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Abstract. The natural frequencies of continuous systems depend on the governing partial differential
equation and can be numerically estimated using the finite element method. The accuracy and
convergence of the finite element method depends on the choice of basis functions. A basis function will
generally perform better if it is closely linked to the problem physics. The stiffness matrix is the same for
either static or dynamic loading, hence the basis function can be chosen such that it satisfies the static
part of the governing differential equation. However, in the case of a rotating beam, an exact closed form
solution for the static part of the governing differential equation is not known. In this paper, we try to
find an approximate solution for the static part of the governing differential equation for an uniform
rotating beam. The error resulting from the approximation is minimized to generate relations between the
constants assumed in the solution. This new function is used as a basis function which gives rise to shape
functions which depend on position of the element in the beam, material, geometric properties and
rotational speed of the beam. The results of finite element analysis with the new basis functions are
verified with published literature for uniform and tapered rotating beams under different boundary
conditions. Numerical results clearly show the advantage of the current approach at high rotation speeds
with a reduction of 10 to 33% in the degrees of freedom required for convergence of the first five modes
to four decimal places for an uniform rotating cantilever beam.
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1. Introduction

The dynamics of rotating beams is an important area of research as many practical engineering

structures such as helicopter rotor blades, gas turbine blades etc. can be modeled as rotating beams

(Pnueli 1972, Fox and Burdess 1979, Hodges and Rutkowski 1981, Wright et al. 1982, Bauchau

and Hong 1987, Fallahi et al. 1994, Bazoune and Khulief 1992, Hamdan and Al-Bedoor 2001). The

variation of centrifugal force along the length of the beam causes a stiffening effect leading to a

variation in the response of the beam from what it would have been for a non-rotating condition.

The natural frequency of the beam is a very important factor in design considerations for practical

applications as external forcing at the natural frequencies might cause resonance in the system

which is not desired. Theoretically, any beam has infinite modes of vibration but it has been

observed that only the first few modes contribute significantly to the response of the system
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(Subrahmanyam and Kaza 1987, Udupa and Varadan 1990, Naguleswaran 1994, Lee and Kuo 1992,

Yokoyama 1988, Lin 2001, Pesheck et al. 2002, Lin and Lee 2004, Kim 2006, Bazoune et al.

1999). In the case of rotating beams, the first 2-5 modes are considered for vibration analysis. In

these modes, it is observed that the centrifugal stiffness dominates the first two modes and in the

higher modes the flexural stiffness dominates the response of the system. 

A general physical system can be described in terms of partial differential equations. For many

practical systems, the partial differential equations are linear and the natural frequencies are obtained

by the method of separation of variables by assuming a solution of the form w(x, t) = W(x)eiωt

where ω is the natural frequency. For some simple systems such as an uniform non-rotating beam,

the resulting ordinary differential equation can be solved exactly for the natural frequency using

appropriate boundary conditions. However, for many physical systems such as the rotating beam, an

exact solution is not possible and approximate methods such as the Rayleigh Ritz, Galerkin and

finite element method need to be used. Another approach is to use a Frobenius series solution of the

differential equation and the dynamic stiffness method (Hashemi et al. 1999, Banerjee 2000, Huang

and Liu, 2001, Gupta and Manohar, 2002, Wang and Wereley 2004). However, the finite element

method is most popular in engineering due to its ease of computer implementation and adaptability

to non-uniform cross sections. The finite element method converts the ordinary differential

equations into matrix equations through a spatial discretization of the physical domain. The natural

frequencies of any physical system are then obtained by the solution to the generalized eigenvalue

problem Kφ = λMφ. The matrices K and M are formed using the finite element method.

In the finite element method, we assume the displacement variation in the element to be

interpolated in terms of the values of displacement and slopes at nodal points specified within the

element. The interpolation functions can be obtained by assuming a basis function for the

displacement variation in the element. The basis function is generally assumed to be a polynomial

and these basis functions show asymptotical convergence i.e., either making the discretization finer

or assuming a higher polynomial approximation (increasing the number of nodes) improves the

accuracy of the method.

The convergence of finite element methods can be improved if we assume basis functions which

will closely resemble the displacement variation in the physical problem (Chakraborty et al. 2003,

Cook et al. 2002, Reddy 1993). The stiffness matrix for dynamic analysis of any structural system

is same as that in static analysis. Hence a very good choice for basis functions is one which satisfies

the static part of the governing partial differential equation. In the case of rotating beams, an

analytical solution for the static part of the governing partial differential equation is not known. In

order to simplify the analysis, the cubic polynomial which is the solution to the static part of

differential equation of a non-rotating beam is generally chosen as the basis function. Since the

flexural stiffness dominates the response of the system in the higher modes, the cubic polynomial

captures the higher modes very effectively. However, they do not capture the first few modes

effectively and show slow convergence for the first few modes especially at higher rotation speeds.

Several researchers (Gunda et al. 2007, Gunda and Ganguli 2008a, b, Al-Qaisia and Al-Bedoor

2005) have tried to simplify the governing equation such that an exact analytical solution can be

found for the equation. It has been observed that these modified basis functions show improved

convergence for the fundamental mode but converge slower than the cubic functions for the higher

modes. The present paper addresses this problem by developing new physics based basis functions

for rotating beams.

In order to obtain improved convergence for all the modes, the basis function must be able to
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capture the effects of the flexural stiffening as well as include the centrifugal stiffening effect. The

centrifugal force varies along the length of the beam (maximum at the root and zero at the tip),

hence the stiffness of the system varies along the length of the beam too. We try to split the static

part of the differential equation into the flexural and the centrifugal part. This indirectly represents

the analysis of a non-rotating beam and a rotating string separately. We assume a solution to the

differential equation to be a linear combination of the two separate solutions. A method for solving

differential equations is the collocation method (Wright 2007). In this method, we assume an

approximate solution which is either defined in the global domain or in a piecewise manner and

then use the residual in the differential equation to solve for the constants in the solution. We define

an approximation in a given number of subintervals and then obtain a relation for the solution

usingthe collocation method. This approximated solution is then used as a basis function in the

finite element method.

Conventional finite element methods do not directly take the error into account. Gunda and

Ganguli (2008b) tried to use the local form of differential equation for obtaining the shape functions

and showed that improved convergence was not obtained in the higher modes. The combination of

the collocation and the finite element method is what gives the current method the advantage over

conventional finite element methods.

2. Basis function

The schematic of a rotating tapered beam is shown in Fig. 1. The governing differential equation

of a Euler-Bernoulli rotating beam is given by Hodges and Rutkowski (1981).

(1)

where EI(x) is the flexural stiffness, T(x) is the axial force due to centrifugal stiffening, m(x) is the

mass per unit length of the beam, w is the bending displacement and is the rotation speed.

The axial force due to centrifugal stiffening, T(x) is given as

(2)
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Fig. 1 Rotating beam
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where R is the hub radius, L is the length of the beam and F is the axial force acting at the end of

the beam. The static homogenous part of the governing differential equation for a rotating beam is

obtained by ignoring the inertia term in Eq. (1) and is given by

 (3)

Eq. (3) does not have an exact closed form solution. Series solution for Eq. (3) can be considered

but Wang and Wereley (2004) have shown that as many as 350 terms in the series solution have to

be included for the Frobenius solution to give superior convergence for the rotating beam problem.

In order to find an approximate solution, we assume EI(x) and m(x) to be constant. Furthermore,

using R = F = 0, Eq. (3) can be simplified to

(4)

The equation can be further simplified by introducing a dimensionless parameter 

(5)

We try to find an approximate solution to the static part of the governing differential equation by

splitting Eq. (5) into two parts; the centrifugal part and the flexural part. For the equation to have an

exact solution, we assume that a function w exists such that both the parts are satisfied i.e., both the

operators must go to zero.

(6)

 (7)

The cubic function satisfies Eq. (6)

(8)

Eq. (8) represents the case of a non-rotating beam.

If we try to satisfy the centrifugal part given by Eq. (7) we get

(9)

Eq. (9) represents the case of a rotating string with no stiffness (Hildebrand 1965). As the rotation

speed of the beam increases, the centrifugal effects overwhelm the flexural stiffness and the rotating

beam approaches the rotating string. It is reasonable to assume that a rotating beam solution should

satisfy the extreme cases where rotation speed is zero and rotation speed is very high. Therefore, we

consider a linear combination of Eq. (8) and Eq. (9) as a solution to Eq. (3)
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Any fourth order differential equation can have only four constants which can be found using the

boundary conditions. Eq. (10) contains an extra constant a4; hence we eliminate a4 from the solution

by using an idea from the collocation method. The collocation method is an approach for solving

differential equations by assuming a solution and finding the values of constants in the solution by

forcing the differential equation to be satisfied at several ‘collocation’ points in the domain. The

residual arising in the differential equation by assuming Eq. (10) to be a solution to Eq. (3) is given

by

(11)

We set the error to zero at some points z within the domain

(12)

where z represents points within the domain (0, L). We have considered the open interval because

the natural and essential boundary conditions are imposed at the ends of the beam.

Until now, we have discussed on obtaining and approximate solution to the static part of the

governing differential equation for a rotating beam. In order to use this solution as a basis function

for the finite element method, the static part of the governing differential equation for the ith

element shown in Fig. 1 is given by

 (13)

Using similar techniques as explained for Eq. (3)

(14)

Eq. (14) can be further simplified as

 (15)

We recall that the mass and flexural variation was assumed to be a constant in obtaining the

solution given by Eq. (15). This assumption is validated by the fact that in the limit of mesh

refinement the mass and flexural variation can be neglected. Hence, even though the solution was

obtained for an uniform beam, it is used only for the finite element and is valid for all classes of

tapered beams.

When we choose Eq. (11) as a basis function, it requires substitution at x = l which will give rise

to a discontinuity at the last element. Now, in order to simplify the finite element calculations, we

approximate the equation as

 (16)

We can presume that the above approximation to the basis function will be negated by choosing a

finer discretization of our beam, which is typical of finite element methods. Consider a two-noded
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R = 0. The boundary conditions for the element are given by

(17)

(18)

 (19)

 (20)

(21)

where

(22)

Eq. (22) is obtained by solving Eq. (12).

Since the basis function defined by Eq. (17) contains polynomial terms upto order three, it can

represent a rigid body mode as well as a state of constant strain. Hence the above basis function

will give rise to a complete interpolation polynomial (Bathe 1996).

We set the error to zero at a collocation point within the element. We choose  = l/2 within each

element so that for any general element this point will be z = xi + l/2. Since we assume an uniform

mesh xi = (i − 1)l, the zero error condition holds within each element(i) at 

(23)

From Eqs. (17)-(23), the constants  can be solved and the displacement function can

be written in terms of the displacements and slopes at the nodes.
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 (24)

where N1, N2, N3, N4 are the interpolating functions and are given as

where

(25)
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(28)

(29)

In the above equations z = (i − 1/2)l, i = 1 ... ne represents the position of the element in the beam

and L = lne.

The interpolating functions obtained here are a function of the material properties (EI, m),

geometric properties (L) and rotational speed (Ω) of the beam. They also depend on the position of

the element in the beam (xi). Though the new basis functions appear quite complicated, the behavior

of the shape functions is smooth and continuous in the beam which can be observed by plotting

them. Figs. 3 and 4 show comparison of the shape functions of the first, middle and the last element

using the hybrid basis function with the Hermite cubic shape functions at low and high rotation

speeds, respectively, for a 10 element discretization (ne = 10). At λ = 12, the shape functions are

almost identical to the Hermite cubics showing that the effect of rotation is very small at low

rotation speeds. The shape functions show increasing difference at the higher speed (λ = 100) and

particularly near the root of the beam where the centrifugal effect is more (Eq. (2)). However, the

effect of rotation is felt in the slope related shape functions N2 and N4 only and the displacement

related functions show little change. The interpolating functions approach the Hermite cubic

functions as the rotation speed tends to zero. The shape functions for the last element are almost

similar to the Hermite cubic shape functions because the centrifugal force approaches zero.

It is verified mathematically that

R4 L
2

l
2

–( ) Lλ
2
x
2

3z–( x+( )L2
2z x–( )3z

2) L
2

z
2

–( )
4

ln
L l+

L l–
-----------⎝ ⎠
⎛ ⎞ l Lλ

2
l 3z l–( )L2

3z
2

–((+ +⎝
⎛=

2z l–( )) L
2

z
2

–( )
4

ln
L x+

L x–
-------------⎝ ⎠
⎛ ⎞ 2 λ

2
L
10( 3z l– x–( )– zL

8
λ
2( 18z

2
7 l x+( )z– l x–( )– 24l x )–

 2 21z
2

9 l x+( )z– 2l x+(( )λ2
12l x )z3L6

2λ
2
z
5
L
4

24z
2

11 l x+( )z 3l x ) λ
2
z
7
L
2

27z
2(+ +–(–++

 4l x 13 l x+( )z )– λ
2

6z
2

3 l x+( )z– l x+( )z9)x l x )–( ))–+

D l L
2

z
2

–( )
4

λ
2
L l 2z–(( )L2

4z 3l–( )z2 ) L
2

l
2

–( )+ ln
L l+

L l–
-----------⎝ ⎠
⎛ ⎞ 2 3λ

2
l 2z–( )L12

L
10

+(–⎝
⎛=

4l
2
z 21lz

2
– 2l

3
– 36z

3
+( )λ2

24l
2
z)– zL

8
λ
2

l
4

84z
4

22l
2
z
2

14l
3
z– 54lz

3
–+ +( )(–(

24l
4

24l
2
z
2

+ )– 2z
3
L
6

λ
2

l
4

24z
4

12l
2
z
2

33lz
3

– 18l
3
z–+ +( ) 6l

4 ) λ
2
z
5
L
4

44l
3
z–(–+(+

 54z
4

6l
4

52l
2
z
2

39lz
3

–+ + ) λ
2

9lz
3

– 12z
4

4l
4

26l
3
z– 28l

2
z
2

+ + +( )z7L2
– l

2
λ
2
z
9

–+

l
2

6zl– 6z
2

+( ))l)

N1
λ 0→
lim

l
3

3x
2
l– 2x

3
+

l
3

---------------------------------=

N2
λ 0→
lim

xl
2

2x
2
l– x

3
+

l
2

---------------------------------=

N3
λ 0→
lim

3x
2
l 2x

3
–

l
3

------------------------=

N4
λ 0→
lim

x
2

– l x
3

+

l
2

---------------------=



Physics based basis function for vibration analysis of high speed rotating beams 29

3. Finite element analysis

The mass and stiffness matrices can be obtained using the energy expressions. The kinetic energy

for a rotating beam is given by Reddy (1993)

(30)

where  is the derivative of  with respect to time t.

The potential/strain energy is given by

(31)

where T(x) is defined in Eq. (2).

The mass and stiffness matrices (Mi and Ki) for a beam element can be obtained from the above

energy expressions. The calculations for these matrices involve calculating the value of the

following integrals.

(32)

(33)

T
1

2
--- m x( ) w· x t,( )[ ]2 xd

0

L

∫=

w· x t,( ) w x t,( )

U
1

2
--- EI x( ) w″ x t,( )[ ]2 x

1

2
--- T x( ) w′ x t,( )[ ]2 xd

0

L

∫+d
0

L

∫=

Mi mi x( )NT
N xd

0

l

∫=

Ki EIi x( ) N″( )TN″ x Ti x( ) N′( )TN′ xd
0

l

∫+d
0

l

∫=

Fig. 3 Comparison of shape function values for λ = 12 for different elements in the beam
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where

(34)

No approximation is made in the variation of EI(x) or T(x) while calculating the mass and

stiffness matrices. The assumptions have been made only to derive the new basis functions. The

mass and stiffness matrices are calculated for each element and then assembled into the global mass

and stiffness matrix. These matrices are then used to determine the natural frequencies and the

mode shapes by solving the eigenvalue problem.

Kφ = ω2
Mφ (35)

4. Numerical results

The new hybrid basis function is used in the free vibration analysis of rotating uniform and

tapered beams with different boundary conditions and the results obtained are compared with

published literature.

4.1 Uniform beam

In uniform rotating beams, m(x) and EI(x) are constant. Tables 1 and 2 show comparison of non-

dimensional rotating frequencies of an uniform rotating cantilever and hinged beam with published

Ti x( ) mi x( )Ω2
x( ) xd

x
i

x+

l

∫=

Fig. 4 Comparison of shape function values for λ = 100 for different elements in the beam 



Physics based basis function for vibration analysis of high speed rotating beams 31

literature (Hodges and Rutkowski 1981, Wang and Wereley 2004, Wright et al. 1982). Hodges and

Rutkowski (1981) used a variable order basis function in the finite element method while Wang and

Wereley (2004) and Wright et al. (1982) used the Frobenius solution in the dynamic stiffness

method to generate the natural frequencies of the rotating beam. We can see from Tables 1 and 2

that the current formulation gives identical results to the published literature.

Table 3 shows the comparison of the number of elements required for convergence of the first

five modes upto four decimal places. The degrees of freedom is also specified in parentheses. The

convergence of the formulation is compared with that of the Hermite cubic shape functions for two

rotation speeds λ = 12 and λ = 100. It is seen that in the case of the cantilever beam, the hybrid

function requires 47 elements for λ = 12 and 61 elements for λ = 100 to obtain converged values

for the first five modes. For λ = 12, the Hermite cubic functions also require only 47 elements but

for λ = 100 it requires 91 of elements for converged values of the first five modes. We can see that

the hybrid basis functions give some advantage in the fundamental mode convergence at λ = 12,

however, this advantage becomes clear at λ = 100 for all the five modes. Figs. 5 and 6 show the

 
Table 1 Comparison of non-dimensional frequencies for cantilevered uniform rotating beam

Mode Present FEM
Wang and Wereley 

(2004)
Wright et al. (1982)

Hodges and Rutkowski 
(1981) 

1 13.1702 13.1702 13.1702 13.1702

2 37.6031 37.6031 37.6031 37.6031

3 79.6145 79.6145 79.6145 79.6145

4 140.534 140.534 140.534 N/A

5 220.536 220.536 220.536 N/A

Table 2 Comparison of non-dimensional frequencies for hinged uniform rotating beam

Mode Present FEM Wang and Wereley (2004) Wright et al. (1982)

1 12.0002 12.0000 12.0000

2 33.7603 33.7603 33.7603

3 70.8373 70.8373 70.8373

4 126.431 126.431 126.431

5 201.123 201.122 201.122

Table 3 Comparison of number of elements and degrees of freedom required for convergence of natural
frequencies with accuracy of 1e-4 for Cantilevered Uniform Rotating Beam

Modes
λ = 12 λ = 100

Hybrid function Cubic function Hybrid function Cubic function

1 9(18) 12(24) 33(66) 58(116)

2 15(30) 16(32) 48(96) 69(138)

3 24(48) 24(48) 54(108) 77(154)

4 35(70) 35(70) 60(120) 84(168)

5 47(94) 47(94) 61(122) 91(182)
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Fig. 5 Comparison of convergence of hybrid function and hermite cubic function for uniform cantilever beam
with λ = 12



Physics based basis function for vibration analysis of high speed rotating beams 33

Fig. 6 Comparison of convergence of hybrid function and hermite cubic function for uniform cantilever beam
with λ = 100 
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convergence of the natural frequencies with the hybrid and the cubic basis functions, at  λ = 12 and

λ = 100, respectively. In fact, with the new basis functions, a reduction of about 33% is obtained at

λ = 100 in the number of elements required for convergence when compared to the cubic basis

functions. The number of degrees of freedom is reduced from 182 to 122 at λ = 100, which

considerably reduces the eigenvalue problem size and makes the new basis functions attractive for

the vibration analysis of high speed rotating beams.

The accuracy of the current hybrid function is observed by considering the difference in the value

of natural frequency obtained for a very coarse discretization of the beam with the converged value

of the natural frequency. This difference is a measure of the error. Table 4 shows a comparison of

the difference in values of the non-dimensional natural frequency obtained by using the hybrid and

Table 4 Comparison of difference in the value of non-dimensional natural frequency obtained by using the
Hybrid and the Cubic function for a low discretization in the FEM with the converged value for λ =
100

ne = 3  ne = 7 ne = 10 ne = 20

Mode
Hybrid 
function

 Cubic 
function

 Hybrid 
function

 Cubic 
function

 Hybrid 
function

 Cubic 
function

 Hybrid 
function

 Cubic 
function

1 1.2961 2.0705 0.2417 0.5537 0.0941 0.2674 0.0088 0.0506

2 3.6876 4.5076 0.5615 1.2076 0.2125 0.6036 0.0193 0.1107

3 12.3151 10.2412 1.1423 2.1143 0.3928 1.0291 0.0355 0.1898

4 38.0513 25.3037 2.6878 3.8457 0.7370 1.6412 0.0669 0.3018

5 98.7069 62.4297 7.1107 7.9247 1.4760 2.5897 0.1298 0.4559

Fig. 7 Eigen mode shapes with the hybrid basis function for uniform cantilever beam with (a) λ = 12,
(b) λ = 100
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the cubic function for a coarse discretization. At least a three element discretization is necessary to

obtain the natural frequency for the first five modes. With a three element discretization, it is

observed that the difference in the value obtained and the converged value is less for the first two

modes when we use the current hybrid function. When the beam is discretized into seven elements,

the current basis function shows better accuracy for all the five modes when compared to the cubic

basis function. Thus we can construct low order models of the rotating beam which are often useful

in control applications, using the new basis functions. Wang and Wereley (2004) mention that the

creation of low order models is critical for control of rotating beams when smart materials based

actuation is used. For the 10 and 20 element cases, the new hybrid shape functions also perform

better than the Hermite cubic’s for all the five modes.

Fig. 7 shows the Eigen Mode shapes obtained with the current hybrid function for λ = 12 and λ =

100. The mode shapes obtained by using the Hermite cubic shape functions is shown in Fig. 8. It is

seen that the hybrid function is able to capture the mode shapes accurately especially for the

fundamental mode which becomes linear as the rotation speed becomes considerably high. In such

situations, the centrifugal force dominates the whole response of the system thereby making it

behave similar to rotating string.

4.2 Tapered beam

For a tapered beam, we assume that the variation of mass along the beam is given by

(36)m m0 1 αξ–( )=

Fig. 8 Eigen mode shapes with the hermite cubic basis function for uniform cantilever beam with (a) λ = 12,
(b) λ = 100
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where m0 corresponds to the value of mass per unit length at the thick end of the beam (ξ = 0),

α is the taper parameter such that 0 < α < 1, ξ is the non-dimensional length of the beam :

ξ = x/L.

The flexural stiffness variation along the tapered beam is given by

(37)

where EI0 corresponds to the value of flexural rigidity at the thick end of the beam (ξ = 0), βi,

i = 1 ... 4 are taper parameters for the stiffness distribution. These parameters can be determined

by using for beams with a rectangular cross section and thickness varying along the length.

However, it is not necessary that the taper and mass parameters be related and the only condition

is that they should not give rise to a singularity at (ξ = 1). In order to validate the current

formulation we consider two special cases of Eqs. (36) and (37) and verify the results with

published literature.

4.2.1 Linear mass and linear stiffness beam

We assume m(x) = m0(1 − 0.8x) and EI(x) = EI0(1 − 0.95x). Tables 5 and 6 show comparison of

non-dimensional rotating frequencies of a cantilever and hinged beam with published literature

(Wang and Wereley 2004, Wright et al. 1982). The results compare very well with published

literature.

Figs. 9 and 10 show the comparison of the convergence rate of the current shape functions with

the Hermite Cubic Shape functions. For the low speed case (λ = 12) the current basis function do

not show improvement over the cubic polynomial. But in the higher speed case (λ = 100), the new

function shows improved convergence.

EI EI0 1 β1ξ– β2ξ
2

– β3ξ
3

– β4ξ
4

–( )=

 
Table 5 Comparison of non-dimensional frequencies for linear mass, linear stiffness cantilevered rotating

beam

Mode Present FEM  Wang and Wereley (2004) Wright et al. (1982)

1 14.0313 14.0313 14.0313

2 35.9064 35.9060 35.9064

3 72.8565 72.8565 72.8565

4 126.401 126.336 126.401

5 198.880 198.243 198.880

Table 6 Comparison of non-dimensional frequencies for linear mass, linear stiffness hinged rotating beam

Mode Present FEM Wang and Wereley (2004) Wright et al. (1982)

1 12.0000 12.0000 12.0000

2 30.7745 30.7741 30.7745

3 63.1722 63.1758 63.1722

4 112.090 112.040 112.090

5 178.016 178.978 178.105
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Fig. 9 Comparison of convergence of hybrid function and hermite cubic function for linearly tapered, linear
flexural stiffness cantilever beam with λ = 12



38 R. Ganesh and Ranjan Ganguli

Fig. 10 Comparison of convergence of hybrid function and hermite cubic function for linearly tapered, linear
flexural stiffness cantilever beam with λ = 100 
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Table 7 Comparison of non-dimensional frequencies for linear mass, cubic stiffness cantilevered rotating beam

Mode Present FEM Wang and Wereley (2004) Hodges and Rutkowsky (1981)

1 13.4711 13.4711 13.4711

2 34.0877 34.0877 34.0877

3 65.5237 65.5237 65.5237

Fig. 11 Comparison of convergence of hybrid function and hermite cubic function for linearly tapered, cubic
flexural stiffness cantilever beam with λ = 12 and λ = 100
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4.2.2 Linear mass and cubic stiffness beam

We assume m(x) = m0(1 − 0.5x) and EI(x) = EI0(1 − 0.95x)3. Table 7 shows comparison of non-

dimensional rotating frequencies of a cantilever beam with results from (Wang and Wereley 2004,

Wright et al. 1982). Values for the first three modes are only available in published literature. Again

we see that the results compare very well.

Fig. 11 shows the comparison of the convergence rate of the current shape functions with the

Hermite Cubic Shape functions. For the low speed case (λ = 12) the current basis function do not

show an advantage compared to the cubic polynomial. However, in the higher speed case (λ = 100),

the convergence is significantly improved.

4.3 Beams with hub offset

The new basis functions perform well for the test cases that have been used in published

literature. Another advantage of the new basis function is that it is dependent of the hub offset.

Even though the shape functions have been given for R = 0, hub offset can be included in the basis

function. We expect the new basis function to perform better than the Hermite cubic function as hub

offset increases the effect of the centrifugal force on the stiffness of the beam. Tables 8 and 9 show

the natural frequencies for a cantilever rotating beam with linear mass and linear stiffness variation.

Two different hub offset ratios R/L have been considered and the results have been validated with

results from Wang and Wereley (2004); Wright et al. (1982). It is seen that the values for the first

three modes compare very well.

Figs. 12-14 show the convergence trend observed by using the new basis function to determine

the natural frequency of a high speed rotating beam with hub offset. The convergence trends are

shown for the first three modes of the rotating beam for two hub offset ratios R/L = 1&5.

Furthermore, it is seen that, in the presence of hub offset, the new basis function shows a

convergence trend which is almost independent of the geometric parameters of the rotating beam.

This shows that there is a significant advantage in using the current basis function for high speed

rotating beams.

 

Table 8 Comparison of non-dimensional frequencies for linear mass, linear stiffness cantilevered rotating beam
for λ = 5 and R/L = 1

Mode Present FEM Wang and Wereley (2004) Wright et al. (1982)

1 10.083 10.083 10.083

2 29.534 29.534 29.535

3 65.764 65.765 65.765

Table 9 Comparison of non-dimensional frequencies for linear mass, linear stiffness cantilevered rotating beam
for λ = 5 and R/L = 5

Mode Present FEM  Wang and Wereley (2004) Wright et al. (1982)

1 16.512 16.512 16.512

2 39.412 39.411 39.413

3 77.602 77.610 77.602
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Fig. 12 Comparison of convergence of hybrid function and hermite cubic function for uniform cantilever
beam with λ = 100 and R/L = 1 and 5
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Fig. 13 Comparison of convergence of hybrid function and hermite cubic function for linearly tapered, linear
flexural stiffness cantilever beam with λ = 100 and R/L = 1 and 5
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Fig. 14 Comparison of convergence of hybrid function and hermite cubic function for linearly tapered, cubic
flexural stiffness cantilever beam with λ = 100 and R/L = 1 and 5
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5. Conclusions

New basis functions are created to solve the free vibration problem for rotating beams and

improve the accuracy and convergence of the finite element method. The problem physics of

rotating beams requires that the centrifugal stiffening effects in the governing differential equation

be properly captured by the basis functions. By assuming a linear combination of the solution to the

two parts of the static part of the governing differential equation and forcing the error arising from

the assumption to zero at collocation points within the domain, we generate new basis functions.

The interpolation functions derived from this basis functions are a function of the element material

and geometry parameters and of the speed of rotation. They also depend on the position of the

element in the beam. They behave similar to the cubic interpolation functions for low rotation

speeds and show better convergence rates as the rotation speed increases. The robustness of the

functions is asserted by considering various cases of rotating beams and matching the obtained

results with published literature. The new basis functions based on problem physics lead to a

reduction in number of elements required for convergence by about 33% for high speed rotating

beams. They are recommended for use for high speed rotating beams such as turbine blades and for

control applications where reasonably accurate low order models are required.
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Notations

EI(x) : beam bending flexural stiffness
F : axial force applied at the end of the beam
[K] : global stiffness matrix
L : length of the beam
l : element length
[M] : global mass matrix
m(x) : beam mass per unit length
ne : number of elements
N : shape functions
R : offset length between beam and rotating hub
T : kinetic energy
T(x) : beam axial force due to centrifugal stiffening
Ti(x) : beam axial force in each element due to centrifugal stiffening
U : potential energy
w(x, t) : transverse displacement
x : co-ordinate across the length of the beam

: co-ordinate across the length of the element
xi : distance from root to left edge of ith element
λ : non-dimensional rotation speed (λ2 = mΩ

2L4/EI)
Ω : beam rotational speed
ω : natural frequency
ξ : non-dimensional beam length (ξ = x/L)

x




