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Solution of periodic notch problems in an infinite plate 
using BIE in conjunction with remainder estimation 

technique
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Abstract. This paper provides a complex variable BIE for solving the periodic notch problems in plane
plasticity. There is no limitation for the configuration of notches. For the periodic notch problem, the
remainder estimation technique is suggested. In the technique, the influences on the central notch from
many neighboring notches are evaluated exactly. The influences on the central notch from many remote
notches are approximated by one term with a multiplying factor. This technique provides an effective way
to solve the problems of periodic structures. Several numerical examples are presented, and most of them
have not been reported previously.

Keywords: complex variable BIE; periodic notch problem; remainder estimation technique; stress con-
centration.

1. Introduction

When notches weaken a perfect tension plate, the hoop stress along the contour of notches will

elevate significantly. This is so called the phenomena of stress concentration. Most researchers

devoted their efforts to solve multiple circular hole problems, including the periodic circular hole

problem (Horii and Nemat-Nassar 1985, Isida and Igawa 1991, Tsukrov and Kachanov 1997, Ting

et al. 1999, Chen 1985, Wang et al. 2003, Chen and Lin 2007). Clearly, the suggested methods

were limited to the circular configuration of hole only. For example, after the traction along the

circular boundary of hole was expanded into a Fourier series, the multiple circular hole problem can

be reduced to an algebraic equation for the undetermined Fourier coefficients (Horii and Nemat-

Nassar 1985). For another example, a hypersingular integral equation was suggested to solve the

addressed problem (Wang et al. 2003). In order to solve the hypersingular integral equation, the

unknown displacement on the circular boundary was expanded into truncated complex Fourier

series. Thus, the solution is only valid for the multiple circular hole problem. Therefore, those

works have not provided a solution for multiple notches with arbitrary configuration, particularly,

for the periodic notches.

The null-field integral equation for an infinite medium containing circular holes and/or inclusions
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was developed (Chen and Wu 2007). The null-field integral equation was developed to analyze the

stress state for a medium containing circular cavities under remote shear and two classical elasticity

problems (Chen et al. 2006, 2010).

It is well known that the boundary integral equation (BIE) provides a general method to solve the

boundary value problem of elasticity (Rizzo 1967, Cruse 1989, Jaswon and Symm 1967, Cheng and

Cheng 2005, Brebbia et al. 1984, Hong and Chen 1988, Hromadka 1987, Linkov 2002, Chen and

Chen 2004). A Review of dual boundary element methods was carried out in an earlier time (Chen

and Hong 1999).

However, if one uses the BIE directly to solve the periodic notch problem, one may meet an

inconvenient point. It is seen that the governing equation is generally formulated on the central

notch, and the influences of infinite neighboring notches, from −∞-th, …, -2-th, -1-th, 1st, 2nd, ∞-th,

must be evaluated exactly. In this case, one has to truncate sufficient terms to get a reasonable

result. However, it is not easy to determine how many terms should be truncated in computation. 

In this paper, a BIE is derived for solving the periodic notch problems, and the BIE is represented

in the complex variable form. In the present study, there is no limitation for the configuration of

notches. For the periodic notch problem, the remainder estimation technique is suggested. In the

technique, the influences on the central notch from –N-th, .. -2-th, –1-th, 1st, 2nd,… N-th notches are

evaluated exactly. In addition, the influences on the central notch from −∞-th, …, -(N + 1)-th,

(N + 1)-th,…∞-th notches, are approximated by one term. This term is derived from the influences

on the central notch from -(N + 1)-th and (N + 1)-th notches with a multiplying factor. This

technique provides an effective way for the periodic notch problems. Several numerical examples

are presented.

2. Formulation of BIE for periodic notch problems and the remainder estimation

technique

Recently, the following boundary integral equation (BIE) for the exterior boundary value problem

was suggested (Chen et al. 2009)

 (i = 1, 2, ) (1)

where Γ is the contour of notch, and the kernel  is defined by (Brebbia et al. 1984) 

(2)

where Kronecker deltas  is defined as,  for i = j,  for , and 

, , , (3)

where the angles “α” and “β” are indicated in Fig. 1(a).

 In the meantime, the kernel  is defined by

 (4)
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It was noted that the kernel  differed by a constant term  with the

usual kernel in the textbook (Brebbia et al. 1984). The usual kernel for  in available

textbook can only be used for the case that the loadings on the contour are in equilibrium. It is

emphasized here that the BIE shown by Eq. (1) can be used to the case of arbitrary loading even

the applied loadings on the contour are not in equilibrium (Chen et al. 2009).

After using the Betti’s reciprocal theorem, or the Somigliana identity, between the fundamental

stress field from the singular solution and the physical stress field, a complex variable BIE can be

formulated (Chen et al. 2009, 2010, Muskhelishvili 1953). After some manipulations, the suggested

complex variable BIE for plane elasticity is as follows (Fig. 1(b))

 

(5)

where 

 

, , (6)

 (7)

 

 (8)

In Eq. (6),  is the displacement, and  is the traction applied along the

contour of notch (Fig. 1(b)). In Eq. (7), G is shear modulus of elasticity,  in plane

strain case,  in plane stress case, and ν is the Poisson’s ratio. 

It is found that two types of representation shown by Eqs. (1) and (5) are equivalent (Chen et al.

2009, 2010). However, the representation of Eq. (5) has some advantages. For example, the
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Fig. 1 (a) An elliptical notch in an infinite plate, (b) an elliptical notch in an infinite plate with notations for
the formulation of complex variable BIE 
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property of the kernels in the BIE is clearly indicated. It is seen from Eq. (5) that the term

 is a Cauchy principle value integral, and two terms  and

 are regular integral.

The periodic notch problem in an infinite plate is indicated in Fig. 2. The original field shown by

Fig. 2(a) can be considered as a superposition of the uniform field and the perturbation field shown

by Fig. 2(b) and 2(c), respectively. Clearly, we only need to solve the problem for the perturbation

field shown by Fig. 2(c). Since the problem has a periodic property, the BIE can be formulated on

the 0-th (the central one) notch. From Eq. (5), we have the following BIE

(9)

The remainder estimation technique is introduced below. After discretization, the BIE (9) can be

written in the form
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Fig. 2 Periodic elliptical notches with remote loading  or , (a) the original problem, (b) the
uniform field, (c) the perturbation field 
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where “U” and “Q’ denote vector for the displacement (for ) and traction (for

) on the notch contour, respectively. In Eq. (10),  and  represent

the relevant influence matrix from the j-th notch to the 0-th notch (the central notch Γo) (Fig. 2).

From Eq. (10) we see that we must perform superposition of the matrix  and  from

j = −∞,… −2, −1, 0, 1, 2…..to j = ∞. In the approximate computation, one may truncate finite terms

in the summation, for example, from j = −N,…−2, −1, 0, 1, 2….. to j = N. However, it is not easy

to get sufficient accurate result from the assumed approximation. In order to overcome this

difficulty, the remainder estimation technique is suggested below.

For the approximation of , the remainder estimation technique was suggested (Chen et al.

 2008). Now we study the approximation for the summation . 

As a typical term, we take the following integral in right hand side of Eq. (9), which is as follows

 

(11)

Physically, the integral Hj represents the summation of influences of -j-notch and j-th notch to the

0-th notch (the central notch Γo). Note that, in Eq. (11), , and  or . Secondly, in

the periodic problem, Q(t) is the same function for all notches. Thus, the integral (11) can be

rewritten as (Fig. 2(c))

(12)
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In addition, from Eq. (16), we have

(17)

where

(18)

Eq. (17) means that the influences from many remote notches ( ,…j = −(N + 1), j =

N + 1,…to ) can be approximated by one term  with a multiplying factor γ. It is seen

that two integrals in the right side of Eq. (9) have the same property as indicated by Eq. (17). Thus,

we have

 

(19)

Eq. (19) means that the infinite summation  is approximated by one term

. This technique is called the remainder estimation technique (Chen et al.

2008). From numerical example, we will see that this technique provides an effective way to the

periodic notch problem.

Similarly, we can propose

 

(20)

3. Numerical examples

The following numerical examples are devoted to examine the efficiency and accuracy of the

suggested method. Most results in the numerical examples have not been reported previously. Some

of them are compared with the known results.

3.1 Example 1

In the first example, the periodic elliptic notches are applied by remote tension  (Fig. 2).

Clearly, after using the superposition principle, the original problem shown by Fig. 2(a) can be

reduced to two problems shown by Fig. 2(b),(c). Thus, the main work is to solve the problem for

the perturbation field, which is shown by Fig. 2(c). The elliptic notch has two axes “a” and “b” and

the spacing between two notches is denoted by “c” (Fig. 2).

As claimed above, the remainder estimation technique is used in computation. In the computation,
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,  (with )  (21)

M = 180 divisions for the elliptic contour are used in computation, and N = 20 is used in Eqs. (19)

and (20).

For evaluating the hoop stress σT, the following technique is suggested. In fact, in the plane strain
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---------- f2
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Table 1The non-dimensional hoop stress f (f = σT /p) at points E and F on the elliptical notch under the remote
loading  (see Eq. (23) and Fig. 2) 

(1) b/a = 0.5 case, c/a = 0.1, 0.2, ..1

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Points

E 1.413 1.430 1.448 1.464 1.482 1.499 1.516 1.533 1.550 1.567

F 0.006 -0.005 -0.046 -0.105 -0.170 -0.231 -0.289 -0.342 -0.389 -0.431

(2) b/a = 0.5 case, c/a = 1, 2,…10

c/a = 1 2 3 4 5 6 7 8 9 10

Points

E 1.567 1.703 1.792 1.848 1.885 1.910 1.928 1.941 1.951 1.958

F -0.431 -0.687 -0.800 -0.861 -0.898 -0.921 -0.936 -0.947 -0.957 -0.963

(3) b/a = 1 case, c/a = 0.1, 0.2 ,..1

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Points

E 1.702 1.728 1.753 1.777 1.802 1.827 1.851 1.874 1.897 1.920

F 0.005 0.003 0.003 0.003 -0.002 -0.013 -0.030 -0.053 -0.079 -0.108

(4) b/a = 1 case, c/a = 1, 2, …10

c/a = 1 2 3 4 5 6 7 8 9 10

Points

E 1.920 2.139 2.325 2.470 2.579 2.659 2.720 2.767 2.803 2.831

F -0.108 -0.385 -0.568 -0.684 -0.759 -0.810 -0.848 -0.875 -0.895 -0.911

(5) b/a = 2 case c/a = 0.1, 0.2, ..1

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Points

E 2.144 2.182 2.218 2.252 2.287 2.323 2.357 2.390 2.423 2.455

F 0.003 0.002 0.001 0.002 0.001 0.001 0.002 0.002 0.002 0.002

(6) b/a = 2 case, c/a = 1, 2, …10

c/a = 1 2 3 4 5 6 7 8 9 10

Points

E 2.455 2.755 3.029 3.283 3.512 3.714 3.886 4.032 4.154 4.258

F 0.002 -0.068 -0.214 -0.355 -0.469 -0.559 -0.629 -0.686 -0.731 -0.768

σx

∞

p=
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case, we have the following relation

(22)

where E is the Young’s modulus of elasticity, and ν the Poisson’s ratio. In Eq. (22), the component

 is from input datum, and  is the strain in the T-direction, which can be evaluated from the

solution of displacement along the boundary. Thus, the values of σT at many discrete points can be

evaluated. 

 The computed stress for σT is expressed as

(23)

Under the conditions: (1) b/a = 0.5, 1 and 2, (2) and c/a = 0.1, 0.2,.. 1.0, or c/a = 1, 2,…10, and

(3) at the points “E” and “F” (Fig. 2), the computed results are listed in Table 1. From Table 1 we

see that the interaction of two notches is significant. For example, for c/a = 0.1 case, we have

 = 1.413, 1.702 and 2.144 at the point “E” for b/a = 0.5, 1 and 2, respectively. However,

in the same condition of single notch case, we have f = 2, 3 and 5 at the point “E” for b/a = 0.5, 1

and 2, respectively. In addition, in the condition of b/a = 1, the computed results are approximately

same as obtained in other source (Wang et al. 2003). 

3.2 Example 2

In the second example, the remote loading is  (Fig. 2). The other computation conditions

are the same as in the first example. The stress for σT is also denoted by  shown

by Eq. (23). The computed results are listed in Table 2. From the computed results we see that the

stress state  has a significant influence to the stress distribution along contour.

For example, (1) for c/a = 0.1 case, we have = 23.608, 21.693 and 21.201, (2) for c/a =

1 case, we have  = 6.178, 3.923 and 3.231 at the point “F” for b/a = 0.5, 1 and 2,

respectively (Fig. 2). However, in the same condition of single notch case, we have f = 5, 3 and 2 at

the point “F” for b/a = 0.5, 1 and 2, respectively. In addition, in the condition of b/a = 1, the

computed results are approximately same as obtained in other source (Wang et al. 2003).

In addition, comparison between different techniques is also made. For the case of b/a = 1 and c/a =

0.1, if choosing N = 10 and N = 20 in Eqs. (19) and (20), and using the remainder estimation

technique, we have f (b/a, c/a) = 21.700 and 21.693, respectively. That is to say, the number

truncated is not sensitive to the final results. Note that, N = 10 is equivalent to 23 (= 2*(10 + 1) + 1)

terms are truncated in Eqs. (19) and (20), and N = 20 is equivalent to 43 (= 2*(20 + 1) + 1) terms

are truncated in Eqs. (19) and (20).

However, For the case of b/a = 1 and c/a = 0.1 in the other source of computation using different

technique (Wang et al. 2003), computed results are f (b/a, c/a) = 18.905, 20.276 and 21.124, for

truncating 21, 41 and 101 terms, respectively. That is to say, the number of truncated terms is

sensitive to the final results, if the remainder estimation technique was not used.

 

3.3 Example 3

In the third example, the remote loading is . The other computation conditions are same as
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Table 2 The non-dimensional hoop stress f (f = σT /p) at points E and F on the elliptical notch under the remote
loading  (see Eq. (23) and Fig. 2) 

(1) b/a = 0.5 case, c/a = 0.1, 0.2, ..1

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Points

E -0.670 -0.665 -0.660 -0.658 -0.659 -0.661 -0.665 -0.672 -0.678 -0.686

F 23.608 13.610 10.347 8.772 7.861 7.275 6.870 6.577 6.352 6.178

(2) b/a = 0.5 case, c/a = 1, 2, …10

c/a = 1 2 3 4 5 6 7 8 9 10

Points

E -0.686 -0.771 -0.837 -0.880 -0.908 -0.928 -0.941 -0.952 -0.960 -0.966

F 6.178 5.457 5.254 5.162 5.114 5.083 5.063 5.050 5.042 5.035

(3) b/a = 1 case, c/a = 0.1, 0.2, ..1

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Points

E* -0.574 -0.570 -0.566 -0.562 -0.560 -0.559 -0.559 -0.559 -0.560 -0.562

E** -0.570 -0.568 -0.564 -0.562 -0.560 -0.559 -0.558 -0.559 -0.560 -0.561

E# -0.607 -0.592 -0.574

F* 21.700 11.703 8.384 6.733 5.754 5.114 4.670 4.348 4.107 3.923

F** 21.693 11.701 8.382 6.732 5.753 5.114 4.669 4.348 4.107 3.923

F# 21.124 11.514 5.711

(4) b/a = 1 case, c/a = 1, 2, …10

c/a = 1 2 3 4 5 6 7 8 9 10

Points

E* -0.562 -0.612 -0.682 -0.744 -0.794 -0.832 -0.861 -0.884 -0.902 -0.915

E** -0.561 -0.611 -0.681 -0.744 -0.794 -0.832 -0.861 -0.884 -0.902 -0.915

E# -0.571 -0.618 -0.687

F* 3.923 3.240 3.095 3.045 3.024 3.014 3.008 3.005 3.003 3.002

F** 3.923 3.240 3.095 3.046 3.024 3.014 3.009 3.005 3.004 3.001

F# 3.910 3.237 3.094

*truncating 23 terms and using the remainder estimation technique 
**truncating 43 terms and using the remainder estimation technique 
#truncating 101 terms and using hypersingular integral equation (Wang et al. 2003) 

(5) b/a = 2 case, c/a = 0.1, 0.2, ..1

c/a = 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Points

E -0.482 -0.479 -0.477 -0.476 -0.474 -0.473 -0.472 -0.471 -0.471 -0.471

F 21.201 11.184 7.855 6.195 5.201 4.541 4.071 3.720 3.447 3.231

σy

∞

p=
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in the first example. The notches are arranged in an inclined position (Fig. 3). The vertical distance

between two centers of neighboring notches is s = 2b + e, and the horizontal distance is (2b + e)/

tanα (Fig. 3).

The computed hoop stress σT is expressed as

 (for boundary points   ) (24)

In the example, we choose: (1) b/a = 0.5, b/a = 1 and b/a = 2, (2) e/b = 0.5, (3) α = 2π /12, 3π /12,

4π /12 and 5π /12. The computed non-dimensional hoop stresses for three cases b/a = 0.5, b/a = 1

and b/a = 2 are plotted in Figs. 4, 5 and 6, respectively. 

From the plotted results we see that the hoop stress distributions along the elliptical contour are

very complicated, and the following results have been found:

σT g b/a e/b α θ, , ,( )p= x acosθ= y bsinθ=

Table 2 Continued

(6) b/a = 2 case, c/a = 1, 2,…10

c/a = 1 2 3 4 5 6 7 8 9 10

Points

E -0.471 -0.481 -0.512 -0.555 -0.603 -0.651 -0.693 -0.731 -0.763 -0.791

F 3.231 2.318 2.095 2.020 1.992 1.981 1.977 1.977 1.978 1.979

Fig. 3 Periodic elliptical notches in an inclined position with remote loading σy

∞

p=
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(1) In the case of b/a = 0.5, e/b = 0.5 and , we have gmax = 13.759 at θ = 20o, and gmin=

−8.844 at θ = 80o. We know that, we have gmax = 5 and gmin= −1, for the single notch case. In

this case, the stress concentration factor reaches a rather high value.

(2) In the case of b/a = 1, e/b = 0.5 and , we have gmax = 4.708 at θ = 12o and gmin=

−2.361 at θ = 86o. We know that, we have gmax = 3 and gmin = −1, for the single notch case.

(3) In the case of b/a = 2, e/b = 0.5 and , we have gmax = 2.388 at θ = 6o and gmin = −1.573

at θ = 90o. We know that, we have gmax = 2 and gmin= −1, for the single notch case.

α π/4=

α π/4=

α π/4=

Fig. 4 The non-dimensional hoop stress g(g(e/b, b/a,
α, θ) = ) at points (x = acosθ, y = bsinθ)
along the elliptical notch under the remote
loading  in the case of b/a = 0.5 and e/
b = 0.5 (see Eq. (24) and Fig. 3) 

σT/p

σy

∞

Fig. 5 The non-dimensional hoop stress g(g(e/b, b/a,
α, θ) = ) at points (x = acosθ, y = bsinθ)
along the elliptical notch under the remote
loading  in the case of b/a = 1 and e/b =
0.5 (see Eq. (24) and Fig. 3) 

σT/p

σy

∞

Fig. 6 The non-dimensional hoop stress  g(g(e/b, b/a, α, θ) = ) at points (x = acosθ, y = bsinθ) along the
elliptical notch under the remote loading  in the case of b/a = 2 and e/b = 0.5 (see Eq. (24) and Fig. 3)

σT/p
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4. Conclusions

The solution for the periodic notch problem is derived directly from a suggested BIE (9).

Therefore, there is no limitation for the notch configuration. Secondly, the suggested remainder

estimation technique provides an effective way for the periodic notch problem. For example, in the

case of b/a = 1, c/a = 0.1 and  (Fig. 2), we have the non-dimensional maximum hoop

stresses 21.700 and 21.693, for truncating 23 and 43 terms, respectively. In the meantime, the non-

dimensional maximum hoop stresses by using other method are as follows: 18.905, 20.276 and

21.124, for truncating 21, 41 and 101 terms, respectively (Wang et al. 2003). Clearly, the efficiency

of the remainder estimation technique can be seen from the comparison results.

Eq. (16) reveals that the influence caused by traction on the central notch from –j-th and j-th

notches is nearly proportional to or 1/j 2. This character provides a solid basis in the analysis.

Previously, the number of the truncated number is only determined by researcher’s experience.

However, if the suggested reminder estimation technique is used, a stable numerical result can be

achieved. Since the situation of the elliptic notch is similar to case of circle hole, the remainder

estimation technique can also provide an accurate result in the case of the elliptic periodic notch.
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