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Abstract. The present work mainly reports a significant development of a novel efficient meshfree
method for vibration and buckling analysis of orthotropic plates. The plate theory with orthotropic
materials is followed the Kirchhoff’s assumption in which the only deflection is field variable and
approximated by the moving Kriging interpolation approach, a new technique used for constructing the
shape functions. The moving Kriging technique holds the Kronecker delta property, thus it makes the
method efficiently in imposing the essential boundary conditions and no special techniques are required.
Assessment of numerical results is to accurately illustrate the applicability and the effectiveness of the
proposed method in the class of eigenvalue problems. 
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1. Introduction

Buckling and vibration solutions for plates are of great importance in many industrial applications,

especially in civil engineering, but dealing with these phenomena is in general not an easy task. A

large number of studies on vibration and buckling analyses accounted for plate structures by various

approaches can easily be found in the literatures. Among approximation numerical methods, the

finite element method (FEM) (Zienkiewicz and Taylor 1989) has been widely used for buckling and

vibration analyses of plates because of its versatility in describing the complex geometric, physical

properties and many others. The plate elements are increasingly used in civil, marine, machines and

device in aerospace, mechanical structures, etc. Thus, a thorough consideration of static buckling

and vibration modes for such plates is essential to an efficient and reliable design. Exact solutions

for the plates, on the other hand, are desirable since they are able to provide more physical feature

insight, more accurate and so on. Unfortunately, such analytical solutions are possible only for a

very few simple geometric plates and boundary conditions. 

Over the past decades, a new class of methods termed meshfree or meshless methods has been

introduced and developed (Atluri and Zhu 1998, Belytschko et al. 1994, Liu et al. 1996, Liu and
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Gu 2001), in which the entire domain of relevant problem is discretized by a set of scattered nodes

in the influence domain regardless of elements. The basic and advanced of theories and numerical

applications can be found in several monographs, e.g., see (Li and Liu 2004, Liu 2003). Krysl and

Belytschko (1996), for instance, extended the element-free Galerkin (EFG) method to static analysis

of thin plates, (Liu and Chen 2001) employed the EFG to further investigation for static and free

vibration of thin plates with complicated shapes, (Wang and Wu 2008) developed an efficient

Galerkin meshfree method for analyzing shear deformable cylindrical panels, (Sadeghirad et al.

2010) presented a meshless equilibrium on line method for linear elasticity. A brief review of

various meshfree methods dealing with such plates can also be found in Bui et al. (2009). Of

course, meshfree methods are not only applicable to analysis of plate structures, they are originally

developed for fracture mechanics (Belytschko et al. 1994, Matsubara and Yagawa 2009) and

extended to a wide range of engineering problems such as penetration into fiber reinforced concrete

(James 2010), nonlinear heat transfer (Singh et al. 2007) and many other fields.

However, most recent meshfree methods have the same problem of the lack of the Kronecker’s

delta property and hence leading to the difficulty in imposing the essential boundary conditions.

Many efforts have devoted in order to eliminate such drawback e.g., Lagrange multipliers

(Belytschko et al. 1994), penalty method (Liu 2003), coupling with the FEM (Belyschko et al.

1995), etc. Alternatively, (Gu 2003) first introduced a new approach, the moving Kriging

interpolation (MK) technique, for constructing the shape functions which possess the delta property

correctly. He successfully applied the MK-based meshfree model for solving a simple problem of

steady-state heat conduction. Later, further developments of the method have been studied for two-

dimensional solid mechanics (Tongsuk and Kanok-Nukulchai 2004a, b) and shells (Sayakoummane

and Kanok-Nukulchai 2007), static analysis of thin plates (Bui et al. 2009), dynamic of structures

and piezoelectric structures (Bui et al. 2010a, b), respectively.

Free vibration analysis of orthotropic plates has analyzed by many different authors using various

approaches such as an iterative approach (Chen 1998), superelements (Ahmadian and Sherafati

Zangened 2002), an approximate method based on Hearmon expression (Biancolini et al. 2005), the

FEM in 2D and 3D structures (Lok and Cheng 2001), a meshless collocation method with

multiquadrics basis functions (Ferreira and Batra 2005, Ferreura et al. 2009), a FE code named

IDEAS using 20-node brick elements (Batra et al. 2004), etc. On the other hand, buckling analysis

by different methods can also be found in the literature. For example, (Allman 1975) calculated

buckling loads of flat reinforced plates using the triangular finite elements, (Wang 1997) developed

a unified Timoshenko beam B-spline Rayleigh-Ritz method, (Wanji and Cheung 1998) presented a

refined triangular discrete Kirchhoff plate element and (Liew and Chen 2004) extended the

meshfree radial point interpolation method (RPIM) to buckling analysis of Mindlin plates. In a

detailed study of comparison between the RPIM and the Kriging interpolation by Dai et al. (2003),

it is interestingly found although both are derived from different mathematical approaches but the

RPIM and Kriging methods yield exactly the same interpolation functions if considered regardless

of the mathematical path. Further developments of the RPIM have been studied by Liu’s group

many different problems, they are not presented here but easily found in the literature. 

For further information in the reference review on orthotropic plate vibration and buckling

analysis, one can easily find out them in the literature nowadays. Typically, a short review of free

vibration of plates can be found in Biancolini et al. (2005), a literature review of vibration analysis

of thick plates presented by Liew et al. (1995), a wide review of the literature up to 1990 for plate

vibration is collected by Leissa (1977, 1981, 1987), for buckling of plates and shells (Bank and Yin
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1996, Jones 2006) and so on. In addition to the path of the development of meshfree methods for

laminated, plates and shells, a very interesting review has recently made by Liew et al. (2011) that

may also be interested.

The objective of the present work is to extend the MK meshfree method to stability and free

vibration analysis of orthotropic plates. Our special attention is to demonstrate its applicability and

effectiveness in the class of eigenvalue problems. The superior advantage over the conventional

methods e.g., the moving least square method (MLS), is capable of overcoming the difficulty in

enforcing the essential boundary conditions without any special techniques, and its realization is

similar to the classical FEM. Moreover, subroutines developed for the FEM that can be easily

reused and incorporated into the present method. As far as the present authors’ knowledge goes, this

task has never studied previously once this work is being reported. The structure of the paper forms

as follows. Meshfree method for vibration and buckling problem is presented in the next section, in

which the moving Kriging shape function, governing equations and the discretization equations of

vibration and buckling are derived. Numerical results are illustrated in Section 3 and we shall end

with a conclusion.

 

2. Meshfree formulation for vibration and buckling problems

2.1 Deriving shape function

Basically, the MK interpolation method is similar to the MLS approximation. In order to

approximate the distribution functions  within a sub-domain , this function can be

interpolated based on all nodal values   within the sub-domain, with n being the total

number of the nodes in Ωx. The MK interpolation ,  is frequently defined as follows

(Gu 2003, Bui et al. 2009, Tongsuk and Kanok-Nukulchai 2004). 

(1)

 

or in a shorter form 

(2)

with  is the MK shape function and defined by

(3)

Matrixes A and B are obtained through

(4)

 

(5)

where, I is an unit matrix and vector  is the polynomial with m basis functions

(6)

u xi( ) Ωx Ω⊆
xi i 1 n,[ ]∈( )

u
h

x( ) x∀ Ωx∈

u
h

x( ) p
T

x( )A r
T

x( )B+[ ]u x( )=

u
h

x( ) φI x( )uI

I

n

∑=

φI x( )

φI x( ) pj x( )AjI

j

m

∑ rk x( )BkI

k

n

∑+=

A P
T
R

1–
P( )

1–

P
T
R

1–
=

B R
1–

I PA–( )=

p x( )
p x( ) p1 x( )  p2 x( )  …  pm x( ){ }T=



582 Tinh Quoc Bui and Minh Ngoc Nguyen

 

On the one side, the matrix P has size , is collected values of the polynomial basis functions

as

(7)

 

and  in Eq. (1) is also formed as

(8)

 

where  is the correlation function between any pair of the n nodes xi and xj, it is denoted

belong to the covariance of the field value u(x):  and 

. The correlation matrix  is also given in an explicit form as

 

A concise discussion for the appropriate choice of the correlation function can be found in Gu

(2003) and many correlation functions can be employed for R but the Gaussian function is often

and widely used 

(10)

where , in which  is a correlation parameter, which has a certain effect on

solution. The quadratic basic  is employed for computations in this work.

The thin plate theory requires not only the first-order derivatives but the second-order derivatives as

given below are also handled

(11)

(12)

 

The concept of influence domain where an influence domain radius is defined to determine the

number of scattered nodes within an interpolated domain of interest. In this work, the following
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where dc being a characteristic length relative to the nodal spacing close to the point of interst while

α stands for a scaling factor. Note that other desirable properties of the MK method i.e., the

Kronecker delta functions and consistency properties, are not repeated here because of keeping the

manuscript as concise as possible but can be easily found in the above-mentioned references.

Noted also, the Gaussian correlation function above is sensitive to the correlation parameter

whose value is found to be unrelated to any physical aspect of the problem. In practice, deriving

optimal values of the correlation parameter for all problems is very difficult. It varies from one to

another problem and in theory no exact rules to get such a single optimal value for all problems.

Hence, it is of interest to alternatively evaluate of the correlation parameter so that there should be

existed an acceptable range on its magnitude to ensure consistency in the quality of the results.

 

2.2 Governing equations for orthotropic plates

In this section, our attention will be focused on a brief representation of stress-strain relationship,

elastic constants and dynamic equation for orthotropic plate in a plane stress statement. As can be

known that, an orthotropic material is generally characterized by the fact that the mechanical elastic

properties have two perpendicular planes of symmetry. Due to this condition, only four elastic

constants such as  are independent. Additionally, the quantity  can also be

determined using the following relation 

(14)

Now let us consider a plate as shown in Fig. 1 under the Cartesian coordinate system, the

displacements of the plate in the x, y, z directions are denoted by , respectively. In meshfree

methods, the plate is represented by a set of nodes scattered in the relevant plate domain. The

deflection  with  is directly approximated using parameters of nodal deflection wI

expressed in a form as

 

 (15)

 

where the  are the meshfree MK shape functions given in Eq. (3). According to (Liu 2003,

Vinson 2005), the equation of the motion of a orthotropic plate including the in-plane loads and

neglecting the shear effect in a strong form can be explicitly represented in a fourth-order equation
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 Fig. 1 The geometry of a plate and its parameters
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as

(16)

 

with ρ and h stand for the mass density of the material and the thickness of the plate, other flexural

rigidity quantities are given as follows 

; ; ; (17)

 

and the components of in-plane forces acting on the plate on its edges as

(18)

 

where N0 is a constant and µ1; µ2 are possibly functions of coordinates (Liu 2003). Based on the

assumption of classical thin plate, the displacement fields can be defined as

(19)

 

The strains and stresses of the plate are obtained by 

(20)

(21)

where  and  in Eq. (21) are bending and twisting moments, respectively. The

constitutive equation of the relationship between the strain and stress can be thus expressed as

(22)

where D are the matrix of constant related to the material property and thickness of the plate, σp

and εp are defined as pseudo-strains and –stresses. For an orthotropic plate, they simply have

(23)

By following the classical plate assumption, it is noted that the only the deflection  is an

independent variable and approximated by the MK method. The other two displacement

components  and  are extracted directly from the deflection  through the relation

given in Eq. (19). 

 

2.3 Discrete equations

To derive the dynamic equations for free vibration and for buckling of the plate, the Lagrangian

equation is employed (Liu 2003)
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(24)

where  is known as the Lagrangian functions with T is the kinetic energy of the system,

 being the strain energy of bending  and strain energy caused by in-plane forces 

of the plate, respectively. The kinetic energy of the system is expressed as

(25)

 

The total potential energy of the plate including the strain energies caused by bending and by in-

plane forces of the plate that can be written as

(26)

where  and  denote prescribed boundary forces and a body force vector, respectively.

Substituting Eqs. (25) and (26) into Eq. (24) employed simultaneously other Eqs. (18)-(22), we

derived the weak form of the dynamic equations of the system as

(27)

 

However, since free of external forces is taken into account for the vibration and buckling

analyses of the plate, the terms on the right-hand-side is omitted in this study. 

 

2.3 Free vibration analysis

On substituting the deflection field w of the form as shown in Eq. (15) into the variational form

handled in Eq. (27) neglecting the last term of the in-plane forces, the final undamped dynamic

discrete equation for free vibration analyses can be given by

(28)

 

where  and  stand for the vector of general nodal deflections, global stiffness and mass

matrices, respectively, and they have a form as
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homogeneous equation can be written as

(32)

 

where i is the imaginary unit, t indicates time,  is the eigenvector and ω is natural frequency.

Inserting the general solution given in Eq. (32) into Eq. (28), the natural frequency ω of the

vibration of plate can be gained by solving the following eigenvalue equation

(33) 

 

2.4 Buckling analysis

Likewise, also on substituting the deflection field  of the form given in Eq. (15) into the

variational form shown in Eq. (27) neglecting the effect of the kinetic energy presented within the

first term. We obtain the discrete equation for buckling analysis of the plate as follows

(34)

 

with K is the stiffness matrix shown in Eq. (29) above, N0 is the eigenvalue for a unitary

compressive load or critical buckling loads which is needs to be determined, and G expresses the

geometric stiffness matrix by

(35)

 

By solving Eq. (34) we can obtain the critical buckling loads of the orthotropic plate that

subjected to the in-plane loads. Here we use a background cell of 16 Gaussian points for the

purpose of numerical integration of the stiffness and mass matrices. 

 

 

3. Numerical analysis

To illustrate the applicability of the proposed method to eigenvalue analysis of orthotropic plate,

various geometric shapes of plates are considered. The accuracy of the results obtained by the

present method is verified by comparing with other approaches available in the literature. For free

vibration analysis, the dimensionless natural frequency coefficient  (Liu 2003,

Chen et al. 2003) with , is used, whereas  is used for the buckling

analysis if not specified, otherwise. The effectiveness of the method is also studied by using both

regularly and irregularly nodal distributions. Only the complete free and simply supported boundary

conditions are considered throughout the paper. 

It is necessary to point out here that in order to treat the fully clamped boundary for such a thin

plate, the boundary conditions with derivatives, i.e., two rotations in this case, must be defined as

unknown field variable evolved in the approximation function. However, these derivatives can not

be imposed directly because no information of such derivatives is involved in the MK

approximation functions. In order to deal with this difficulty, (Li et al. 2006) recently introduced an
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derivatives are involved in the interpolation functions. Another possible strategy proposed by Cui et

al. (2009), who have introduced a thin plate formulation without rotation DOFs in incorporation

various smoothing strain techniques (Chen et al. 2001) into the RPIM. The MK method may have a

similar manner and in principle, it therefore needs such a development to treat the fully clamped

boundary condition. However, this task is in general more challenging and beyond the scope of the

present work.

 

3.1 Free vibration analysis

A rectangular plate depicted in Fig. 1 is first considered. The edges denoted by a, b; the thickness

h = 0.05 m and the mass density ρ = 8000 kg/m3 are used. For the purpose of comparison, the

elastic constants are assumed to be similar to those in (Liu 2003, Chen 1998, Chen et al. 2003) for

the following two cases: (a) if , we choose  and (b) if ,

then  are chosen. 

 

3.1.1 Simply supported square orthotropic plates

A square plate  is used in the analysis. A regular pattern of  nodal

distribution is considered for all the computations. Based on the previous experience, a correlation

parameter  and a scaling factor  are specified. The natural frequency coefficient ξ is

calculated and presented in Table 1 for three different types of the given ratio of flexural rigidity

quantities, i.e.,  and . As shown in the table, an excellent agreement between two

approaches is observed. Additionally, the first twenty eigenmodes of this square orthotropic plate

are given in Fig. 2 to have a better view. Noted that Fig. 2 is taken from the case of =

 = 0.5 and the numerical values in brackets in that figure are generally not important

because all the solutions have been normalized into a dimensionless coefficient. Nevertheless, these

values mean natural frequencies (not normalized) computed by the proposed method. 

E1 E2≥ ν12 0.3; ν21 ν12E2/E1= = E1 E2≤
ν21 0.3; ν12 ν21E1/E2= =

a b 10 m= = 13 13×

θ 5= α 2.5=

D22/D3 D11/D3

D22/D3

D11/D3

Table 1 The dimensionless frequency for a fully simply supported orthotropic plate

Mode

D22/D3 = 0.5

D11/D3 = 0.5 D11/D3 = 1.0 D11/D3 = 2.0

EFG [34] Present EFG [34] Present EFG [34] Present

ξ1 4.130 4.101 4.295 4.283 4.576 4.571

ξ2 6.333 6.325 6.387 6.397 6.479 6.486

ξ3 6.341 6.325 6.996 6.989 7.936 7.948

ξ4 8.273 8.250 8.600 8.635 8.781 8.803

ξ5 8.714 8.749 8.743 8.777 9.159 9.186

ξ6 8.732 8.785 9.949 10.007 10.903 11.039

ξ7 10.411 10.428 10.587 10.594 11.277 11.349

ξ8 10.422 10.487 11.205 11.222 11.552 11.558

ξ9 11.242 11.236 11.295 11.269 12.416 12.517

ξ10 11.249 11.232 12.891 12.875 13.515 13.696

 ξ1 [18] 4.118 4.279 4.557
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3.1.2 Natural frequency convergence

Natural frequency coefficients are calculated for a completely simply supported square orthotropic

plate corresponding to different densities of regularly distributed nodes. Here,  = 0.5 and

= 0.5 are considered while  and  are specified. Table 2 shows the results of

the frequency parameters versus six different nodal distributions and a good convergence for the

proposed method is found.

 

D11/D3

D22/D3 θ 2.0= α 2.5=

Table 1 Continued 

Mode

D22/D3 = 1.0

D11/D3 = 0.5 D11/D3 = 1.0 D11/D3 = 2.0

EFG [34] Present EFG [34] Present EFG [34] Present

ξ1 4.295 4.283 4.443 4.446 4.700 4.704

ξ2 6.387 6.380 7.031 7.076 7.104 7.126

ξ3 6.996 6.985 7.036 7.076 7.961 7.951

ξ4 8.600 8.619 8.892 8.921 9.404 9.411

ξ5 8.743 8.761 9.959 10.059 9.988 10.049

ξ6 9.949 9.950 9.966 10.098 11.560 11.577

ξ7 10.587 10.615 11.341 11.364 11.604 11.701

ξ8 11.205 11.283 11.347 11.376 12.518 12.673

ξ9 11.259 11.294 13.032 13.251 13.048 13.217

ξ10 12.891 12.889 13.036 13.267 14.110 14.110

 ξ1 [18] 4.279 4.425 4.678

Mode

D22/D3 = 2.0

D11/D3 = 0.5 D11/D3 = 1.0 D11/D3 = 2.0

EFG [34] Present EFG [34] Present EFG [34] Present

ξ1 4.576 4.574 4.700 4.703 4.921 4.926

ξ2 6.479 6.475 7.104 7.159 8.008 8.062

ξ3 7.936 7.951 7.961 7.973 8.011 8.062

ξ4 8.781 8.802 9.404 9.446 9.843 9.846

ξ5 9.159 9.194 9.988 10.043 11.575 11.576

ξ6 10.903 11.072 11.560 11.618 11.578 11.590

ξ7 11.277 11.383 11.604 11.618 12.713 12.748

ξ8 11.552 11.617 12.518 12.592 12.714 12.748

ξ9 12.416 12.495 13.048 13.205 14.775 14.797

ξ10 13.515 13.529 14.110 14.184 15.285 15.305

 ξ1 [18] 4.557 4.678 4.897
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3.1.3 Effectiveness of irregularly distributed nodes 

The nodal distribution in irregular setting is employed to verify the effectiveness of the proposed

method. Fig. 3 shows the nodal distributions of regular and irregular systems of a fully simply

supported square plate. The ratios of = 0.5 and  = 0.5; 1.0 and 2.0, respectively, are

typically considered for this purpose. A correlation parameter θ = 0.5 and a scaling factor α = 2.5

are taken. The gained results of the first ten frequency coefficients are presented in Table 3 and very

good agreements with each other are observed. It probably confirms that no effects of the

irregularly on the frequency significantly or implies that no significant variation on nodal density

across the domain problem. 

D22/D3 D11/D3

Fig. 2 The first twenty eigenmodes of natural frequency for a fully simply supported square orthotropic plate

Table 2 Convergence of frequency coefficients of a fully simply supported square orthotropic plate 

Mode 5×5 9×9 13×13 15×15 17×17 21×21

ξ1 4.379 4.011 4.023 4.048 4.060 4.070

ξ2 8.362 6.245 6.091 6.140 6.159 6.150

ξ3 8.362 6.245 6.091 6.140 6.159 6.168

ξ4 11.811 7.983 7.582 7.704 7.756 7.762

ξ5 14.806 9.066 8.469 8.505 8.508 8.550
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3.1.4 Influence of scaling and correlation coefficients

The influence of the scaling factor and the correlation parameter is studied here. The ratios of

 = 0.5 and of = 0.5 are considered with a 13 × 13 pattern of nodal distribution. For

the correlation parameter, it is varied in a wide range for a fixed scaling factor α = 2.5, and whereas

the scaling factor is varied for a fixed correlation parameter θ = 0.5 for the effect of the scaling

factor. The computed results of the frequency coefficients for these two cases are presented in

Figs. 4(a) and 4(b), respectively, and found any value taken within these ranges  and

 can yield acceptable solutions.

D11/D3 D22/D3

0.1 θ 10≤ ≤
2.5 α 3.2≤ ≤

Table 3 Comparison of the dimensionless frequency coefficients derived from both regular and irregular
distributed nodes for a fully simply supported orthotropic plate

Mode

D22/D3 = 0.5

D11/D3 = 0.5 D11/D3 = 1.0 D11/D3 = 2.0

Regular Irregular Regular Irregular Regular Irregular

ξ1 4.120 4.172 4.273 4.260 4.567 4.543

ξ2 6.315 6.290 6.409 6.399 6.586 6.543

ξ3 6.315 6.301 6.989 6.937 7.948 7.840

ξ4 8.150 8.108 8.535 8.475 9.103 9.013

ξ5 8.849 8.942 8.905 9.088 9.186 9.247

ξ6 8.885 8.986 10.107 10.100 11.239 11.135

ξ7 10.388 10.334 10.694 10.716 11.749 11.597

ξ8 10.388 10.500 11.222 11.218 11.858 12.197

ξ9 11.716 11.459 11.769 11.996 12.517 12.381

ξ10 11.716 11.937 13.055 12.948 13.696 13.699

 ξ1 [18] 4.118 4.279 4.557

Fig. 3 A square orthotropic plate with 13×13 regular (left) and 169 irregular (right) nodes 
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3.1.5 Completely free boundary conditions

The solutions derived from applying the completely free boundary condition to the orthotropic

plates are also provided. The regular and irregular nodal distributions are again considered. The

computed results of the natural frequency coefficient  are presented in Table 4.

However, the first three modes that are corresponding to the rigid displacements are hence not listed

in the table. 

 

3.1.6 Natural frequency coefficients on the ratio: b/a
As depicted in Fig. 1 above, a and b are specified as its edges length. We here wanted to have a

study on the influence of the shape of the plates on the solutions. Five different types of the ratio

are calculated for the frequency coefficients and the corresponding results are stored in Table 5 in

comparison with those computed by the finite difference method (Chen 1998). As expected, a good

agreement with each other is again obtained. 

ξ ω
2
ρha

4
/D3( )

1/4

=

Fig. 4 Variation of the dimensionless frequencies versus the correlation parameter (left) and the scaling factor
(right) for a fully simply supported square orthotropic plate 

Table 4 Evaluation of the dimensionless frequency coefficients for a completely free square orthotropic plate
(θ = 5; α = 2.5)

Mode

D22/D3 = 0.5

D11/D3 = 0.5 D11/D3 = 1.0 D11/D3 = 2.0

Regular Irregular Regular Irregular Regular Irregular

ξ4 3.743 3.755 3.828 3.815 3.853 3.840

ξ5 3.801 3.786 3.948 3.980 3.989 4.042

ξ6 4.179 4.209 4.766 4.769 5.648 5.629

ξ7 5.700 5.768 5.773 5.758 5.870 5.850

ξ8 5.700 5.718 6.026 6.034 6.513 6.534

ξ9 6.748 6.795 6.787 6.795 6.859 6.883

ξ10 6.748 6.786 7.864 7.873 8.070 8.179
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3.2 Buckling analysis

In this section, a fully simply supported orthotropic plate is now employed to appealingly assess

at the static buckling loads. Material parameters are the same as above. The standard EFG is used

for the same simulation for the purpose of comparison. Only an in-plane compressive load applied

in the x direction is considered and this implies that only Nx is valid whereas the others are omitted.

The critical buckling factor  is calculated and the results derived from the present

method are then compared with that calculated by the EFG. The computed results of the critical

buckling factor against various nodal densities are listed in Table 6, in which three different ratios

of  are considered, respectively. A very good agreement with each other for buckling analysis is

found. It can also be observed that the EFG probably has a faster convergence compared with the

present method under a course density. Nevertheless, both have a very good convergence when a

pattern of 169 nodes is reached. Tables 7 and 8, respectively, show the critical buckling factors

calculated for various flexural rigidity ratios of D11/D3 and correlation parameter, respectively. This

k N0b
2
/π

2
D3=

a/b

Table 6 Convergence of critical buckling factor k = N0b
2/π2D3 of a fully simply supported square orthotropic

plate versus the nodal densities (D22/D3 = D11/D3 = 0.5, α = 3; θ = 3)

Approach a/b 5×5 9×9 13×13 15×15 17×17 21×21

EFG
1.5

3.472 3.221 3.207 3.195 3.185 3.180

Present 28.053 5.477 3.923 3.192 3.197 3.182

EFG
1.0

3.079 3.012 3.009 3.008 3.004 3.000

Present 24.718 3.581 3.193 3.016 3.002 3.001

EFG
0.5

5.117 4.153 4.137 4.135 4.131 4.127

Present 10.218 4.365 4.173 4.150 4.135 4.130

Table 5 Comparison of the calculated frequency coefficients versus various ratios of D11/D3 for a fully simply
supported orthotropic plate with ratios of b/a

b/a Method

D22/D3 : 0.5 D22/D3 : 1.0 D22/D3 : 2.0

D11/D3 D11/D3 D11/D3

0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

2.5
(Chen 1998) 2.989 3.362 3.867 3.000 3.370 3.872 3.023 3.386 3.882

MK 2.970 3.357 3.873 3.053 3.377 3.883 3.032 3.380 3.887

1.5
(Chen 1998) 3.455 3.715 4.113 3.511 3.760 4.147 3.616 3.846 4.212

MK 3.467 3.743 4.152 3.560 3.797 4.273 3.628 3.899 4.262

1
(Chen 1998) 4.118 4.279 4.557 4.279 4.425 4.678 4.557 4.678 4.897

MK 4.121 4.289 4.575 4.249 4.430 4.655 4.558 4.686 4.904

2/3
(Chen 1998) 5.183 5.263 5.424 5.572 5.640 5.769 6.170 6.220 6.318

MK 5.157 5.267 5.477 5.534 5.663 5.777 6.209 6.311 6.358

0.4
(Chen 1998) 7.472 7.501 7.557 8.404 8.424 8.464 9.667 9.680 9.706

MK 7.470 7.548 7.550 8.417 8.425 8.474 9.654 9.679 9.724
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Fig. 5 The first twenty buckling modes of a square orthotropic plate by D22/D3 = D11/D3 = 0.5

Table 7 Comparison of the critical buckling factor k = N0b
2/π2D3 of a simply supported orthotropic plate

corresponding to various ratios of D11/D3 accounted for different ratios of a/b (α = 3; θ = 3; 17×17 nodes)

a/b

D22/D11 = 0.5

D11/D3 = 0.5 D11/D3 = 1.0 D11/D3 = 2.0

EFG Present EFG Present EFG Present

1.5 3.180 3.182 3.576 3.545 4.021 4.108

1.2 3.068 3.091 3.416 3.426 4.112 4.111

1.0 3.000 3.001 3.501 3.523 4.502 4.528

0.8 3.105 3.169 3.888 3.873 5.454 5.464

0.5 4.127 4.130 6.129 6.128 10.124 10.135

Table 8 Evaluation of critical buckling factor against different specified correlation parameters corresponding
to various ratios of a/b for an orthotropic plate (D22/D3 = D11/D2 = 0.5, α = 3 is fixed, 17×17 nodes)

 a/b θ = 0.1  θ = 1 θ = 3 θ = 5 θ = 7 θ = 10 θ = 20 θ = 50 EFG

1.5 1.604 3.340 3.182 3.177 3.182 3.428 7.436 10.391 3.180

1.2 1.724 2.968 3.091 3.099 3.143 3.163 6.488 8.255 3.068

1.0 1.635 2.852 3.001 3.016 3.080 3.098 5.826 8.494 3.000

0.8 1.540 3.528 3.269 3.235 3.218 3.248 4.965 7.046 3.105

0.5 2.496 3.999 4.130 4.179 4.196 4.352 4.879 6.269 4.127
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Fig. 6 Geometry and nodal distribution of a plate with a hole of complicated shape

Table 9 Comparison of the dimensionless frequency coefficients for various D11/D3 of a fully simply supported
orthotropic plate with a hole of complicated shape (θ = 25 ; α = 2.5)

Mode

D22/D3 = 0.5

D11/D3 = 0.5 D11/D3 = 1.0 D11/D3 = 2.0

EFG Present EFG Present EFG Present

ξ1 4.952 4.953 5.026 5.038 5.137 5.160

ξ2 6.342 6.359 6.465 6.485 6.587 6.554

ξ3 6.638 6.646 6.861 6.897 7.210 7.221

ξ4 8.329 8.332 8.575 8.596 8.963 9.037

ξ5 8.556 8.564 8.879 8.881 9.175 9.207

ξ6 10.123 10.184 10.332 10.375 10.607 10.674

ξ7 10.203 10.223 10.844 10.811 11.535 11.569

ξ8 10.748 10.794 11.365 11.403 12.312 12.355

ξ9 12.041 12.107 12.532 12.548 13.076 13.134

ξ10 12.286 12.296 12.806 12.832 13.423 13.457

is attempted because the reinforced direction is of great importance with respect to the materials

made of orthotropic statement. As desired, both the EFG and present methods give in a remarkable

result. The correlation parameter in this buckling analysis might be chosen within a range of

 to gain an acceptable solution. The first twenty buckling modes obtained from the

present method are also provided in Fig. 5. 

3.3 Square plate with a hole of complicated shape

A simply supported thin plate with a hole of complicated shape as shown in Fig. 6 is additionally

assessed as the last numerical example. The irregular distributions of 134 and 506 nodes are

employed for assessment of static buckling and vibration by both the EFG and the present methods.

2 θ 10≤ ≤
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Other parameters concerning the materials and so on are the same as used the above. Likewise, the

dimensionless frequency coefficients and the critical buckling factor are calculated for various

flexural rigidity ratios of D11/D3. The obtained results are presented in Tables 9 and 10, respectively.

Excellent agreements to those for both approaches for frequency and critical buckling factors are

found as expected. 

4. Conclusions

The manuscript reported a successful application of the meshfree moving Kriging interpolation

method for vibration and buckling analyses of orthotropic plates. It is evident that by making use of

the superior feature of the moving Kriging shape functions, the method is consequently efficient in

enforcing the boundary condition. This meshfree formulation in principle permits to account for

other problems made of isotropic materials, in which a little modification concerning material

properties is required. Through all the achieved results presented above, very good agreements and

adequate accuracy compared with other existing approaches are found. A study on the effect of two

important parameters on the frequencies and buckling factors is additionally analyzed. The results

confirm that, the correlation parameter and the scaling factor may be chosen within wide ranges

 and  for vibration and buckling problems. 

Generally, the present method is very flexible since not only simple rectangular shapes of plates

can be solved, but any complicated shapes of geometries are also able to be handled. It is successful

in dealing with the buckling and vibration problems of thin orthotropic plates under completely free

and fully simply supported boundaries, but the fully clamped one is till open for further

developments. The present approach definitely can be considered as an alternative numerical

method for free vibration and buckling analysis of orthotropic plates with high accuracy. As a

consequence, it is absolutely promising and potential for other applications, especially in fracture

mechanics where enrichment techniques (Fleming et al. 1997) can be incorporated, nonlinear

analysis and so on. 
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Notations

x, y, z : axis of the reference system
u, v, w : displacement components belong to x, y, z
E1 : Young’s modulus in bending for the x-direction
E2 : Young’s modulus in bending for the y-direction
G12 : Shear modulus in bending for the xy plane
ν12 : Poisson’s ratio corresponding to compression strain in y-direction
ν21 : Poisson’s ratio corresponding to compression strain in x-sdirection
ρ : the mass density of the material
h : thickness of the plate
a : length of side parallel to x-axis
b : length of side parallel to y-axis
θ : correlation parameter 
α : scaling factor
w : transverse displacement of a point on the plate along z-direction
φ : meshfree MK shape function
N : components of in-plane forces acting on the plate on its edges
Mx, My and Mxy : bending and twisting moments
D : matrix of material constants 
ω : circular frequency 
t : time 
N0 : critical buckling loads
ξ : dimensionless natural frequency coefficient
k : critical buckling factor




