the dynamic response of a steel jacket platform due to wave-induced forces. The forces are
estimated using the nonlinear Morison equation which provides nonlinear self-excited hydrodynamic
forces. The influence of these forces on the response of a structure without and with vibration control
mechanisms is demonstrated using a steel jacket platform as a simple example.
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1. Introduction

Offshore structures have evolved from very stiff and relatively shallow-water structures in 1940s
to very flexible deep-water structures in recent years (Patel 1989). Nowadays, offshore structures
are built in a water depth of more than 1000 feet. These modern structures are large, flexible,
and equipped with a helicopter pad, drilling derrick, cranes, offices, and accommodations. They
are typically subjected to severe loads due to winds, waves, and also currents. Further, their
flexibility generates self-excited nonlinear hydrodynamic forces in addition to the nonlinear re-
sponse due to large deformations (Chakrabarti 1987). Therefore, the risk of failure in these structures
is not only higher than other structures, but also the possibility of local or major damage and
considerable human discomfort due to vibrations are more likely. The safety of such structures
against failure is of principal interest to many researchers (e.g. Karunakaran er al. 1993, Rajagopa-
lan 1993).

The safety of structures can usually be ensured by increasing their stiffness so as to shift
the natural frequencies away from the resonant range of frequencies. However, for large offshore
structures, this approach is usually very costly, requiring excessive construction materials. An
alternative solution is to implement passive and/or active control mechanisms to regulate the
structural motion as desired. This approach is now of current concern to many researchers
and there are several attempts exploring its application to offshore structures (Gosh and Meirovi-
tch 1985, Reinhorn, Manolis and Wen 1987, Kawano 1993, etc.).

This paper presents certain control mechanisms which can be implemented to control steel
jacket platforms. The control technique is demonstrated using a 300 ft steel jacket platform
as an example. The wave-induced forces are estimated using the Morison equation which contains
nonlinear drag and self-excited terms. The dynamic response of the structure in the presence
of the control mechanism is compared with the uncontrolled response. Three control mechanisms
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are considered, namely a passive tuned mass damper (TMD), an active TMD, and an active
tendon mechanism.

2. Wave forces

The horizontal wave force acting at joint P is modeled in the well-known Morison Egs. (1)-
(2). For uni-directional plane waves in the presence of wind-induced water currents, the equation
is given as

F,= %pCDAp U \U' o+ pCiB,a,— p(C,—1)B, U, (1)
where U',,=the relative water velocity=U,,—U,; U,.=the horizontal water velocity; U,=the hori-
zontal joint velocity; 4,=the projected area at joint P; B, the lumped volume at joint P; Cp=the
drag coefficient; C,=the inertia coefficient; a, =the horizontal water acceleration at joint P,
p=water density; and U,=the acceleration of the joint.

There are various sources of inaccuracies in Eq. (1) arising, e.g, from the use of constants
for Cp and C; which are in fact frequency and the depth dependent. The equation considers
the nonlinear self-excited and drag forces. However, designers sometimes use certain simplified
linearized forms of the Morison equation, which provide linear time-invariant self-excited forces
(Kawano 1993, Haritos and Karadeniz 1993, Gudmestad and Connor 1983). One such equation
is given by

1 ~ ~ . e
F,= "2“[) CoA,Up Ut pCiB,a,— pCpA, U, U, — p(Cr—1)B, U, 2
where U = 1S a constant dependent on U,,.

The horizontal water velocity and acceleration depend on the wave field characteristics. For
simplicity of presentation, consider a monochromatic wave as shown in Fig. 1. From the linear
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Fig. 1 Steel jacket platform dimensions
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Table 1
Member Qutside Diam. Inside Diam. A 1
(f (f) (ft") (ft%
Vertical 4 375 1.5217 285
Horizontal 2 1.92 0.2463 0.11832
Diagonal 2 1.92 0.2463 0.11832
Table 2
Member Area Volume Mass
(ft) (ft*) (Slug)
1 —_— —_ —_
2 — — —_
3 600 1884.956 6720.657
4 600 1884.956 6720.657
5 400 1256.637 5924.53
6 400 1256.637 5924.53
7 - — 141842
8 — — 141842
9 - - 554.175
10 300 471.239 2005.95
11 300 471.239 2005.95
12 200 314.159 1598.54
13 200 314.159 1598.54

wave theory (Patel 1989, and Chakrabarti 1987), the corresponding horizontal water particle ve-
locity and acceleration at joint P are defined as

Up=E, costk x,— 20+ Up (5 ) 3)
an=—E, Q2sin(k x,— £2t) @

_ H coshky, :
E="5 Snhkh )

where y,=the elevation of joint P from the sea bed; h=the water depth; £2=the wave frequency;
H=wave height; k=the wave number=(27/4); A=wave length; and U,,=the current velocity
at the water surface, usually taken as 1% of the wind speed at a height of 33 ft above the
water surface. It is clear from Eqgs. (1)-(5) that the wave forces depend on the wave parameters
02, A, H, the local wind speed, the drag and inertia coefficients of the members, the water depth,
and location (x,, y,) of the joint with respect to a fixed reference.

3. Example

The simple steel jacket platform shown in Fig. 1 is used as an illustrative example for which
H=40 ft, h=250 ft, A=600 ft and U,,=04 ft/sec. The structure consists of cylindrical steel tube
members with the dimensions shown in Table 1. The density of steel is taken as 15 slug/At’,
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Fig. 2 Lateral response considering linearized Morison equation

the water density as 1.99 slugs/ft’, and the steel modulus of elasticity as E=30X 10° Ib/in’. The
weight of the concrete deck carried by the steel members is 1500 kips. The projected areas,
volumes, and masses of each member in the structure are given in Table 2. From these data
the wave force parameters at each joint can be calculated.

The natural frequencies and mode shapes for the undamped free vibration system can be
determined using any structural dynamic software. Although one may consider as many modes
as possible, for simplicity of presentation, only the first two modes shall be considered here.
The natural frequencies of the first two modes are @;= 1.818 rps and @,=10.87 rps. The equations
of motion of the structure can be expressed in a matrix form as

A+CA+AA=¢'F (6)

where C=diagonal damping matrix, assumed to provide 0.5% damping ratio in each mode;
¢=normalized model matrix; A=diagonal stiffness matrix, containing the squared natural fre-
quencies of the modes; 4=generalized coordinate vector; and F=wave force vector.

The horizontal response of the deck calculated using the linearized equation, Eq. (2), at a
wave frequency £2=0.577 tps is shown in Fig. 2. The response at the same wave frequency
using the Morison equation, Eq. (1), is shown in Fig. 3. It is clear that there is a difference
in the response depending on the wave force model. The nonlinear self-excited hydrodynamic
forces cause a larger amplitude and more oscillation cycles than the linearized forces do. For
this reason, the rest of the paper will use the nonlinear form of the Morison equation Eq.
(1). Figs. 4 and 5 show, respectively, the influence of increasing damping and stiffness on the
nonlinear response of the structure. It is apparent that the amplitudes of vibration and the
cycles of oscillations have been decreased. On this basis, the vibration control mechanism is
designed to introduce more damping and stiffness to the structure.
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3 Lateral response considering nonlinear Morison equation
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4. Controlled response using passive TMD

129

A tuned mass damper (TMD) is a device consisting of a small mass, mr, a spring with constant
K. and a viscous damper with the coefficient Cr. By connecting this mass to joint 8 of the

structure as shown in Fig. 6, the equations of motion of the coupled system become:

M Q+§ Q+I_< Q:E—ETMD
mx+Cr(x— U+ Kr(x—Ug) =0

()
&)

where Fpyp represents the interacting force vector due to the passive TMD. It is a zero vector
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Fig. 5 Effect of increasing the stiffness 100% on the nonlinear response
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Fig. 6 Passive tuned mass damper mechanism

except at node 8=Cr(x—Ug)+Kr(x—Uy). Us is the displacement of joint 8; M, C, and K are
the structural mass, damping, and stiffness matrices; and x is the TMD response.

The tuned mass damper parameters are selected such that the damper natural frequency is
close to 098 times the first mode natural frequency of the structure, and the damping ratio
& is 15%. In order to determine the optimal value of the ratio between TMD mass and the
frist modal mass, denoted by p, the locus of the eigenvalues for various values of p is plotted
as shown in Fig. 7. From this locus, the damping ratio introduced into the structure can be
determined, as shown in Fig. 8. It is obvious that taking a mass ratio p=20.02 provides the
structure with the highest damping. The nonlinear response using passive TMD with the mass
ratio p=0.02 is shown in Fig 9. It is apparent that the structural response has decreased slightly
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Fig. 8 Effect of mass ratio on the damping ratio

as compared with Fig. 4. However, if one assumes a wave frequency of £2=1.8 rps, which is
near the first mode natural frequency, it turns out that the controlled response, shown in Fig.
10, is much smaller than the uncontrolled response shown in Fig. 11. The reason is that at
low wave frequency, and in the absence of any stiffness increase, the increase in damping does
not affect the structural response significantly.
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Fig. 9 Passive TMD controlled nonlinear response at §2=0.577
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Fig. 10 Passive TMD controlled nonlinear response at £2=1.80

5. Controlled response using active TMD

An active tuned mass damper is a TMD connected with a hydraulic servomechanism. The
motion of the damper is influenced by the motion of the structure (passive motion), and the
operation of the hydraulic servo. The servo should be designed to regulate the motion of the
damper according to a certain control law. The design of a control law for nonlinear systems
is difficult. The usual practice is to design a control law for a linear or a linearized model
and to test the effect of this design on the response of the nonlinear system. Several methods
exist for the design of control laws (Leipholz and Abdel-Rohman 1986). The pole assignment
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Fig. 12 Passive TMD controlled nonlinear response at £2=1.68

method (Abdel-Rohman and Leipholz 1978) is considered as a simple method in the presence
of one active control force, as in the present case. The equations of motion considering the
first two modes are

A, +2¢4 wlAl+w12Al:¢1T[E—_E7MD_EuJ 9)
A +2E @Ayt 0 A= ¢ [F—Fryp—F ] (10)
. . ; 3 FH

X428 wr(x— U+ o (x— Uy) = o (1)

in which @, =1.818 rps is the first natural frequency; @,=10.87 rps is the second mode natural
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Fig. 13 Active TMD controlled nonlinear response at £2=1.68 (Design 1)
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Fig. 14 Active TMD controlled nonlinear response at £2=1.68 (Design 2)

frequency; w=TMD natural frequency, Us= ¢34, + 545, ¢s=i" mode shape at joint 8, and
F,=the active control force vector which contains a force applied at joint 8 expressed as

F,=K[A, A, A, 4; x x]" (12)

and K is a gain matrix that needs to be determined.

To determine K , one must specify the desired eigenvalues for the free vibration of the controlled
system. Two different designs have been considered here. The first design assumes the eigenvalues
of the controlled structure to be at the poles (—0.438% 1.6956), (—0.05+ 10.87), and (— 0.5+ 1.9356).
This design introduces a 25% damping ratio in the first vibrational mode. The second design
corresponds to assuming eigenvalues to introduce a 40% damping in the first mode. The compari-
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Fig. 16 Comparison of deflection indices of the controlled responses

sons between the controlled nonlinear response using the passive and the two active cases for
a wave frequency of £2=1.68 rps are shown respectively in Figs. 12-14. It is seen that as the

wave frequency 2 approaches the first mode natural frequency, the increase in damping causes
a decrease in the amplitude of vibration.

6. Controlled response using active tendon

A mooring line can be used as an active tendon mechanism as shown in Fig. 15. The equations
of motion of the controlled structure reads as

MU+CU+KU=F—F, (13)

in which F, is the active control force vector which contains a force at the location of the
tendon (in this case joint 4). In the present case, the active control force is designed to be
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Fig. 17 Comparison of velocity indices of the controlled responses.
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Fig. 18 Comparison of required active control force indices

proportional to lateral displacement and velocity of joint 4, in the form of
F.=ayustayus (14)

in which @, and a, are gain values.

The gains values @, and a, are determined after specifying a damping ratio and stiffness
for the first vibration mode. In order to introduce a damping ratio of 40% and to increase
the natural frequency of the first vibrational mode, @, to 2.7 rps, the values of o, and &, are
determined as a,=254780 and a,=486574. The comparisons between using active TMD and
active tendons in terms of displacement. velocity, and control force indices are, respectively.
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shown in Figs. 16-18. The deflection, velocity, and control force indices are respectively, defined
as follows:

T

ID:J. u42 dt (15)
0
T

1= f il di (16)
"

L= f F2 di (17)
0

From Figs. 16 and 17, it is seen that the displacement and velocity responses are reduced signifi-
cantly because of the increased amount of the dissipated energy as a direct result of using
the active control mechanism.

7. Conclusions

The evaluation of hydrodynamic wave forces in offshore structures involves inaccuracies due
to modeling assumptions and the nature of various parameters. In order to improve the safety
and serviceability of such structures one can implement various control mechanisms to decrease
the lateral vibrations. The present paper has demonstrated the implementation of a passive tuned
mass damper, an active tuned mass damper, and an active tendon as possible control mechanisms
in offshore structures. It has been shown that the controlled response of the structure can signifi-
cantly be reduced by using an active control and a suitable control mechanism.

It has also been shown that at low wave frequency excitation, the decrease in the response
is achieved-only by increasing the stiffness via active control force. An active tuned mass damper
does not provide sufficient structural stiffness and thus can only be used to control the response
at wave frequencies near to the primary natural frequency of the structure.
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