Structural Engineering and Mechanics, Vol 4, No. 1 (1996) 91-107 91
DOI: http://dx.doi.org/10.12989/sem.1996.4.1.091

Large displacement Lagrangian mechanics
Part Il - Equilibrium principles

W.R.C. Underhillt and M.A. Dokainish$

Department of Mechanical Engineering, McMaster University,
Hamifton, Ontario L8S4L7, Canada

G.AE. Oravastt

Department of Ciil Engineering and Engineering Mechanics,
McMaster University, Hamilton, Ontario L8S4L7 Canada

Abstract. In Lagrangian mechanics, attention is directed at the body as it moves through space. Each
body point is identified by the position it would have if the body were to occupy an arbitrary reference
configuration. A result of this approach is that the analyst often describes the body by using quantities
that may involve more than one configuration. This is particularly common in incremental calculations
and in changes of the choice of reference configuration. With the rise of very powerful computing machi-
nery, the popularity of numerical calculation has become great. Unfortunately, the mechanical theory
has been evolved in a piecemeal fashion so that it has become a conglomeration of differently developed
patches. The current work presents a unified development of the equilibrium principle. The starting
point is the conservation of momentum. All details of configuration are shown. Finally, full dynamic
and static forms are presented for total and incremental work.
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1. Introduction

In Lagrangian (referential) mechanics a conceptual step is inserted which gives to many analyti-
cal and computational efforts much generality and convenience. This is that there is no attempt
to deal directly with the body-points. Instead, we gain access to these body-points and whatever
features of them that might interest us by consulting the configuration (placement) chosen to
be reference. This is any region of space that the body could occupy. Each body-point is named
by the position it would have, if the body were in the reference placement. A helpful but informal
analogy for the reference placement is a fictitious blank copy of the body where we may make
or consult notes about the body. This helps make the naming convention clear. When we wish
to know something about body-point 4, we consult the notes as found on the reference copy
at location ®x(A4). Now we have a way of describing a body that can be adapted in any way
that expedites our current goals.

In the so-called total Lagrangian formulation, the initial configuration is used as the reference

t Assistant Professor
¥ Professor
1t Professor Emeritus



92 "W.RC. Underhill MA. Dokainish and G.AE. Oravas

placement throughout. In the updated Lagrangian formulations, the choice of reference configura-
tion is occasionally changed. In some of these it is “updated” to be the configuration currently
occupied by the body after each increment of motion. It is not required by the theory that
updating should be done in this way. Nonetheless, it has so been universally found in the
literature of updated Lagrangian techniques. This is unfortunate since this restriction of updating
practice to only one scheme has served to obscure a broad understanding of the roles played
by various configurations in calculation. For example, it has been discovered that the linear
part of the increment of strain has been mistakenly evaluated (details of correct forms are available
in Underhill, er al. 1995).

In principle, any configuration could be chosen. Which placement is treated as the placement
of reference and when this choice is changed is for the analyst to elect. For this freedom the
analyst must pay a price in care. It is necessary to keep track of how various placements are
used as a computation proceeds. The present exposition concerns the precise forms that arise
when using equilibrium principles to study the motions of deformable bodies during large displa-
cements. The notation used has these features:

Left superscripts

Left superscripts indicate in which configuration a quantity is defined. For simple properties,
such as temperature, this is the configuration in which the property could be measured. For
some quantities more than one configuration is needed.

Displacements have the “to” configuration as the first left superscript and the “from” configura-
tion as the second left superscript. Other quantities will have their notation explained as need
arises.

Left subscript
The left subscript indicates the placement of reference.
Gradients

One extra configuration is required to describe a gradient. That is the configuration, with
respect to position in which, the gradient is taken. This must also be the gradient of reference
of the quantity of which the gradient is desired. The notation which marks a gradient is in
the left superscripts. To the right of whatever other superscripts describe a quantity there is
a comma and then the name of the gradient configuration. For example, the gradient of a
quantity, % measured in Cp taken with respect to position in Cy and referred to Ci would

be PQ ntl

R g This may also be shown as

90

P;Q ntl q
R =

q 29%x
Configurational derivative

Configurational derivatives are a special case of the calculus of variations. In particular, they
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Fig. 1 Positions of a body-point X invarious configurations.

allow comparison of the value of a quantity that would pertain to a body-point if it were to
occupy a nearby configuration. This is distinct from a gradient which compares the values pertain-
ing to two distinct body-points in the same configuration. The notation for a configurational
derivative uses a semi colon to separate the cofiguration about which variations are considered
from the other left superscripts used to describe a quantity. Thus the configurational derivative
that describes how ﬁ measured in Cp, would change as the result of variations about Cj,

all referred to Cg, would be written as ¢ "T“ Alternatively, we will also write
P
P.Q ntl __ o4q
R q 29x
where what is being varied is the choice of configuration, C,.

Some configurations are used frequently in the discussion to follow. Some of them are
(see Fig. 1)

C, Initial configuration.

C, Present configuration. A placement achieved by motion from C,. It may be translated,
rotated and deformed.

C, Next configuration. A placement later in the sequence of motion than C,. It may be
incrementally close to C;.

Cy Unstrained configuration. This could be any unstrained configuration. For bodies that
are strained ab initio, such a placement may never be occupied.

Cr Reference configuration. This is any configuration that is being used for the naming of
body-points.
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Other configurations may be used. These are named C,, Cpz and so on.

Another term that is frequently used as a primitive is “pseudo-". This is used with reference
to quantities whofe difinition involves placements that are not necessary to their measurement.
The first and second Piola-Kirchhoff pseudo-stress tensors are examples. Another is the Green-
Lagrange pseudo strain tensor, 'y E. This is often expressed as

we_ wuv=rwuv=r_ wuv=_ wu=r
RE—2[ Ut T pul+ " qu Ru]

where 'V"¥u is the gradient of the displacement to the current placement from an unstrained

placement. Since all qualities of strain are determined only by the configuration in which the
body is placed and are independent of any unstrained configurations, the use of Cy introduces
an extra configuration in the definition. Thus the Green-Lagrange strain is a pseudo-strain.

2. The linear momentum principle

The starting point for this discussion is the linear momentum principle. This we present without
further proof or testing and accept as valid.

div [ d-40 v =
A R 4 AL

where “p is the mass density,
1y is the velocity,
1o is the Cauchy (true) stress tensor and
Af is the force density.

All quantities in Eq. (1) are measured in C,, as the body passes through C,, and referred
to Cg. This principle we assume to reflect adequately a Law of Nature and to be capable of
describing the actions within a small neighbourhood of material or any set of small neigh-
bourhoods (body). With this much accepted we may proceed to use this relationship to study
the motions and deformations of bodies.

Unfortunately, the linear momentum principle, as stated in Eq. (1), is not always suitable
for calculation. A scalar equation would be more convenient. Such is part of the motivation
behind the popular energy methods. These start by forming some kind of scalar from Eq. (1)
and work with that scalar. A rather beautiful way to do this is the rate of work principle. This
is found by taking the dot product of Eq. (1) with the velocity, 4v. One of the advantages of
this product is that it keeps all quantities measured in a single configuration. Another is that
we will be able to find principles to describe both dynamic and static displacements from it.

2.1. The rate of work principle

Strart simplifying Eq. (1) by assuming that the configuration of measurement is the same
as the configuration of reference, so that only one configuration is involved. Then multiply
both sides by the velocity, §v. This gives

div 040 A= 4T 4= =
—ip=t G ST T 1V =0 @
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The terms of Eq. (2) can be manipulated separately to yield familiar forms.

2.2. Kinetic power term

A common manipulation improves the symmetry of this term. Use the rate of (“v - “V) in
the first term of Eq. (2) to get

4 div

L arral ﬁVZ—‘z“pr(fiV' €)

o
=|
S

2.3. Internal power term

For this term another re-arrangement is convenient. Here consider the divergence of the product
(40°1v). We examine a combination of a derivative and a product. An underscore indicates
that the derivative is not acting.

= 45 ==
= (15 13)=( G2 v+ 1 47) @
A A A
The last term can be rearranged to
8 = — 59 — =
R L I FLA ®
So, - v .=
TP Iy ©

The Angular Momentum Principle gives us that “o is symmetric, and so the transpose mark
can be dropped. Also, only the symmetric part of the velocity gradient participates in Eq. (6).
Because it is in a double dot product with a symmetric dyadic, any antisymmetric part will
contribute zero after the double dot product. We now restate Eq. (4) and recognize the first
term on the right hand side as the internal power term of Eq. (2).

J = 4\ _(0-40\ 4=, O 4V, 4=
So the internal power is
9:40\ 4=__0d = us\_ 04V 4=
i R G ®
24. External power term
A

This does not require any modification.

3. Transformation of rate of work principle

Now we can express the Rate of Work Principle in familiar terms. However there is a severe
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restriction in the utility of this because only one configuration is involved. C, is used for measure-
ment. for gradients and for reference. The ability to use a combination of different
placements for particular purposes is one of the strengths of the referential formulations of
mechanics. So. now we examine how this principle may be transtormed so that a placement
other than the measurement configuration can be used.

First the principle is put into the integral torm.

J' l:_i’ pi<lv . ‘V)
10 2 : dt b !
S fo ] tav=0 ©
Separate the second term and apply the divergence theorem. Refer the principle to Cj.
Ly, d (.- -\ 2div I
‘LQI:* 2—; 7(';" . ',;v)* d-,;f chotd / :Iﬂd V+Jﬁm‘,'gda “(po =0 (10)
Change the differentials, 3dV and jda, to those measured in Cy. This introduces the Jacobian.

For volumes the Jacobian is the third scalar invariant of the deformation gradient, "F,
where

- X Sy
"”Fz—g’j,% (1)
and the third scalar invariant is
.IHJ:_}l_':lwa§ ‘IB‘I_—?:“”"? (12)

This is well known as the ratio the mass densities.

B
o
.IBJ: ‘1p (13)
The Jacobian for surface elements is the dyadic
.vllij_ 7_1 f‘ f':_{l‘_ (,IB f-.;((:llf? . .1[1‘1:7) :1H1=7< T (14)

This accomplishes the changes of scale and orientation of surface elements. In integral form
we have

Ly o d (4= a=\_ iV = .7 — BT 4=
Ln[—ﬁpw(;v-;x’)- d},:;: ot/ ]”’J,,inLJ'Hmﬁda-"ﬁJ-(‘,',o-‘,iv):O (15)

Distribute '3J in the volume integral; apply the divergence theorem to the surface integral and
recombine.

d (- - J , aiv
fﬁn[ ,) B‘]B d[ (1;\/ M I:vl’)_*“&ﬁ—}_ ¢ IB.] ({O’ B‘> lB.] [;? + IBJ ,;f BV][;dV 0

(16)
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Invoke the arbitrary body argument to change from integral back to differential form. Finally.
we have the Rate of Work Principle transformed so that gradients are taken in Cy and referred
to Cyz but still using values measured in C,.

0= 8o (47 55+ S 4T (35472 e 47 0D
B

It 1s appropriate to perform some manipulations on the terms of Eq. (17) separately. These

will put the individual terms into more useful forms.

3.1. Kinetic power term

st

Here we have the flavour of the referential description of motion. The first thing that we
need to recognize is that we are concerned with the rate of kinetic energy of a small neighbourhood
of material, not a small volume of space. Since we consider that mass is an adequate scalar
measure of matter we represent the kinetic energy about a body-point as

‘;dK*%- VAT odm (18)
Immediately the reader will notice that the quantity dm has no left superscript. This is because
it is invariant with respect to configuration of measurement. The quantity of material within
a small neighbourhood does not change simply because it moves. The space occupied by this
material may change in size, shape and orientation, but the amount of matter does not change.
Nonetheless we can refer this body-point to any configuration and keep our notes there. So.
the use of a left subscript is entirely proper. This will also come to the fore in that rates of
dm must vanish even though dm is expressed as a product of density and volume and possibly
a Jacobian. Derivatives of these will give two or three terms which must exactly offset each
other adding identically to zero.

Now we express the differential mass as a product of density and differential volume. Then
transform the differential volume to C,z. The rate of kinetic energy of a body-point in general

is
didK div q—
SRS Z{”'ﬁJ 2P ﬁdV(—_Rv ) <Ay

dr dt
AB B B
P LB gy g s By L RV 4 L (19)

Usually in practice we would choose Cp the same as Ci The last term in Eq. (19) includes
the rate of %dV. While the volume occupied by dm may change as the body passes through
the placement, the volume when actually in that placement is a constant. So the last term in
Eq. (19) vanishes. A similar argument applies to the second and third terms. Between them
they describe the rate of change of 0. This follows from the nature of the volume Jacobian
as the ratio of densities. So the sum of these terms comes identically to zero. In fact, these
two are exactly equal in magnitude and opposite in sign. This leaves only the leading term.
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That is
A A
%‘;"—K:Agj ipBav ( iﬁf”—) Ay (20)
The discussion above defines a (pseudo-) kinetic power density, “5 k, as
lunyapd (a5 a5\ d'px
5 &) &P dr (BV BV |— dt 21

In an Eulerian calculation the size of a neighbourhood is concerned only with the description
of space. As the material moves and density changes the amount of material involved changes.
So, for an Eulerian calculation of the rate of kinetic energy density, terms would arise that
account for the changing density of material.

3.2. Stress divergence term
J = = 4=
% <A (Zo' j,fv)

Originally we had one term for internal power and one for external power. After some
manipulation the internal power term was divided into two terms. The stress divergence term
is one of these. The manipulations to be applied to this term are particularly simple at this
stage. Later, the divergence theorem will be used to effectively change this to an expression
for the power of tractions distributed over the surface of the body. For now all that is needed
is to recognize the first Piola-Kirchhoff pseudo-stress tensor in the middle two factors. So, we
can write

P = a4l .
== '(”‘f;J-zo-”;v)=7;§—-("§T-§v) @)

where “5 T is the first Piola-Kirchhoff pseudo-stress tensor of C, transformed to Cs and referred
to Cr and

RT="T "o 23)
3.3. Velocity gradient term
- MV, -
2T J——d’,} R a0

In this part we replace the velocity gradient itself with a product of the deformation gradient
and the rate of pseudo-strain. To do this we take four steps:

(1) Find an expression relating the rate of the quadratic measure of deformation to the rate
of pseudo-strain.

(2) Find an expression for the rate of the quadratic measure of deformation involving the
velocity gradient,

(3) Use the first and second parts to identify and expression for the rate of pseudo-strain
and

(4) Isolate the velocity gradient in the expression for the rate of pseudo-strain and replace.
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Before beginning this process we derive a useful relation.

94dx _, - 24V
o ® 04x

Proof

Consider two body points X and Y, Let Y be differentially close to X, so
X(Y)=*x(X)+'dx(X Y)

99

Simplify the notation so that “x is “x(X) and “dx is *dx(X, Y). Also let the velocity be

v SO

P
—_ 0"

V= ot

Then we may write
VX)=3v("X)
V(Y)=4v(“x+1dx)
- — _ 04y
W(Y)=4v+4dx }*é)_c—
So the difference in velocity between the two body points is
— — - - 04V -
WY) ="V X)=4v+4dx « F4=——1v
o4x

A;(Y)_A‘/_(X):Ad)—c.__ﬁ_ﬂ
A d4x
Also
J%x 2%dx
ot + ot

d4dx
ot
The differnce in the velocities of X and Y using this expression is
ax A5 J2dx
ot ot
Now it is possible to subtract the two expressions for the difference in velocity
dldx 4 - div _=
o 1dx = =0

4 x

3 ( Y):% <A)?+Adf)

A5 Y)z%(”‘fwu‘df):/’ﬂ—

(V)= V(X)="+

Since there are no geometric presuppositions, so it must be that the two terms are equal.

18

That
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drdx aiv

ot

=gdx -

As required
Now we begin. The quadratic measure of deformation measured in C, and transformed and
referred to Cr can be expressed using the pseudo-strain as

AD=Rdx Rdx : 2*E (24)

where A’éf is the Lagrangian pseudo-strain for a body in configuration C, with the gradients
taken in configuration Cp and referred to C.. The form of this is

ai— g e om0 ori |

+{BU(€;+BU£:T_ (BU,?Z‘ . BUg;T)}:I (25)
and "G u is the gradient of the displacement from C, to Cs.
-_ d%u
aB.c=_ 0 _C
The rate of 4D is
) _ :
4D _ j—t[ﬁdx Rd¥ 2/“,35] @7)

The differential position vector in the reference configuration is a constant, so it has a rate
of zero. So we are left with

diD _p — & -~ RE
1 =rdx rdx 12 a1 (28)
We can also start from the definition of *D and differentiate with respect to time.
aD=14dx * 4dx—3dx - {dx (29)

The unstrained configuration is a fixed chosen one. Therefore the rate of any properties of
this configuration vanishes. So, the terms involving the rate of the differential position vector
in the unstrained configuration vanish. So we have

diD ., - didx
ur =2%dXx dt 30)
Invoke the preliminary result above to change Eq. (30) to
A4D .y s di¥
i =2%dx rdx : dix 3

An effect of the double dot product with the same vector is that any antisymmetric part of
the velocity gradient makes no contribution. So, one could write
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dRD iy ' dA_ sem
i1 24dx pdx : ( IS ) (32)

in order to indicate that only the symmetric part survives.
Now change the differential position vectors so that they are measured in Cz Eq. (32)

becomes
diD & =k =, o[ O&X\ [ 2V \™ ([ o4x '
- =pdx gdx: 2 H 5 RY (33)

As before the symmetry marked on the velocity gradient is optional since any antisymmetric
part vanishes in the double dot product.

The two expressions, Eqs. (28) and (33). for the rate of 3D can be compared and it must
be concluded that

dm;E _ a;{; . 41; svm . 0"13.? T (34)
dt Rx ix Rx

This we will put to use by isolating the velocity gradient factor as

GV (AE " (dBE\ (o4F
(m) "( 5%) ( dr ) ( RY (35)

Now we have the expression to substritute for the velocity gradient. So

o4x dr

Note that both the Cauchy (true) stress and the (pseudo-) strain are symmetric second order
tensors. Since the (pseudo-) strain is a symmetric tensor, the rate of the (pseudo-) strain must
also be symmetric. So the transpose markers on the stress and strain factors may be dropped.
We use two vector identities:

AB T
’BJ 31 v : ;5':"‘2.](“%1:7" . M . Agf,«T)z ;3 (36)

to help us re-arrange the terms in Eq. (36) to

_ dBE _ = (=t 4= = dxti
(',’;F . —w—d‘; ABE- T) :;o:<’,’§F ".4c."F '): P (37)
This can be put into the original term
15 _ _ _ _ ABT,
"y g = :;Qo:“'gj<"ﬁFT-;§a-"2F 1): d ik d’;E (38)

Finally we recognize that all the factors on the right hand side before the double dot product
taken together are the second Piola-Kirchhoff pseudo-stress tensor, ‘3 8. So

04V = me. dYE
o " f Cdr

39)

This is the form sought.
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3.4. Body force term
AT
It is practical to lump the first two factors together to form a pseudo body force, **f.

BRI S (40)

4fis a force density. It is sometimes convenient to express this as acting through some agent
property of the material. Examples of this are gravity acting through the mass density and electric
forces acting through the charge density. Then we would write

“f="B b (@)

where “ 8 is the agent property of the material and “b is the field that acts through 48.
Exactly the same kind of argument as was used in section for mass density may be applied
to the agent density here. The conclusion may be drawn that the volume Jacobian is the ratio
of the agent property in the two configurations. For such forces it may be preferred to keep
the transformed equations in terms of a pseudo agent density and an active field. The term

pseudo agent density is used since there is no general guaranteed constancy to the agent quantity
as there is with mass. The body force term would appear as

BT 4 av="T susb -4y
BT f V=" B3b 3V 42)

where the pseudo agent density, “5u, is

)

45 B="3J 3B 43)
Alternatively, it may be preferred to keep the agent density unchanged and use a pseudo active
field. This second approach is less popular.

3.5. Transformed Rate of Work Principle

All terms may now be combined to give the strong form of the Rate of Work Principle
transformed to Cs.

__dAgK J AB7 A—\ _ABG d8E
di % (”T I C

For calculation this is often kept in integral form with the divergence term expressed as a surface
integral.

0=

+5f 5y (44)

d"§x S AT_ABT BE a T4y
o=[ {-Lixiqrras. DEhays| gaa- (475 e
Bo dt dt Bon

The differential surface vector, 5da, can be expanded so that only the area is in differential
form, 2da 5n. Then the unit outward normal is taken in a dot product with the first Piola-
Kirchhoff pseudo-stress tensor to give the (pseudo-) tranction on the surface, scaled and rotated
to suit Cp, “57. This allows the Eq. (45) to be expressed as
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AB B _ = )
OZLQ{_ G T d‘dl;—E_}ZdV‘*'fBangdaAgT'gV (46)

This is one of the more popular expressions of the rate of work principle, properly transformed
and referred.

4. Incremental form

For the purpose of incremental investigations one could take the velocity based form, Eq.
(46), and multiply it by a small time, d¢. In examining the right hand side it is convenient
to distribute the factor of dr and inspect each term separately.

4.1. Increment of kinetic energy density

This increment may be expressed as

AB
d d‘;" dt="8dx @7
Put this back into the form
—
B Ak=5p 4V - (——d e )dt (48)

The last two factors combine to give the increment of velocity, 5dv. This may be put into a
form involving incremental displacement.

-
B et o 15 gdiz,,p< 447 )gda @)

Recognize the rate of velocity as the acceleration and substitute the rate of displacement for
velocity. So Eq. (47) may be rewritten as

Bdrx=3p pa - zdu (50)
4.2. Increment of strain energy density

Express the third term of Eq. (46) as

_ AB T
43 LEL y=nyaq (51)
t
Where Eq. (51) defines an incremental change in an energy density. This density is called the

strain energy density, “5 & Combine the rate with the time increment to find

Blda="2S: BJE (52)

The last factor in Eq. (52) has benefitted from this exposé by using a notation that keeps the
uses of each configuration explicit. We may divide the increment of the pseudo-strain in a
linear and a nonlinear part. The linear part is
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2g§1_:%{2|.ﬁa+*1 Gr 71_’_1(, G2l (, uT+2t % 416 IQU } (53)

and the nonlinear part is

wEv= g g (54

where C, is the configuration that the body moved from
C, is the configuration that the body moved to
Cs 1s the configuration where gradients are taken
Cr is the reference configuration
For the usual Updated Lagrangian Formulation the linear part becomes particularly simple.
The configuration of reference, the configuration where an increment of motion begins and

the configuration where gradients are taken are the same. So the linear increment of pseudo-
strain becomes

3:;1,:%{21.:E+21,}§7} (55)

In previous attempts made with less explicit notations confusion arose between the configuration
from which an increment of motion began and the configuration used for reference. The result
was that spurious terms were included in *} E” that involved the gradient of displacement from
an unstrained configuration to the current configuration.

Here the increment of pseudo strain becomes

dwlzfz le{ BB BB Ty B B "'R'ﬁﬁ’} 6

4.3. Increment of volume work density

Here we get a volume work density, "4z, and its increment is

Wdr="5fVdu (57)
4.4. Increment of surface work density

Here we define a surface work density, ‘jz. and its increment as

B de="T -\ du (58)
4.5. Combined increments

These four cnergy density increments may be combined to express the incremental form of
the Rate of Work Principle as

()_j {-"‘ﬁ (1'K+“'ﬁdw—"'gda}ﬁdVJrj da'hdt (59)
Bn

Bon

It is common practice to modity this by lumping all terms. The two work densities are often
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as a single term defining the incremental work, “5dW, as

AgdW—Ff B dw ng+f da'Sdr (60)
B Bon
Eq. (59) may be expressed as
0=— f @ gty f @ a8 v+ W 1)
Bn B

The first two terms define the increment to the kinetic energy, “; K, and the increment to the
strain energy, “ U, respectively. So use

AgdKZJ Bdx 3dV (62)
Bn
to define the increment to the kinetic energy and
AﬁdUZf Bdaldv (63)
Bn

to define the increment to the strain energy. Then the rate of work principle can be stated
as

0= —"8 JK—"& qU +& W (64)

Another popular contraction is to lump together the increments to strain energy and work under
the name potential energy. Define this potential energy, “4 IT, as

G O="RU—"3 W (65)
So, the principle becomes
0=—"8dIT-"8dK (66)

This is a famous form and the starting off point for many analyses.

5. Static analysis

For static analyses some special conditions should be noted. First the kinetic energy should
be examined. The incremental form of the kinetic energy density is

B dx=4p4a- ydu ©7)

In a static analysis the structure involved is not in motion. So the displacement is fixed and
has no time derivatives of any order. So the acceleration vector in Eq. (67) is identically zero.
So the kinetic energy density and the kinetic energy are identically zero. The rate of work principle
becomes

0="8dIT (68)

It is also important to ask at this point what the meaning of the increment of potential energy
can be if all is static. Clearly this cannot represent an incremental change as the body moves
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along some path. Instead the possible changes are choices of configuration. This then allows
us to express a principle for static displacements in meanigful terms. That is Eq. (68) should
be

d*8 [1=0 (69)

This is the condition that will allow a choice for C, among neighbouring configurations. Eq.
(69) can also written as
AB:
a* M=dix - 22— (70)
4x
This shows the choice of C, affecting the value of “§ IT The position of C,4 can also be expressed
as a displacement from some other configuration. Common choices for this other configuration
are the initial configuration and a nearby configuration. The nearby configuration is one that
has already been calculated and that would be occupied were the loading slightly different.

The position of a body point in C, is “x and we can write
Ax=Cx+u (71)
where “x is in the other configuration mentioned above. A differential change in “x would
give a new position
AxX+dix=x+*u+d*u (72)

where d“u is the differential change in displacement. In a vectorial sense d*u is from the
previously supposed position of X to a putative new position. Two things are clear: (1) d*u
is not a function of C, and (2) d“u is identical to d*x. This leads us to the realization that
Eq. (70) can be written as

Ag H _

= =0 ()

d*s M=d}u -
BU

There are three possibilities for the fulfillment of Eq. (73)

(1) d3u is zero

— . 531
A
(2) d3u is normal to 5i7
AB
3) 685'15'] iS zero
B

The first possibility can be discarded because we clearly are considering variations. The confi-
gurational derivative of “§ IT is a vector is a particular direction; whereas d4u could be in any
direction. So we cannot rely on a normality condition and must reject the second possibility.
This leaves the third possibility. So, the equilibrium condition can be stated as
(SAB H .
B2 =0 (74)

4u
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6. Conclusions

A careful examination of the static and dynamic equilibrium principles has been presented.
This is done using a notation that keeps the use of each placement explicit. Such a notation
is more cumbersome than earlier methods. It has shown its value in giving detailed and correct
forms for an arbitrary Lagrangian approach to calculating the motion of a body. Particular
attention 1s paid to the Updated Lagrangian Formulation with the result that a correction to
the usual term for the increment of strain energy has been discovered.
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