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Abstract. This paper is focused on the residual capacity of steel columns, as a damage criterion. Load-
Impulse (P-I) diagrams are frequently used for analysis, design, or assessment of blast resistant structures.
The residual load carrying capacity of a simply supported steel column was derived as a damage criterion
based on a SDOF computational approach. Dimensionless P-I diagrams were generated numerically with
this quantitative damage criterion. These numerical P-I diagrams were used to show that traditional
constant ductility ratios adopted as damage criteria are not appropriate for either the design or damage
assessment of blast resistant steel columns, and that the current approach could be a much more
appropriate alternative.
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1. Introduction

Blast resistant buildings should be designed to protect occupants and equipments by limiting

structural damage to within an acceptable range. Structural engineers are concerned with preventing

localized blast-induced damage from evolving into a global building failure. Bomb damage

assessment (BDA) is based on the ratio of collapsed floor slab area to total building area (Morris

2004). When this ratio is between 75% and 100%, the building is considered as “Destroyed”, while

it is assumed to be “Severely Damaged” for a damage ratio between 45% and 75% (DIA 2003). A

current guide for preventing progressive collapse (Department of Defense 2009) recommends

limiting the collapsed floor area directly above a removed column to be less than the smaller of

either 70 m2 or 15% of that floor area. These two examples show that the collapsed or failed area

has been adopted as a parameter to express the severity of building damage, and they are directly

related to the failure of a supporting column.

The potential for global building damage must be based on assessing local damage of critical

structural components, such as a column or a load bearing wall. Load-Impulse diagrams are a form

of a shock response spectrum, and they have been widely used for damage assessment of structural
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elements (Krauthammer 2008, Krauthammer et al. 2008, Soh and Krauthammer 2004). The load

can be in the form of peak force or peak pressure, while the impulse is the area under the load-time

history. P-I diagrams represents combinations of peak load and corresponding impulse that cause a

predetermined level of structural response (e.g., cracking, yielding, fracture, a specific displacement,

etc.). P-I diagrams can be utilized as standardized failure criteria of all structure components in

computer based building damage analysis tools.

A P-I diagram divides the load vs. impulse space into two distinct regions. Load-impulse

combinations falling to the left or below the P-I curve cannot cause the predetermined level of

structural response, while those to the right and above the curve produce structural response

exceeding the predetermined response level. The structural dynamic response has a strong

relationship with the natural frequency of structural element and the duration of load function,

which can be categorized into three regions; the impulsive, quasi-static and dynamic domains, as

shown in Fig. 1 (Krauthammer 2008, Krauthammer et al. 2008). In the impulsive loading region,

the pressure duration is very short relative to the response time of the structure. Since the pressure

is quickly removed before any significant structural deformation, the maximum structural response

can be assumed to depend on the applied impulse and not on the form of the pressure-time history.

In the quasi-static region, the pressure duration is significantly longer than the structural response

time. Since the applied pressure dissipates very little before the maximum deflection occurs (i.e.,

almost constant pressure acts while deflection occurs), the structural response depends only upon

the peak pressure. As with the impulsive region, the maximum response in this region may not

dependent on the entire pressure-time history. The dynamic domain exists between the impulsive

and quasi-static regions, where the pressure duration and the system response time are of the same

order. The structural response in this region depends on the pressure-time history. For BDA or

preliminary protective design, the asymptote equations for the impulsive and quasi-static domains

Fig. 1 Characteristics of P-I diagrams (Krauthammer et al. 2008)
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can be utilized to determine the component status after explosive loading with simple and quick

calculations (Krauthammer 2008, Krauthammer et al. 2008). The short calculation time from the

asymptote concept, which needs only applied impulse value, could be essential especially in

emergency situation, where the expected damage of targets or BDA analysis must be completed

within very short times, without performing complete time history analyses or with the complete P-I

curve. 

Flexure and direct shear responses are expected in structural components under severe blast

loading (Krauthammer 2008). Since these two failure mechanisms do not occur simultaneously, two

loosely coupled equivalent Single Degree of Freedom (SDOF) systems can be adopted to generate

P-I diagrams (Soh and Krauthammer 2004). One should note that the flexural P-I curve can be

modified to include the effects of diagonal shear, and/or axial loads. This can be done by overlaying

a P-I curve for direct shear response to the one for flexural response, as shown in Fig. 2. Thus, it is

appropriate to develop a P-I diagram for each response mode independently, and to overlay the

resulted P-I curves on the same graph to obtain a final damage assessment curve.

Typically, P-I diagrams have been generated by adopting a SDOF model, which consists of a

mass, and a resistance for an assumed structural component mode shape (Krauthammer 2008,

Krauthammer et al. 2008). In this study, the focus is on developing an appropriate approach for the

damage assessment of steel columns by using the P-I concept and well founded theoretical and

behavioral models. For flexural response of column under lateral loading at midspan, the following

SDOF governing equation can be derived 

(1)

where u(t) is the column midspan deflection, M is the total column mass, R(u(t)) is the column

lateral resistance function, F(u(t), t) is the applied force, and KLM is the load-mass factor of a

column under lateral concentrated loading at midspan, which is 0.49 (elastic deformation), 0.33

(inelastic deformation) for simply supported boundary condition (Bigg 1964). KLM depends on the

KLMMu·· t( ) R u t( )( )+ F u t( ) t,( )=

Fig. 2 P-I diagrams for flexure and direct shear (Soh and Krauthammer 2004)
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mode shape assumption, which induces the same energy distribution as that of the real distributed

mass. For direct shear without damping, the equivalent SDOF model can be given as the following

(Krauthammer et al. 1990) 

(2)

where y is the direct shear slip, Ms is the equivalent shear mass, Rs is the dynamic resistance

function for direct shear, V(t) is the dynamic reaction.

It is common to use the maximum ductility ratio, µ, and support rotation, θ, as damage criteria for

P-I curves, as shown in Tables 1 and 2 (US Army 2006). For example, a compact steel column is

considered to suffer “Heavy Damage” when the maximum ductility ratio is larger than 3, or the

maximum rotation is larger than 3o. However, the response limits in Table 2 cannot be utilized

directly in the global damage analysis, although damage levels are described in Table 1. To derive

the global damage, it is necessary to obtain quantitative damage values for critical structural

components. For columns, the residual axial load carrying capacity, after a blast loading incident,

could be an important damage criterion for assessing secondary damage and the potential for

progressive collapse. Few researches studied the residual load carrying capacity of a column after

blast events. Bao and Li (2010) and Shi et al. (2007) obtained P-I diagrams based on residual load

carrying capacity by adopting finite element analyses with LS-DYNA (LS-DYNA 2006). However,

Msy
·· t( ) Rs+ V t( )=

Table 1 Description and corresponding response limits (US Army 2006)

Component Damage 
Level

Description of Component Damage
Relationship to Response 

Limits (Table 2)

Blowout Component is overwhelmed by the blast load causing 
debris with significant velocities

Response greater than B4.

Hazardous Failure Component has failed, and debris velocities range from 
insignificant to very significant

Response between B3 and B4.

Heavy Damage Component has not failed, but it has significant 
permanent deflections causing it to be unrepairable

Response between B2 and B3.

Moderate Damage Component has some permanent deflection. It is 
generally repairable, if necessary, although replacement 
may be more economical and aesthetic

Response between B1 and B2.

Superficial Damage Component has no visible permanent damage Response is less than B1.

Table 2 Response Limits for Hot Rolled Structural Steel (US Army 2006)

Member
B1 B2 B3 B4

µ θ µ θ µ θ µ θ

Flexure

Compact or seismic member 1 3 3o 12 10o 25 20o

Non compact member 0.7 0.85 1.0 1.2

Plate 4 1o 8 2o 20 6o 40 12o

Combined Flexure 
& Compression

Compact or seismic member 1 3 3o 3 3o 3 3 o

Non compact member 0.7 0.85 0.85 0.85

Compression 0.9 1.3 2 3
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theoretical analysis methods to generate P-I curves were not presented, which could be essential to

show the interactions of numerous parameters (such as component geometry, material, axial loading

condition, damage level etc.) systematically. Furthermore, expedient blast damage assessment cannot

be handled with fully nonlinear dynamic finite element simulations, and one needs a much faster

approach, such as with a well-formulated SDOF system.

In this paper, a new methodology to generate P-I diagrams for steel columns is proposed, based

on the flexural SDOF model and residual axial load carrying capacity of a steel column. This type

of P-I diagram can be adopted to obtain a safety factor for the local column response after an

abnormal loading dissipates, and to conduct accurate secondary damage analysis for building

systems. Corresponding theoretical asymptote equations are proposed, based on adopting the energy

balance method, which can be adopted in preliminary protective design and for urgent analyses

during emergency operations, without generating whole P-I curves. Also, the validity of a constant

ductility limit in Table 2, as a damage criterion, is checked.

2. SDOF model for simply supported column under blast loading

Fig. 3 shows a building face subjected to an explosive loading. The structural system for that face

consists of four beams and three columns with span lengths Lb and Lc, respectively. When the

columns are simply supported, and beam-column connections are assumed to be hinges, an

equivalent flexural SDOF model for a middle column can be expressed by Eq. (1). The lateral

resistance function R is assumed as elastic-perfectly plastic, as shown in Fig. 4, and the elastic

stiffness of the resistance function has the same form as the one for beams (US Army 1986) 

(3)

where E is Young’s modulus of elasticity, Lc is the column length, and I is the second moment of

area.

Kc

48EI

Lc

3
------------=

Fig. 3 Blast-loaded area for middle column under explosive loading (US Army 2006)
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Since a column is loaded to a constant axial force P0, the neutral axis does not coincide with the

centroid at the maximum value of the resistance function. Thus, the maximum resistance Ry and

corresponding deflection uy should be defined as follows

(4)

(5)

where Mp is the plastic moment of the cross section

(6)

(7)

where Z is the plastic section modulus, A is the cross section area, fy is the yield stress of steel, and

α is the axial load ratio.

For columns under blast loading, the P-delta effect from a constant axial force P0 and the midspan

deflection u(t) should be considered, as shown in Fig. 5. The P-delta effect can be accounted for by

adopting the equivalent lateral load, which acts in addition to the existing lateral load to cause the

same midspan moment. This additional equivalent lateral load, Fe, can be expressed by (US Army

2006, Timoshenko and Gere 2009) 

(8)

Thus, the total applied lateral load F(t) in Eq. (1) can be formulated as

(9)

Ry

4Mp

Lc

----------=

uy

Ry

K
-----=

Mp Zfy 1 α
2

–( )=

Po αfyA=

Fe t( )
4P0u t( )

Lc

------------------=

F t( ) F1 t( ) Fe t( )+=

Fig. 4 Resistance function
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where Fl is the lateral explosion load, assuming that the reflected pressure history is a right

triangular shape, as shown in Fig. 6, and can be expressed by 

when

otherwise (10)

Where

(11)

(12)

and Pr is the peak reflected pressure, Lb is the beam length, Ir is the reflected pressure impulse, td is

the reflected pressure duration, and Af is the load area factor that represents the blast loading area

supported by the column midspan, as shown in Fig. 3 (US Army 2006).

3. Residual axial load carrying capacity

The midspan deflection history can be obtained by solving Eq. (1) numerically. If the resistance

function reaches the yield point, such as the path through (A)→(B)→(C) in Fig. 4, there will be a

residual deflection at point (D). It should be noted that the axial force remains constant in the path

through (A)→(B)→(C)→(D). The residual axial load carrying capacity, which represents the axial

load carrying capacity of the damaged column after blast event, can be determined by increasing the

F1 t( ) Fmax 1 t/td–[ ]= t td≤

F1 t( ) 0=

Fmax PrLbLcAF=

td 2Ir/Pr=

Fig. 5 P-delta effect for column

Fig. 6 Simplified triangular reflected pressure history
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applied axial load moving up the resistance function graph from point (D) to (E). Since the

maximum resistance depends on the applied axial load, as shown in Eqs. (4) and (6), the load

magnitudes at points (C) and (E) are different. When the residual load carrying capacity is Plc, the

maximum resistance Rr can be derived from Eqs. (4) and (6), as follows 

(13)

where β is the residual load carrying capacity ratio, which satisfies .

At point (E), the static P-delta equilibrium should be satisfied by Eq. (8), as follows 

(14)

where uy is the yield deflection when the axial load is P0, and umax is the maximum deflection in

Fig. 4.

By combining Eqs. (13) and (14), the maximum ductility ratio µ (which is ), related to the

residual load carrying capacity ratio β, can be determined by

(15)

where Fy is the yield force for the column cross section, which is fyA.

4. Generation of P-I diagrams

4.1 Asymptote equations based on energy balance method

The energy balance method, as described in Krauthammer (2008), can be adopted to calculate the

impulsive and quasi-static asymptotes for P-I diagrams (Fig. 1). The following simple expressions

are used for asymptotes calculation (Krauthammer 2008)

K.E. = S.E. (for the impulsive asymptote) (16)

W.E. = S.E (for the quasi-static asymptote) (17)

where, K.E. is the kinetic energy acquired by the column at time zero, W.E. is the work done by the

applied force from time zero to the maximum deflection, S.E. is the strain energy at the maximum

deflection. The energy terms for an axially-loaded column under lateral blast loading are given by

the following expressions 

(18)

(19)

(20)

Rr

4Zfy

Lc

---------- 1 β
2

–( )=

Plc βfyA=

Rr

4Plc umax uy Rr/K+–( )
Lc

---------------------------------------------------=

umax/uy

µ 1
1 β

2
–( )

1 α
2

–( )
------------------

1

4β
------

KLc

Fy

--------- 1–⎝ ⎠
⎛ ⎞+=

K.E.
IF
2

2KLMM
------------------=

W.E. Fmaxumax

2P0

Lc

--------umax

2
+=

S.E. Kuy

2
µ

1

2
---–⎝ ⎠

⎛ ⎞=
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where IF is the impulse (the area under the force vs. time function, in units of force multiplied by

time), which is IrLbLcAF from Eqs. (11) and (12).

From Eqs. (16), (18), and (20), the impulsive asymptote can be expressed by the following

dimensionless equation

(21)

From Eqs. (17), (19), and (20), the quasi-static asymptote can be derived, as follows

(22)

It can be seen from Eqs. (15), (21), and (22) that the dimensionless asymptotes can be expressed

by the initial axial load ratio, α, the desired residual load carrying capacity ratio, β, and the column

property KLc /Fy.

Due to the P-delta effect from a constant axial force P0, the column may become unstable at a

certain deflection. When the deflection reaches a maximum value umax at time tmax, the velocity

 should be zero, and the acceleration  should be negative. Since in the impulsive domain,

the duration of a blast load is much shorter than tmax the governing equation after tmax can be

expressed by Eq. (1) as follows

(23)

where ua is the deflection reached after tmax, which satisfies u = umax + ua.

With Eq. (23) and the initial conditions: , the following relationship

should be satisfied

(24)

Eq. (24) represents the limit of a possible maximum ductility ratio for the impulsive asymptote. If

the ductility ratio for a given residual load carrying capacity ratio from Eq. (15) violates Eq. (24),

the column is unstable. That is, the given residual load carrying capacity ratio does not satisfy the

requirement associated with the impulsive asymptote.

For the quasi-static asymptote, the governing equation after tmax can be expressed, as follows

(25)

Similarly to the impulsive asymptote case, the ductility ratio limit is given by the following

expression 

(26)

4.2 Numerical approach

P-I diagrams can be generated by computing sufficient data points with the SDOF approach that

IF

KLMMKuy

---------------------------- 2µ 1–=

Fmax

Kuy

---------- 2µ 1–

2µ
--------------⎝ ⎠
⎛ ⎞ 2µα

Fy

KL
-------⎝ ⎠
⎛ ⎞–=

u· t
max

u·· t
max

KLMMu··a Ry Kua+ +
4αFy

Lc

------------ umax ua+( )=

ua t
max

0= u· a t
max

0= u··a t
max

0<, ,

µ
KLc

4αFy

------------≤

KLMMu··a Ry Kua+ +
4αFy

Lc

------------ umax ua+( ) Fmax+=

µ
K Fmax/uy–( )Lc

4αFy

------------------------------------≤
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represent pressure and impulse combinations satisfying predetermined damage values (e.g., a given

strain, deflection, etc.). Since two asymptotes exist for the P-I curve, both need to be computed. For

the impulsive region, data points are generated with fixed pressure values while increasing the

impulse. For the quasi-state region, the data points are generated with fixed impulse values while

increasing the pressure. Any of these two processes can be used for the dynamic region. However,

the separate analyses approach for the three P-I diagram regions requires the definition of

boundaries of these regions before starting the analyses. Alternatively, the innovative approach

proposed in Krauthammer et al. (2008) can be used to address all three regions in a single

computational sweep. 

In this paper, it is proposed to generate P-I diagrams by using Charge Weight Standoff (CWSD)

diagrams, which correspond directly to specific lod-time histories that define combinations of peak

load and total impulse. However, since load and impulse combinations correspond to specific

structural response values, the same CWSD diagrams would correspond to predetermined response

limits. Since larger amounts of TNT are required to cause a predetermined damage state, as the

standoff distance increases, the corresponding pressure and impulse data points can be obtained

without boundary definitions by trial and error searches with CWSD diagrams. 

To illustrate this approach, P-I diagrams for a simply supported W 690×265 steel column were

generated based on the residual load carrying capacity approach. The solution of Eq. (1) was

obtained numerically by using MATLAB, and the central difference method (Rao 1995). Table 3

summarizes the properties of the analyzed column. The geometry of the analyzed frame is shown in

Fig. 3, where the column and beams lengths were assumed as 10 m and 5 m, respectively. 

Table 3 Material and column section properties

Material Column (W690 × 265)

E 200 GPa I 0.0029 m4

fy 345 MPa d 706 mm

A 0.033 mm2

Z 0.00929 m3

Fig. 7 P-I Diagrams for α = 0.5
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The load area factor AF was assumed as 0.5. Figs. 7 and 8 show the P-I diagrams for the column

under two different initial axial load ratios (α = 0.5 and 0.7), for which safety factors before blast

loading can be determined as 2 and 1.43 (=1/α), respectively. The legends of the curves in Figs. 7

and 8 represent the residual load carrying capacity ratio, β as a percentage, showing that the column

can support the axial force βFy after the blast load dissipates. The “fail” condition is a load

combination under which the column is unstable, and buckling occurs. The corresponding safety

factors after blast loading can be defined as β/α, as shown in Table 4. For example, when a column

under a constant axial load of 5.8 MN (α = 0.5) is subjected to load A in Fig. 7, the residual load

carrying capacity ratio is 0.80. That is, the column can endure an axial load of 9.3 MN after the

blast loading event, corresponding to a safety factor of 1.6, as shown in Table 4. 

In Figs. 7 and 8, some of the P-I diagrams seem to converge to the “fail” P-I curves in the high

impulsive regions. This can be explained by Eq. (26). Tables 5 and 6 show the required ductility for

a given residual load carrying capacity ratio from Eq. (15), the ductility limits for the impulsive

asymptote from Eq. (24) and for the quasi-static asymptote from Eq. (26). The shaded area in

Tables 5 and 6 show where the required ductility exceeds the ductility limit. For the case of α = 0.5,

Table 4 Safety factors

Residual Axial Load Carrying Capacity Ratio*100
100β

Safety Factors (β/α)

when α = 0.5 when α = 0.7

100% 2.00 1.43

95% 1.90 1.36

90% 1.80 1.29

85% 1.70 1.21

80% 1.60 1.14

75% 1.5 1.07

Fail 0 0

Fig. 8 P-I Diagrams for α = 0.7



298 Jong Yil Park and Theodor Krauthammer

the required ductility ratios are larger than the ductility limits when the residual load carrying

capacity ratio is less than 0.80 for the quasi-static asymptote. That means that the quasi-static

asymptote for less than about 0.80 residual load carrying capacity ratios coincides with the quasi-

static asymptote for failure. For the case of α = 0.7, this condition occurs when β is less than about

0.9. It should be noted that the required ductility ratios are not a constant value in Tables 5 and 6.

Even if the required residual load carrying capacity is a constant value, the required ductility ratio

calculated from Eq. (15) depends on the initial axial load ratio, α, and the column property, KLc/Fy.

Thus, the constant ductility criterion from PDC-TR 06-08 (2006) may not be appropriate for

damage assessment of columns. The present approach seems to be a more appropriate alternative

that is well founded on basic structural mechanics and dynamic principles.

Table 6 Ductility limits for α = 0.7

Residual Load Carrying 
Capacity Ratio

β

Ductility 
Ratio
µ

[Eq. (15)]

Impulsive Asymptote Quasi-Static Asymptote

Ductility Limit 
[Eq. (24)]

Ductility Limit 
[Eq. (26)]

0.82 5.06 3.02 8.58 0.61 3.38 

0.84 4.55 2.85 8.58 0.62 3.22 

0.86 4.06 2.67 8.58 0.64 3.09 

0.88 3.58 2.48 8.58 0.65 2.99 

0.90 3.11 2.29 8.58 0.66 2.93 

0.92 2.66 2.08 8.58 0.66 2.94 

0.94 2.23 1.86 8.58 0.65 3.04 

0.96 1.81 1.62 8.58 0.62 3.28 

0.98 1.40 1.34 8.58 0.56 3.77 

1.00 1.00 1.00 8.58 0.44 4.79 

IF

KLMMKuy

----------------------------
F

max

Kuy

----------

Table 5 Ductility Limits for α = 0.5

Residual Load Carrying 
Capacity Ratio

β

Ductility 
Ratio
µ

[Eq. (15)]

Impulsive Asymptote Quasi-Static Asymptote

Ductility Limit 
[Eq. (24)]

Ductility Limit 
[Eq. (26)]

0.60 8.69 4.05 12.01 0.58 5.04 

0.64 7.60 3.77 12.01 0.62 4.59 

0.68 6.61 3.50 12.01 0.65 4.22 

0.72 5.71 3.23 12.01 0.67 3.91 

0.76 4.89 2.96 12.01 0.69 3.67 

0.80 4.12 2.69 12.01 0.71 3.52 

0.84 3.41 2.41 12.01 0.71 3.47 

0.88 2.75 2.12 12.01 0.70 3.56 

0.92 2.13 1.81 12.01 0.68 3.88 

0.96 1.55 1.45 12.01 0.61 4.65 

1.00 1.00 1.00 12.01 0.46 6.51 

IF

KLMMKuy

----------------------------
F

max

Kuy

----------
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5. Conclusions

The residual strength of a column is essential for evaluating post-incident global building safety.

A theoretical method was proposed for obtaining dimensionless P-I diagrams, based on the residual

load carrying capacity of simply supported steel columns with constant axial loads after blast

loading events. That residual load carrying capacity was derived with a SDOF approach and elastic

perfectly-plastic resistance functions, and P-∆ effects. Consequently, this approach can easily be

implemented to any structural element that can be defined by a combination of general material and

geometric nonlinear resistance functions.

For urgent situations and preliminary design stages, impulsive and quasi-static asymptote

equations were derived by adopting the energy balance method. Since the only input parameters

needed for obtaining the proposed dimensionless asymptotes are the initial axial load ratio, α, the

desired residual load carrying capacity ratio, β, and the column property, KLc/Fy, the proposed

approach can be easily implemented in existing computer-based building damage analysis tools.

This modification is expected to significantly enhance the accuracy of global building damage

analyses without increasing calculation times and/or computational resources. 

A theoretical relationship was derived for the ductility ratio and the residual load carrying capacity

ratio (Eq. (15)). Based on this equation and the obtained P-I diagrams, it is noted that a constant

ductility ratio is not appropriate as a damage criterion for extreme dynamic loading events,

especially for global building stability analysis, such as trigger for progressive collapse. 

Although the direct shear at supports could be a failure mechanism at certain pressure-impulse

domain levels, P-I curves from direct shear and flexure can be independently prepared and

combined with the flexural P-I curves, as noted earlier. Moreover, the residual load carrying

capacity concept is not appropriate in direct shear based P-I diagram since the direct shear failure is

considered as a brittle structural response. 
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Notations

α : initial axial load ratio
β : residual load carrying capacity ratio
µ : ductility ratio
θ : slope
A : cross section area
AF : load area factor
d : section depth
E : Young’s modulus of elasticity of steel
F : applied force in SDOF model
Fe : equivalent lateral load by P-delta effect
Fl : lateral load by explosion 
Fy : yield force of column cross section, which is fyA
fy : yield stress of steel
I : second moment of area
IF : impulse (force multiplied by time)
Ir : impulse of reflected pressure
K : elastic stiffness of resistance
KLM : load mass factor
Lb : beam span length
Lc : column span length
M : total mass of column
Mp : plastic moment
Ms : equivalent shear mass
Plc : residual load carrying capacity
P0 : initial axial load
Pr : reflected peak pressure 
R(u(t)) : lateral resistance function of column
Rs : dynamic resistance function for direct shear
Ry : yield resistance
td : duration of reflected pressure
u(t) : column midspan deflection
umax : maximum deflection
uy : yield deflection
V(t) : dynamic reaction.
y : direct shear slip
Z : plastic section modulus




