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Abstract. To ensure safety and long term performance, structural control has rapidly matured over the
past decade into a viable means of limiting structural responses to strong winds and earthquakes.
Nonlinear response history analysis requires rigorous procedure to compute seismic demands. Therefore
the simplified nonlinear analysis procedures are useful to determine performance of the structure. In this
investigation, application of improved capacity demand diagram method in the control of structural system
is presented for the first time. Developed pole assignment method (DPAM) in structural systems control is
introduced. Genetic algorithm (GA) is employed as an optimization tool for minimizing a target function
that defines values of coefficient matrices providing the placement of actuators and optimal control forces.
The ground acceleration is modified under induced control forces. Due to this, performance of structure
based on improved nonlinear demand diagram is selected to threshold of nonlinear behavior of structure.
With small energy consumption characteristics, semi-active devices are especially attractive solutions for
limiting earthquake effects. To illustrate the efficiency of DPAM, a 30-story steel moment frame structure
employing the semi-active control devices is applied. In comparison to the widely used linear quadratic
regulation (LQR), the DPAM controller was shown to be just as effective and better in the reduction of
structural responses during large earthquakes.

Keywords: developed pole assignment method (DPAM); semi-active optimal control; genetic algorithm
(GA); capacity-demand diagram; nonlinear behavior; decreased ground acceleration; linear quadratic
regulation (LQR) 

1. Introduction

Design and assessment for seismic resistance structures has been undergoing a critical reappraisal

in recent years, with the emphasis changing from strength to performance. Performance based

seismic engineering (PBSE) is one of the major developments over the past decade, which has been

increased attention on limit states. The definition of the philosophy of PBSE is to design a structural

system able to sustain a predefined level of damage under a predefined level of earthquake intensity,

or, in assessment terms, to identify the damage level of a structure under a predefined earthquake

intensity level. It is generally agreed that deformations are more critical parameters for defining

performance and as a result it is argued that seismic design and assessment methods should largely
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be based on them (e.g., Casarotti and Pinho 2007).

Estimating seismic demands at high performance levels, such as life safety and collapse

prevention, requires explicit consideration of inelastic behavior of the structure. While nonlinear

response history analysis is the most rigorous procedure to compute seismic demands, current civil

engineering practice prefers to use simplified, nonlinear analysis procedures have been incorporated

in the ATC-40 and FEMA-274 documents to determine the displacement demand imposed on a

building expected to deform inelastically (e.g., ATC 1996, FEMA 1997). The nonlinear static

procedure in these documents is based on the capacity spectrum method (CSM) originally

developed by Freeman (e.g., Freeman et al. 1975, Freeman 1978). Nonlinear static assessment

approaches based on pushover analysis developed over the past two decades, such as the N2 (e.g.,

Fajfar et al. 1997) method, CSM and some improved methods (e.g., Xue 2001, Xue and Chen

2003, Lee et al. 2006) among others, constitute the expression of the well established tendency

towards PBSE. The seismic demands are computed by nonlinear static analysis of the structure

subjected to monotonically increasing lateral forces with an invariant height wise distribution until a

predetermined target displacement is reached. Both the force distribution and target displacement are

based on the assumption that the response is controlled by the fundamental mode and that the mode

shape remains unchanged after the structure yields (e.g., Chopra and Goel 2002). This feature leads

to a transparent transformation from a multi degree of freedom (MDOF) to an equivalent single

degree of freedom (SDOF) system. The CSM compares the capacity of the structure in the form of

a pushover curve with the demands on the structure in the form of a response spectrum. The

graphical intersection of the two curves approximates the response of the structure as shown in

Fig. 1 (e.g., Freeman 2004). Improved procedures using the well established inelastic response

spectrum are developed. The idea of using the inelastic design spectrum was suggested by Bertero

and introduced by Reinhorn and Fajfar (e.g., Bertero 1995, Reinhorn and Fajfar 1997). Inelastic

demand spectra are determined from a typical smooth elastic design spectrum. The reduction

factors, which relate inelastic spectra to the basic elastic spectrum, are consistent with the elastic

spectrum (e.g., Fajfar et al. 1997).

The inelastic spectra have been used also by Goel and Chopra (e.g., Chopra and Goel 1999). They

suggested the improved capacity demand diagram method that gives the deformation value

consistent with the selected inelastic design spectrum, while retaining the attraction of graphical

implementation of the ATC-40 methods. However, the improved procedures differ from ATC-40

Fig. 1 Graphical determination of structure performance based on Capacity Spectrum Method
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procedures in one important sense. The demand is determined by analyzing an inelastic system in

the improved procedure instead of equivalent linear systems in ATC-40 procedures. 

In recent years optimal control of structures is the main target to minimize energy usage of the

control system, during of the induced earthquake (e.g., Amini and Vahdani 2008). Active control

systems are expensive to operate due to their high power demands. To overcome these limitations, a

semi-active approach to structural control was formulated. Actuators are no longer used to apply

forces to a structure directly. Rather, the forces needed for control are generated indirectly by

devices that change the overall damping and stiffness properties of the structure, thereby indirectly

removing energy from the system. With small energy consumption characteristics, the semi-active

devices are especially attractive solutions for limiting earthquake deflections. Also the amounts of

required power for operation are small. (e.g., Lynch and Law 2002, Symans and Constantinou 1999,

Preumont and Seto 2008). 

In this study the semi-active hydraulic damper (SHD) is applied. The SHD device is a variable

damper whose damping coefficient can be changed by changing the orifice opening between the

two hydraulic chambers of the damper (e.g., Lynch and Law 2000). 

Displacement control criterion is dominant principle in designing of high rise building. In this

paper calculated maximum nonlinear displacement from improved capacity demand diagram method

suggested by Goel and Chopra (e.g., Chopra and Goel 1999) is used as a control criterion.

Remaining structure behavior in the elastic zone is the main subject in this investigation. By using

GA and applying optimal control forces based on DPAM, the maximum displacement performance

is equated to nonlinear behavior threshold of structure. Assuming, the related deformation to first

appeared plastic hinge in columns is defined as nonlinear behavior threshold of structure. The

procedure of determining optimal control forces is introduced in the next section.

2. Developed pole assignment method (DPAM)

In designing a linear control system, one of the effective and widely used approaches to find

required control force is the pole assignment method (e.g., Xue et al. 2007). Let us first consider a

structural system whose equation of motion is shown as follows

(1)

Where, m, c and k are properties of structure that indicate the matrices of mass, damping and

stiffness respectively. The response of structure,  and  are displacement, velocity and

acceleration vector respectively. The system is externally loaded by a dynamic disturbance ( ) and

controlled by control forces (uc). Also l is the unit vector. The equation of motion is shown in the

state space form as follows 

(2)

The matrix A is known as the system matrix. The state of the system (q) contains the

displacement and velocity response terms of the system. The matrices B and H represent the

location of the system actuators and external loads respectively. The parameters of Eq. (2) is

introduced as follows

m[ ] x··{ } c[ ] x·{ } k[ ] x{ }+ + m[ ] l{ }x··g– uc{ }–=

x x·, x··

x··g

q·{ } A[ ] q{ } H{ }x··g B[ ] uc{ }+ +=
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,

, (3)

The eigenvalues of the system matrix (A) characterize the uncontrolled dynamic response of the

system. When plotted on the complex plane, these eigenvalues, often termed poles of the system,

will all fall in the left half side of the plane if the dynamic system is stable. The right half side of

the complex plane represents instability, such that if any system pole is located there, the entire

system is dynamically unstable. Graphically, the natural frequency and damping coefficient of each

mode of the system can be determined from the location of the poles in the complex plane. The

absolute distance from the pole to the origin is the natural frequency of that pole’s mode while the

sine of the angle between the pole and the positive imaginary axis is the damping ratio of the mode.

Fig. 2 depicts the graphical relationship between a system pole and its corresponding modal natural

frequency and damping ratio (e.g., Lynch and Law 2002).

To improve the response of a system subjected to external disturbances, the poles of the system

can be moved to more desirable locations on the complex plane. Many pole placement techniques

exist and can be finding in literature of control (e.g., Amini et al. 2005). This paper is an

investigation into the development of pole assignment technique that termed developed pole

assignment method (DPAM) for application to structural control systems.

Control force vector consists of the gain matrix (F) and the state vector (q) that are considered as

follows

(4)

The matrix, F is defined by Eq. (5)

(5)

 
The square matrices, Fk and Fc, are type of stiffness and damping property respectively. In this

research they are assumed as follows

A[ ] 0  I

m
1–
k  – m

1–
c–

= q{ }
x

x·⎩ ⎭
⎨ ⎬
⎧ ⎫

=

B[ ]
0

m
1–

–
= H{ }

0

1–⎩ ⎭
⎨ ⎬
⎧ ⎫

=

uc{ } F[ ] q{ }=

F[ ] Fk  Fc[ ]=

Fig. 2 The relationship between system poles and the corresponding modal frequency and damping ratio
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(6)

The diagonal matrices, k' and c', Eq. (7), are directly calculated from properties of structure. The

matrices β and α, are diagonal coefficient matrices and shown as follows 

(7)

Where, ki equal to stiffness of i-th story and Ci is obtained from Eq. (8)

 n = Number of stories (8)

Where, Mi is i-th element of diagonal mass matrix. The parameters, ξ and ωi, are damping and

i-th mode frequency of structure respectively. Substituting Eq. (4) into Eq. (2), the revised state

equation of the system can now be expressed as

(9)

The new system matrix ( ) is obtained by Eq. (10)

(10)

Finally, the equation of the state is changed by substituting Eq. (10) into Eq. (9) as follows 

(11)

By using GA and minimizing a target function (defined by Eq. (30)), the coefficient matrices β

and α are calculated. Therefore the gain matrix F develops the matrix system, Acon, so that

performance target is attainable. In fact, the new poles locations are the eigenvalues of the modified

system matrix (Acon) and performance target of the controlled system. As illustrated in Eq. (4), the

calculation of the control forces for the system requires the full state, q, at each time step. In

practice, a controller is used to take measurements from the system sensors, assemble the state

vector, and calculate the control commands for the control devices.

In this study SHD variable dampers are used as the control devices. The SHD device is a variable

damper whose damping coefficient can be changed by changing the orifice opening between the

two hydraulic chambers of the damper. In each story the SHD damper is installed. The SHD

receives command control force from the processor and calculates the damping coefficient by

dividing the command force by the relative velocity between the two floors to which the SHD is

installed. The control force is applied if the direction of relative velocity between the two floors is

in an opposite direction as the desired control force, else no control force is applied and the damper

is set to a default minimum value (e.g., Lynch and Law 2002). Fig. 7 illustrates the installation of

the SHD control device and the operational properties of the damper. The stiffness and damping of

SHD are coupled with the stiffness and damping of the story as an equivalent dashpot and spring. 

Fk[ ] β[ ] k′[ ]=

Fc[ ] α[ ] c′[ ]=

k′[ ]

k1  …  0  0

  k2     0

0       

0  0  …  kn

c′[ ]

C1  …  0  0

  C2     0

0       

0  0  …  Cn

==
…

…

…

…

…

…

Ci 2ξω iMi=

i 1 2 … n, , ,=

q·{ } A[ ] B[ ] F[ ]+( ) q{ } H{ }x··g+=

Acon

Acon[ ] A[ ] B[ ] F[ ]+=

q·{ } Acon[ ] q{ } H{ }x··g+=
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3. Performance target of controlled system 

In this section, the controlled performance target is determined. At First, capacity and demand

diagrams are established to use in improved capacity demand diagram method. 

3.1 Capacity diagram

Pushover analysis is applied to determine the capacity diagram. The pushover analysis is

performed by subjecting a structure to a monotonically increasing pattern of lateral forces,

representing the inertial forces which would be experienced by the structure when subjected to

ground shaking. Under incrementally increasing loads various structural elements yield sequentially.

Consequently, at each event, the structure experiences a loss in stiffness. Using the pushover analysis,

the characteristic nonlinear force - displacement relationship of the MDOF system can be

determined. In principle, any force and displacement can be chosen. In this paper, base shear and

roof (top) displacement have been used as representative of force and displacement, respectively. The

selection of an appropriate lateral load distribution is an important step within the pushover analysis.

In this study, the vector of the lateral loads P used in the pushover analysis is determined as

(12)

Where, V is total base shear. The vector Φ1 is fundamental (first) mode of structure. Such an

approach for the determination of the distribution of lateral loads has a physical background. If the

assumed displacement shape was exact and constant during ground shaking, then the distribution of

lateral forces would be equal to the distribution of effective earthquake forces. Moreover, by using

lateral forces according to Eq. (12), the transformation from the MDOF to the equivalent SDOF

system and vice versa follows from simple mathematics (e.g., Fajfar et al. 1997). From static it

follows

(13)

The internal forces (Fin) are equal to the statically applied external loads (Fout) which are

introduced as

(14)

It will be assumed that the displacement shape Φ1 is constant, that it does not change during the

structural response to ground motion. This is the basic and the most critical assumption. The

displacement vector x is defined as

(15)

Where, D(t) is the time dependent top displacement. The effective modal mass for the

fundamental vibration mode (M*) and the modal participation factor (Γ) are defined as follows

(16)

P{ }
m[ ] Φ1{ }

Φ1{ }T m[ ] l{ }
--------------------------------V=

Fin Fout=

Fin c[ ] x·{ } k[ ] x{ }+=

Fout P{ }=

x{ } Φ1{ }D t( )=

M
* Φ1

T{ } m[ ] l{ }= Γ
Φ1

T{ } m[ ] l{ }

Φ1

T{ } m[ ] Φ1{ }
-----------------------------------=
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By introducing Eq. (12), (13), (14), and (15) into Eq. (1), and by multiplying from the left side

with , we obtain

(17)

If two parameters, D* and V*, are introduced as follows

(18)

Finally, the equation of motion of the equivalent SDOF system can be written as

(19)

Note that the constant Γ applies for the transformation of both displacements and forces. As a

consequence, the force - displacement relationship (the V-D diagram) determined for the MDOF

system (Result of pushover analysis) applies also to the equivalent SDOF system (the 

diagram), provided that both force and displacement are divided by Γ. This can be visualized by

changing the scale on both axes of the force - displacement diagram (Fig. 3). The initial stiffness

of the equivalent SDOF system remains the same as that defined by the base shear - top

displacement diagram of the MDOF system. In order to determine a simplified (elastic - perfectly

plastic) force – displacement relationship for the equivalent SDOF system, engineering judgment

has to be used (e.g., Fajfar et al. 1997). The capacity curve in improved capacity demand diagram

method is used in acceleration – displacement (A-D) Format. By dividing V* with M*, the

acceleration is obtained.

Φ1

T

M
*D

··

Γ
----

V

Γ
---+ M–

*
x··g Φ1

T{ } uc{ }–=

D
* D

Γ
----=

V
* V

Γ
---=

M
*
D
·· *

V
*

+ M–
*
x··g Φ1

T{ } uc{ }–=

V
*

D
*

–

Fig. 3 Pushover curve and the corresponding capacity diagram. Note the different scales. The top
displacement, D, and the base shear, V, apply to MDOF system, whereas the force V* and the
displacement D* apply to the equivalent SDOF system. The acceleration, Sa, belongs to the capacity
diagram in A-D Format
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3.2 Demand diagram

The improved capacity demand diagram method uses the well known constant ductility design

spectrum for the demand diagram, instead of the elastic design spectrum for equivalent linear

systems in ATC-40 procedures. A constant ductility design spectrum is established by reducing the

elastic design spectrum by appropriate ductility dependent factors that depend on natural vibration

period (Tn). 

The right side of Eq. (19) can be considered as improved earthquake force for equivalent SDOF

system. By introducing  as decreased ground acceleration recorded of specified earthquake, it is

obtained as follows

(20)

The peak ground acceleration (PGA) is defined from . By using sequence integrating from ,

the decreased ground velocity and displacement are obtained. Consequently, the peak ground

velocity (PGV) and the peak ground displacement (PGD) are determined. The demand curve,

applied in the improved capacity demand diagram method, can be constructed based on decreased

PGA, PGV and PGD.

3.3 Displacement performance

The yield strength fy of each elastoplastic system analyzed was chosen corresponding to an

allowable ductility µ

(21)

Where, w and g are weight of the system and acceleration due to gravity respectively. Also Ay is

the pseudo acceleration corresponding to the allowable ductility and the vibration properties, natural

period Tn and damping ratio ξ, of the system in its linear range of vibration. According to Fig. 3,

the pseudo acceleration Ay related to the yield strength and the yield deformation DY is determined.

Elastic vibration period Tn is obtained as follows

(22)

 

The yield strength reduction factor is given by

(23)

Where, f0 is the minimum yield strength required for the structure to remain elastic, obtained as

follows

(24)

Also, A is the pseudo acceleration ordinate of the elastic design spectrum, constructed based on

decreased ground acceleration recorded at ( ). The suggested elastic design spectrum (Fig. 4) is

X
··
g

X
··
g x··g

Φ1

T{ } uc{ }

M
*

------------------------+=

X
··
g X

··
g
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Ay

g
-----⎝ ⎠
⎛ ⎞w=

Tn 2π
Dy

Ay

------=

Ry

f0
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A

Ay

-----= =

f0
A

g
---⎝ ⎠
⎛ ⎞w=

Tn ξ,
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the median plus one standard deviation spectrum constructed by the procedures of Newmark and

Hall, as described by Chopra (e.g., Chopra 1995).

For determining µ the  equations for elastoplastic systems, consistent with the

Newmark-Hall inelastic design spectra are used in this paper

(25)

The parameter β is calculated as follows

(26)

And the Ta, Tb and Tc are defined in Fig. 4 and  is the period where the constant A and

constant V (pseudo velocity) branches of the inelastic design spectrum intersect. For a given Ry,

ductility factor µ can be calculated for all Tn except for , wherein two possibilities need

to be checked since  itself depends on µ. Assuming that , according to Eq. (25) µ is

calculated. For this value of µ,  is obtained as follows

(27)

If  clearly the assumption that  is correct, else the assumption  is

correct.

Ry µ– Tn–

µ

Undefined   Tn Ta<

1 Ry

2/β
+

2
-----------------           Ta Tn Tb< <

1 Ry

2
+

2
--------------             Tb Tn Tc′< <

Tc

Tn

-----Ry               Tc′ Tn Tc< <

Ry                   Tn Tc>⎩
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

=

β ln
T1

Ta

-----/ln
Tb

Ta

-----=

Tc′

Tb Tn Tc< <
Tc′ Tb Tn Tc′< <

Tc′

Tc′
Tc 2µ 1–

µ
------------------------=

Tc′ Tn> Tb Tn Tc′< < Tc′ Tn Tc< <

Fig. 4 Newmark-Hall elastic design spectrum 
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The maximum nonlinear dynamic deformation D* of SDOF system is obtained as follows

(28)

 
Using Eq. (18), the maximum nonlinear dynamic deformation of MDOF system is determined as

follows

(29)

Where, D is performance target of MDOF system. Therefore the gain matrix F in the DPAM

develops the matrix system Acon so that, target displacement performance is equated to D. 

4. Target function

The target function considered here is introduced as follows

(30)

Where  is the nonlinear dynamic deformation of MDOF system (D) which was determined

in previous section. The displacement related to the first appeared plastic hinge in the columns is

defined by  which is determined using pushover analysis. The number of variables in the

target function is equal to 2n, which is also the number of variables related to the elements of

diagonal coefficient matrices β and α. Minimizing the target function using the GA yields the

optimum values of matrices β and α. Allocating of proportion is restricted to a condition, in which

if any changes occur in proportion of each element of diagonal coefficient matrices then the

disturbance will be found in system behavior. Based on this solution, properties of structure,

stiffness and damping of stories are changed optimally without any disturbances in system behavior.

This is an optimal solution in the multi objective optimization sense. 

Based on the optimal distribution of coefficient matrices, the optimal location and the number of

actuators are determined. It means that under a specified earthquake, if there is no need to install

actuator in i-th story of the structure and the DPAM gives the coefficients βi and  approximately

zero.

The computational steps of DPAM based on the improved capacity demand diagram are shown in

Fig. 5 and summarized as follows:

11) By the help of sensors the feedback of input and output data are obtained.

12) The coefficient matrices β and α are guessed by GA. 

13) By determining β and α, the gain matrix, F, is obtained using Eqs. (5) and (6). Also the

control forces are determined by the help of Eq. (4).

14) The equivalent SDOF system can be constructed from Eq. (19).

15) Using Eq. (20), the ground acceleration is developed.

16) Pushover analysis is applied to determine capacity diagram.

17) From Eq. (25) the inelastic design spectra based on improved ground acceleration is generated.

18) The maximum nonlinear dynamic deformation D* of SDOF system is obtained using Eq. (28).

19) The maximum nonlinear dynamic deformation of MDOF system is obtained from Eq. (29).

10) If the absolute value of target function is close to zero (for example smaller than 0.05) then

the procedure is completed, else the GA reproduces the better coefficient matrices and the

procedure is repeated until the absolute value of target function goes to zero.

D
*

µ Ry×=

D Γ D
*×=

Target function ∆roof ∆Plastic–=

∆Roof

∆Plastic

αi
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Fig. 5 The algorithm of control based on displacement performance 
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5. Linear quadratic regulation (LQR)

The LQR method is applied in this study for comparison and verification. In designing a linear

control system, one of the most effective and widely used approaches is the LQR. The LQR

approach is briefly reviewed (e.g., Lynch and Law 2002). The LQR has emerged as a reliable

systematic guide to pole placement that allows for the weighting of control response against control

effort. The LQR method provides an optimal control solution through the minimization of a cost

function that encapsulates the system’s control objectives.

(31)

The cost function, J, contains two control objectives; the minimization of structural response, q,

and the minimization of the input control forces, uc, required to attain those responses with a

weighting matrices, R and Q, which is included to vary the proportional emphasis between the two

terms.

The result of the minimization of the cost function is a static gain matrix, F, that when multiplied

by the full state of the system q yields the optimal control force vector.

(32)

The Ricatti matrix, Z, represents the solution of the algebraic Ricatti equation that results in the

minimization procedure.

(33)

The new pole locations of the closed loop system are the eigenvalues of the modified system

matrix Acon. Key to understanding the location of the closed loop poles is the understanding of the

influence of the individual terms of the LQR cost function. If Q emphasizes on the vector of

displacements of the system nodes, the poles will migrate in a manner consistent to increased

system stiffness. Increased system stiffness is synonymous with poles migrating outward as shown

in Fig. 6(a). On the other hand, if the emphasized response is system velocities, the resulting control

solution will cause poles to migrate consistent with increased system damping. Pole rotating about

the origin towards the negative real axis is consistent with increased system damping, as shown in

Fig. 6(b). A combination of displacement and velocity in the emphasized response would result in a

pole migration pattern that would be influenced by both increased system stiffness and damping.

How far the final poles result on these generalized trajectory paths is dependent upon the weighting

matrix R. If R is near infinity, the poles will not move since this makes control effort expensive. As

R decreases towards zero, control becomes inexpensive and poles result in positions far from their

open loop positions.

The limitations of the LQR controller should be noted. In particular, the optimality of the LQR

solution is dependent upon the assumption of a linear system. Application in structures excited by

large seismic events, the assumption of system linearity is invalid. For use in nonlinear systems, the

nonlinearity of the structure has to be modeled in the analysis and an additional control loop is

designed for the control system that cancels the system nonlinearities. Another inherent weakness of

the LQR method is its heavy dependence upon the assumption of perfect knowledge of the system.

J q
T
Qq uc

T
Ruc+( ) td

0

∞

∫=

uc R
1–
B
T
Zq– Fq–= =

ZA A
T
Z Q ZBR

1–
B

T
Z–+ + 0=
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If the model used in the design of the controller is incorrect, the LQR solution is no longer optimal

and could even be destabilizing (e.g., Lynch and Law 2002).

6. Stability of the control solution

Stability is defined by a system’s tendency to grow or decay in response to an input disturbance to

the system. If the response decays, the system is considered stable. However, if the response grows

in time, then the system is defined as unstable. The stability of a dynamic system is characterized

by the location of the system poles in the complex plane. Given the existence of at least one pole in

the right half part of the complex plane, the system is considered unstable and will exhibit growing

system response to input disturbances. If all poles are located in the left half part of the complex

plane, the system is stable. Various tests for linear system stability exist such as the Routh’s stability

criterion and the Nyquist stability criterion (e.g., Franklin et al. 1994).

For the LQR controller, closed loop system stability is guaranteed if two criteria are met: (a) if the

system matrix, A, and the control location matrix, Bu, of Eq. (2) are a controllable pair; and (b) R

and Q of Eq. (37) are both positive definite (e.g., Stengel 1994). The controllability criterion ensures

that the controller has influence on all modes, particularly unstable modes, of the system. The

positive definite criteria on R allows for control effort to have a positive effect on the cost function,

J, while the positive definite criterion on Q provides penalty on system responses, particularly

unstable responses.

Unlike the LQR controller, the current controller derived in the DPAM has not been shown to be

mathematically stable in closed form. Further work is needed to consider the limitations of the

controller with regard to stability concerns. However, when at the first we consider the restriction,

remaining structure behavior in elastic zone, the stability of the structure is observed. 

7. Numerical example: 30-story steel 

To illustrate the efficiency of DPAM, a hypothetical 30-story 2-dimentional steel moment frame

structure is used. Also a set of 30 SHD dampers is distributed throughout the structure. In each

story only one SHD damper is considered. Fig. 7 illustrates the SHM properties, the 30-story steel

Fig. 6 Influence of the system cost function on closed loop pole locations 
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Fig. 7 Properties of 30-story steel moment frame structure and SHD device 
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moment frame structure and its stories stiffness as well as damping. Maximum control force is

obtained by SHM through constrain value for that. Tables 3 and 4 show the modal participating

mass ratio for the first three modes of finite element model and lumped mass model of the system,

respectively, in x direction (Ux). It is clear that the first mode is the fundamental mode for the two

models. Hence to simplify the analysis, the structure is modeled as a lumped mass shear model. To

determine the optimal control forces during induced earthquake by using DPAM controller, the

processor sends commands to control devices such as SHD to produce the needed control forces.

During the earthquake, the total power consumption is calculated based on the properties of SHD

device. Note that our main goal is keeping the structure behavior in the elastic zone. To evaluate the

efficiency of the DPAM strategy and in order to considering the different intensity and duration in

earthquake records, three far field earthquake records such as El Centro (1940 NS), Tabas (1987

NS) and Kobe (1995 NS) are used. The peak ground velocity of the three earthquake records are

36.15, 126.48, and 81.30 cm/sec, respectively. Also the peak ground accelerations of them are

0.318 g, 0.933 g, and 0.821 g, respectively. The acceleration response spectra of the input earthquakes

are shown in Fig. 8.

Fig. 8 Acceleration response spectra of the seismic disturbances used (damping ratio 5%) 

Fig. 9 Result of GA optimization for coefficient matrices based on DPAM in 30-Story steel structure 
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Using pushover analyses the obtained displacement related to the first appeared plastic hinge in

columns, ∆Plastic, is equal to 10.20 cm. In presence of the three above mentioned earthquakes, the

improved capacity demand diagram method estimates the maximum nonlinear dynamic deformation

of the structure as 13.74, 48.06, and 30.89 cm, respectively. Therefore, the structure behavior passes

Fig. 10 Decreased ground acceleration – El Centro (1940, NS) 

Fig. 11 Decreased ground acceleration – Tabas (1987, NS) 
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through the elastic zone to the plastic area. So, the control forces are needed to keep the structure in

its elastic capacity. Two controllers containing DPAM and LQR are used to reduce the response of

structure and their results are compared.

By minimizing the target function (defined by Eq. (30)) using GA, the optimum values of

matrices β and α are determined. Fig. 9 illustrates the result of GA optimization for coefficient

matrices. As mentioned before, based on the optimal distribution of coefficient matrices, the optimal

location and the number of actuators are determined. The numbers of used SHM devices in three

earthquakes are 5, 10 and 7 respectively as shown in Fig. 9. In the presence of applied control

forces, the ground accelerations are decreased as shown in Figs. 10, 11, and 12. The demand curves

based on decreased ground accelerations is used in improved capacity demand diagram method.

Also the performance of the structure is equated to the threshold of nonlinear behavior of structure.

To design the LQR controller, the weighting matrix on state response, Q, is selected with the

objective of reducing system velocity and displacement responses. The weighting on control, R, is

increased up to a point of actuation saturation. The summary of results containing the weighting

matrices in the LQR method is given by Table 1. The results of total power consumption and

number of necessary SHD devices in the two above mentioned methods are compared in Table 2. It

shows that the total power consumption and number of SHD devices, during the induced

Fig. 12 Decreased ground acceleration – Kobe (1995, NS) 

Table 1 The weighting matrices, Q and R, based on LQR Method, in 30-Story steel structure

Earthquake Q R

El Centro (NS, 1940)

Q = [I]60×60

6.6990E-011×[I]30×30

Tabas (NS, 1987) 4.8000E-013×[I]30×30

Kobe (NS, 1995) 2.4700E-011×[I]30×30
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Fig. 13 The migration of system eigenvalues due to
DPAM controllers – El Centro (1940, NS)

Fig. 14 The migration of system eigenvalues due to
LQR controllers – El Centro (1940, NS)

Fig. 15 Time history response of controlled 30-story structure due to El Centro (NS, 1940) 

Table 2 Performance comparison of two controllers, DPAM and LQR, in 30-Story steel structure

Earthquake Controller
Number of 

control device
Maximum 

control force [KN]

Percentage of maximum 
control force based on 

total weight of structure

Total power
[KW]

El Centro
(NS, 1940)

DPAM 5 78.25 3.22 2.58

LQR 30 23.83 0.99 3.54

Kobe
(NS, 1995)

DPAM 7 158.96 6.62 6.36

LQR 30 72.66 3.03 7.69

Tabas
(NS, 1987)

DPAM 10 486.67 20.27 12.10

LQR 30 84.53 3.52 19.21
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earthquakes, in DPAM are less than LQR method.

The poles migration to left side of complex area is shown in Figs. 13 and 14. They clear that the

system is more stable than initial conditions and there isn't any disturbances in system behavior.

Fig. 15 shows the time history response of the controlled structure subjected to the El Centro

earthquake. The simplified nonlinear analysis approximately gives the same result in comparison

with the time history analysis. 

Figs. 16 and 17 present the reduction of both maximum absolute displacements and maximum

inter story drifts. These are quite significant for the both of LQR and DPAM controllers in

Fig. 16 Control applied to the 30-story structure—LQR versus DPAM-displacements

Table 3 Modal participating mass ratio of finite element model

Mode
Period
(Sec)

UX
(%)

SumUX
(%)

1 5.27 77.51 77.51

2 1.40 11.05 88.56

3 0.58 4.24 92.80

Table 4 Modal participating mass ratio of lumped mass model

Mode
Period
(Sec)

UX
(%)

SumUX
(%)

1 0.43 97.52 97.52

2 0.21 0.96 98.48

3 0.11 1.35 99.82
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comparison with the uncontrolled response. If we compare the performance of the DPAM and LQR

controllers with each other, it can be safely concluded that both of them yield similar reductions of

structural response.

The total control effort of the control system is considered to ensure that the DPAM controller is

not using excessive amounts of control energy to remain competitive with the LQR solution. As

Fig. 18 Accumulated control effort of 30-story structure using LQR and DPAM controllers 

Fig. 17 Control applied to the 30-story structure—LQR versus DPAM-drifts 
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seen in Fig. 18, during the three seismic disturbances the DPAM controller is using control effort

approximately 36.21%, 58.79%, and 13.10%, respectively, less than the LQR controller.

 

8. Conclusions

While nonlinear response history analysis is the most rigorous procedure to compute seismic

demands, simplified nonlinear analysis procedures are applied to determine the displacement

demand imposed on a building expected to deform inelastically. Here for the first time, the

improved capacity demand diagram method in control of the structural system is applied. We

presented the formulation and implementation of the developed pole assignment method in control

of structural systems. It was shown that the control technique can successfully limit the response of

structures during the large seismic events. By applying the control forces, the ground acceleration is

decreased. Based on this reduction, displacement performance of structure due to decreased ground

acceleration is equated to the threshold of nonlinear behavior of structure. Using the optimal control

forces, the structure responses are reduced. Also the system becomes more stable than uncontrolled

system condition. There is no any disturbance in system behavior and the structure is forced to

behave in linear zone of capacity diagram. The system matrix in DPAM is modified. In this case,

changing modal damping and natural frequencies of structure adapts response of structure to

performance target.

In comparison to the widely used LQR controller, it was shown that the proposed method is more

effective. Based on optimal distribution of coefficient matrices, optimal location and number of

actuators are determined. In DPAM the total consumed power of control devices is considerably less

than the LQR method.
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