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Dynamics of a bridge beam under a stream of moving 
elements. Part 1 – Modelling and numerical integration
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Abstract. A new conception of fundamental tasks in dynamics of the bridge-track-train systems (BTT),
with the aim to evaluate moving load’s models adequacy, has been developed. The 2D physical models of
BTT systems, corresponding to the fundamental tasks, have been worked out taking into account one-way
constraints between the moving unsprung masses and the track. A method for deriving the implicit
equations of motion, governing vibrations of BTT systems’ models, as well as algorithms for numerical
integration of these equations, leading to the solutions of high accuracy and relatively short times of
simulations, have been also developed. The derived equations and formulated algorithms constitute the
basis for numerical simulation of vibrations of the considered systems.
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1. Introduction

The bridge-track-train dynamic systems (BTT) are characterized by the following fundamental

features (Podworna 2005a, b):

√ fast-varying configuration of the system resulting from a service velocity of the train, 

√ parametric – forced excitation of bridge vibrations,

√ a 3D bridge superstructure with stepped mass and stiffness distributions,

√ nonlinear elastic and damping properties of the ballast layer as well as of rail fasteners,

√ 3D superstructures of rail-vehicles creating a train,

√ two-stage elastic-damping spatial suspensions of rail-vehicles, 

√ deviation from symmetry of the bridge superstructure and rail-vehicles with respect to the

vertical plane coinciding the track axis,

√ snaking and lateral impacts of wheel sets of rail-vehicles,

√ one-way constraints between rotating wheels and rail heads,

√ fluctuations of track stiffness,

√ an infinite length of a track.

Such a great degree of complexity of the discussed dynamic systems results in ongoing theoretical

research into planar and spatial modelling of these systems adequate to reality (Klasztorny 2005). 
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The author has developed theoretical research oriented to evaluation of the influence of selected

factors on the dynamic response of steel beam bridges subjected to a Shinkansen high-speed train

(Podworna 2004). Based on numerical simulations performed for the physically nonlinear 2D

models of the BTT systems with two-way constraints between the wheels and the rails, it was

proved that:

√ vibrations of the BTT system meet the condition of small displacements (the system is

geometrically linear but physically nonlinear),

√ the Timoshenko effects (rotary inertia, shear deformation) in the bridge superstructure are slight, 

√ dynamic effects resulting from nonlinear properties of the ballast are small,

√ the influence of the compliance of rail fasteners is slight,

√ the influence of the wheel sets’ inertia forces can be significant,

√ the influence of the compliance of the track outside the bridge deck is slight.

This theoretical research has been carried out on a series-of-types of single-span single-track steel

bridges.

An extensive review on papers published before 2001, concerning dynamics of the BTT systems,

(Klasztorny 2005) can be concluded in such a way that many writers assumed simplified models of

a high-speed train, in the form of concentrated forces (Klasztorny 1990, Yau 2001), concentrated

unsprung masses (Nelson 1971, Benedetti 1974, Klasztorny 1990, Yang 1997, Cheng 2001, Fryba

2001), single- or double-mass oscillators (Chu 1979, Klasztorny 1990), without evaluation of an

adequacy degree of these models to reality. These references were developed under the assumption

of double-sided constraints between moving elements and the track. This assumption may lead to

the results that differ significantly from reality.

The most extensive analysis of a simply-supported Euler beam loaded by representative types of

moving load models (Klasztorny 1990) applies the algorithms for determining transient and steady-

state vibrations for an infinite stream of discrete moving elements, based on the Lagrange – Ritz

method and the explicit equations of motion. In the case of moving mass particles or moving

viscoelastic oscillators, such approach leads to substantially longer times of numerical simulations

than the approach of the implicit algorithms developed in this paper. 

Recent references (since 2004) have shown that simplified analytic and analytic – numerical

methods in dynamics of structures under moving loads are still developed. The writers adopt

simplified models of vehicles or trains in the form of streams of forces, mass particles or oscillators

without verification of adequacy of these models to reality. It gives the reasons for reconsidering

this topic. The first recent paper (Cojocaru 2004) considered vibrations of a bridge beam loaded by

a moving train modelled by a second elastic beam moving with a constant speed. Both, the elastic

stiffness and the mass of such model of the train are taken into account in extension of the usual

model of distributed forces. 

The next recent paper (Garinei 2006) considers a bridge beam loaded by moving loads in the

form of a single constant/harmonic force or a series of equidistant constant/harmonic forces. The

analysis in focused on the effects of the phase and frequency as well as the critical velocity of the

load. Subsequent studies (Yau 2007, Fryba 2009) consider a problem of vibration of a suspension

bridge due to moving loads of equidistant constant forces and shaken by vertical support motions

caused by earthquake. The suspension bridge is modelled as a single-span suspended beam. The

writers applied the decomposition and Galerkin’s methods.

Next writers (Yau 2008) presented a study on vibration of a suspension bridge installed with a

water pipeline and subjected to moving trains. The suspension bridge is modelled as a single span



Dynamics of a bridge beam under a stream of moving elements. Part 1 285

beam and the train is simulated as a sequence of equidistant moving constant forces. The Galerkin

method was applied. The study (Bilello 2008) developed the correction procedure for dynamic

analysis of linear, proportionally damped, continuous systems under travelling concentrated loads.

Two cases of non-parametric (moving forces) and parametric (moving mass) loads are considered.

Improvement in the evaluation of the dynamic response is obtained by separating the contribution of

the low frequency modes from that of the high-frequency modes.

A stream of moving oscillators crossing a simply supported beam with arbitrary time law has

been considered in the subsequent study (Muscolino 2009). The system is governed by sets of

differential equations with time-dependent coefficients. The writers examined the bridge support

effect on dynamic response of the system. An incremental-iterative procedure (Yau 2009) has been

used to investigate the influence of ground settlement on dynamic interactions of train–bridge

system. The train is simulated as a sequence of identical sprung mass units with equal intervals and

the bridge system as a series of simple beams with identical properties. A new method of dynamic

analysis on the bridge-vehicle interaction problem considering uncertainties has been developed in a

recent paper (Wu 2010). The bridge is modeled as a simply supported Euler-Bernoulli beam with

Gaussian random elastic modulus and mass density of material with moving forces on top. These

forces are time varying with a coefficient of variation at each time instance and they are considered

as Gaussian random processes. 

A multiply supported continuous beams subjected to moving loads modelled either as moving

forces or moving masses is considered in the next recent paper (De Salvo 2010). A dedicated

variant of the component mode synthesis method is proposed in which the classical primary-

secondary substructure approach is tailored to cope with slender (i.e., Euler-Bernoulli) continuous

beams with arbitrary geometry. The whole structure is ideally decomposed in primary and

secondary spans with convenient restraints, whose exact eigen-functions are used as assumed local

modes. Vibration behaviour of a suspension bridge due to moving loads with vertical support

motions caused by earthquake is studied in the extremely recent contribution (Liu 2011). The bridge

system is governed by two coupled nonlinear cable-beam equations whereas traffic is modelled as a

row of equidistant moving forces.

Part 1 of this study presents a new concept of fundamental tasks in dynamics of the BTT systems.

The 2D physical models of the BTT systems corresponding to the fundamental tasks have been

developed taking into consideration one-way constraints between rail-vehicles’ wheels and rail

heads. A method for deriving the implicit equations of motion governing vibrations of the BTT

systems’ models, based on combination of the previous methods with some extensions, has been

developed. Computer algorithms for numerical integration of the implicit equations of motion of the

BTT systems, leading to the solutions of high accuracy and relatively short simulation times, have

been elaborated. The numerical analysis of the problem will be presented in Part 2 of this study.

2. The fundamental tasks in dynamics of the BTT systems

2.1 A concept of the fundamental tasks

The following fundamental tasks are proposed (Fig. 1):

1) transient and quasi-steady-state vibrations of an Euler-Bernoulli beam under a cyclic stream of

concentrated forces (model P),
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2) transient and quasi-steady-state vibrations of an Euler-Bernoulli beam under a cyclic stream of

concentrated unsprung masses (model M),

3) transient and quasi-steady-state vibrations of an Euler-Bernoulli beam under a cyclic stream of

single-mass viscoelastic oscillators (model Mo), 

4) transient and quasi-steady-state vibrations of an Euler-Bernoulli beam under a cyclic stream of

a double-mass viscoelastic oscillators (model MMo).

An Euler beam is a simplified model of a single-span simply-supported railway bridge. Cyclic

streams consist of repeatable cycles of concentrated moving elements representing a simplified

model of a high-speed train. Subsequent pairs of moving elements represent a single rail-vehicle

supported on two-axle trucks, e.g., an ICE-3 or Shinkansen rail-vehicle. Each truck is reflected by

one moving element. Different intervals between moving elements in the stream reflect the main

horizontal dimensions of rail-vehicles.

The fundamental tasks are formulated in the viscoelastic range. One-way constraints are to be

considered only in the case of the M and MMo models. Separation of oscillators from the track does

not occur for the Mo model what has been confirmed in the numerical analysis (Podworna 2010).

For of P and Mo models the BTT system is linear, whereas for M and MMo models linearity of the

system is partitioned.

2.2 Assumptions and matrix equations of motion of the system

The following assumptions are adopted:

11) the beam-moving load system is linear both physically and geometrically in respective

subsequent time intervals,

12) an Euler beam is prismatic, inertial, deformable in flexure and made of linearly viscoelastic

material, 

13) a constant damping decrement for all modes of the beam is assumed (Langer 1980),

14) there are considered vertical vibrations of the beam and moving elements,

15) a structural rise of the beam axis is selected so as the beam axis under the dead load is

rectilinear, 

Fig. 1 Moving load models in the fundamental tasks; (a) model P, (b) model M, (c) model Mo, (d) model MMo
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16) there are considered isothermal processes,

17) the moving load constitutes a stream of N concentrated elements in the intervals reflecting a

truck base and a length of a repeatable rail-vehicle,

18) the load moves along the track at a constant service velocity,

19) for M and MMo models one-way constraints between the track and the moving load are

assumed, i.e. they only transmit compression,

10) the track is smooth (track irregularities are neglected),

11) at the initial moment the moving load is located outside the beam (the first moving element is

located over the left support of the beam),

12) at the initial moment the beam and moving oscillators are in the static equilibrium, 

13) the track outside the beam is rectilinear and rigid.

Significantly great number of concentrated moving elements allows to bring the system to

resonance or out-of-resonance quasi-steady-state vibrations.

In order to derive the implicit matrix equations of motion governing vibrations of the beam-

moving elements stream system (B-S) the Lagrange-Ritz method (Klasztorny 1990) and the

Klasztorny method (Klasztorny 2005) will be combined in the following way:

1) the vertical deflections of the bridge beam are approximated globally with a series of functions

satisfying the Ritz conditions (a kinematically admissible complete set),

2) the implicit equations of motion are formulated separately for the beam using the 2nd kind

Lagrange’s equations and for the M, Mo or MMo moving load using d’Alembert principle,

3) the gradient of the beam load’s work, referred to M, Mo or MMo stream, is calculated for the

implicit interactions,

4) the M unsprung masses in the M and MMo models are represented with sprung masses via

introducing contact springs of adequately great stiffness, kM (the Hertz contact problem for the

truck),

5) the vertical interactions for M and MMo models are formulated taking into account one-way

constraints,

6) equations of motion are formulated using matrix calculus.

The following dimensional and non-dimensional parameters describe the B-S systems:

l - a span length [m], 

m - beam mass per unit length [kg/m], 

E - a Young’s modulus of the beam material [Pa],

Ib - an inertia moment of the beam cross-section in relation to the horizontal central axis [m4],

EIb - bending stiffness of the beam [N·m2], 

γ - a damping ratio for the beam, 

ν - a horizontal velocity of the moving load (a service velocity) [m/s],

P - a concentrated force in model P [N],

M - a concentrated unsprung mass in models M and MMo [kg], 

Mo - a concentrated sprung mass in models M and, MMo [kg], 

ko - suspension stiffness for the Mo mass [N/m], 

co - a suspension damping coefficient for the Mo mass [N·s/m], 

kM - contact stiffness,

b1, b2 - intervals between concentrated moving elements representing a truck base (b1) and a

length of a repeatable vehicle (b1 + b2). 
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Vertical deflections of the beam are approximated with a sine series fulfilling Ritz’s conditions,

i.e. (Fig. 2)

(1)

where

, (2)

with 

x - an abscissa in the xz planar coordinate system,

t - a time variable,

q(t) - a Lagrange’s general coordinates vector for the beam, 

s(x) - an approximate functions vector (a sine series).

The 2nd kind Lagrange’s equations related to the beam have the form (Langer 1980)

(3)

where (.) =  and

- kinetic energy of the beam,

- damping power of the beam,

- elastic deformation energy of the beam,

- work of the beam’s external load on displacements w(x, t). 

In general, the external load of the beam takes the form of a stream of concentrated moving

forces , being dynamic pressures of moving elements onto the track, Fig. 2.

When moving elements M, MMo separate from the track, the system is regarded as linear in

respective time intervals. 

The kinetic energy of the beam amounts to (Klasztorny 2001)

w x t,( ) q
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x( )q t( )= =
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Fig. 2 The bridge beam loaded with the interactions’ stream; (a) the system configuration at the initial instant,
(b) the dynamic deflection, w(x, t), and location of the interaction Ri(t)
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(4)

where

(5)

The elastic energy of the beam amounts to (Klasztorny 2001)

 (6)

where

(7)

The inertia matrix, B, and the stiffness matrix, K, are diagonal, thus in this case the approximate

basis, s, is the eigenfunction basis. Then, vibration damping in the beam can be described according

to a constant decrement damping model (Langer 1980) in which all beam modal systems have the

same damping coefficient γ, while γcr = 1. The beam vibration damping power, Φ, as well as the

damping matrix, D, are then defined by the formulae
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The abscissa and the beam deflection following location of interaction Ri(t), according to Fig. 2

and Eqs. (1), (2), amount to

,

(9)

where

,

(10)

Ek
1

2
--- m

0

l

∫
∂w

∂t
-------⎝ ⎠
⎛ ⎞

2

xd
1

2
---q·

T
m ss

T

0

l

∫ xq·d
1

2
---q·

T
Bq·

T
= = =

B m ss
T

0

l

∫ xd ml ss
T

0

l

∫ ξd
ml

2
------I B{ }= = = =

I diag 1 1 … 1, , ,( ),  dimI n n×= =

EP
1

2
--- EIb

∂2
w

∂x
2

---------⎝ ⎠
⎛ ⎞

2

xd
0

l

∫
1

2
---q

T
EIb

∂2s

∂x
2

-------
0

l

∫
∂2sT

∂x
2

--------- xqd
1

2
---q

T
Kq= = =

K EIb
1

2
---

∂2
s

∂x
2

-------
0

l

∫
∂2sT

∂x
2

--------- xd
EIb

l
3

------- d{ }2 s
0

1

∫ s
T
ξd d{ }2

EIb

2l
3

------- d{ }4 K{ }= = = =

d{ } diag π 2π … nπ, , ,{ }=

Φ 1

2
---q·

T
Dq·=

D D{ } 2γ K{ } B{ } γ
EIbm

l
---------------- d{ }2= = =

ui t( ) vt ai–=
ui t( )

l
---------- τ αi–=

Wi t( ) w ui t( ) t,[ ] q
T

t( )s ui t( )[ ] q
T

t( )Si t( )= = =

τ
vt

l
----= αi

ai

l
----=

Si t( ) s ui t( )[ ] sin
πui t( )

l
-------------- sin

2πui t( )
l

----------------- … sin
nπui t( )

l
-----------------, , ,

T

 = = =

 
sinπ τ αi–( )  sin2π τ αi–( ) … sinnπ τ αi–( )[ ]T  for  τ αi– 0 1,[ ]∈,

0,                                                                         for  τ αi– 0 1,[ ]∉⎩
⎨
⎧

=



290 M. Podworna 

Quantity  determines a distance of the i-th concentrated moving element from the beam left

support at the initial instant with . The following vector, Si(t), is determined due to possible

moving elements’ positions either on the beam or outside it. The τ variable is dimensionless and

determines the relative position of the first interaction in relation to the beam left support. The use

of the τ variable makes possible to put on time histories of the given quantity for different service

velocities as well as to put on the dynamic curve on a quasi-static one.

The Ri(t) force operates only when it acts onto the beam. The work of the Ri(t) force in the

implicit form on displacement wi(t) amounts to (Klasztorny 2005)

(11)

The total work of the stream of moving forces R1(t), R2(t), …, RN(t) equals to

(12)

where

(13)

while

, (14)

A gradient of the L(q) work must be calculated for vector R in the implicit form (Klasztorny

2005), i.e.

(15)

After inserting Eqs. (4), (6), (8)1, (12) into Eq. (3), one obtains the general matrix equation of

motion governing vibrations of the bridge beam loaded with a stream of interaction forces R1(t),

R2(t), …, RN(t), in the following implicit form

(16)

Eq. (16) constitutes a system of normal, linear, heterogeneous differential equations of the second

order and constant coefficients. Vibration coupling between the beam and moving elements M, Mo,

MMo is hidden in the R generalized load vector. The initial conditions for the beam have the form

, (17)

2.3 Formulating the interaction vectors and additional equations of motion

In task 1 (model P), the beam is loaded with a stream of N moving forces of constant value P.

The interaction vector is constant in time and amounts to

(18)

where 1= [1, 1, …, 1]T, dim 1 = N. An additional equation of motion disappears. Eq. (16) is explicit.

In task 2 (model M) the beam is loaded with a stream of concentrated moving masses of 

value. Up to now, in the considered task, a double-sided constraint between concentrated moving
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q 0( ) 0= q· 0( ) 0=

R P1=

Mi M=
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mass M and the track was assumed. Interaction Ri(t) was calculated as a sum of the gravity force,

Mg, where g = 9,81 m/s2 - the gravity acceleration, and the vertical inertia force, . Such an

approach results in both a matrix equation of motion with time-varying coefficients (parametric-

forced excitation) and in complex and time-consuming numerical integration of these equations

(Klasztorny 1990).

In the present paper, an unsprung mass, M, is replaced with a sprung mass with the use of a one-

way spring of large stiffness kM modelling the Hertz contact stiffness in the wheel set – rails system

(Fig. 3). The contact stiffness can be calculated from an approximate formula

(19)

where P is the pressure force of two wheel sets on the track, and δ is a contact deformation

corresponding to P. Assuming that , δ = 0.4 mm = 0.0004 m, one obtains =

N/m (Klasztorny 2005).

Let us introduce the additional generalized coordinates vector in the form

(20)

where  represents the vertical displacement of i-th mass M (Fig. 3). At the initial instant mass

M does not produce any vertical vibrations. The contact spring is shortened by Mg/kM value as a

result of the gravity force, Mg. Therefore, the initial conditions for the moving masses set take the

form

, (21)

The interaction amounts to (Fig. 3)

(22)

while Wi(t) is determined by Eqs. (9), (10). Eq. (22) takes into account one-way acting of the

contact spring.

An additional matrix equation of motion of the elastic oscillators with parameters M, kM can be

determined via considering the dynamic equilibrium of masses M according to the d’Alembert
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8 10
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qM 0( ) Mg
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--------⎝ ⎠
⎛ ⎞1= q·M 0( ) 0=

Ri t( )
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0,                               dla qiM t( ) Wi– 0≤⎩
⎨
⎧

=

Fig. 3 Modelling out of a concentrated unsprung mass to a concentrated sprung mass (a) unsprung mass, (b)
equivalent sprung mass, (c) forces action on mass M
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principle (Fig. 3(c)). The result has the following implicit form

(23)

where

, 

, (24)

In task 3 (model Mo) the beam is loaded with a uniform stream of single-mass viscoelastic

oscillators, Fig. 1(c). In this case, a double-sided constraint is assumed because of the weightless

bottom end of the suspension; this a priori assumption was confirmed by numerical simulations

(Podworna 2010). The additional generalized coordinates vector is introduced in the following form

(25)

where qio(t) represents the vertical displacement of i-th mass Mo (Fig. 4(a)). At the initial instant

mass Mo does not produce any vertical vibrations. The static shortening of spring ko amounts to

Mog/ko. Therefore, the initial conditions for the moving oscillators’ set are in the form of

, (26)

An interaction between the moving oscillator and the track equals

(27)

while the following displacement,  as well as the following velocity,  are determined by

Eqs. (9), (10), and

(28)
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Fig. 4 (a) A single moving element in model Mo and (b) a set of forces influencing mass Mo
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An additional matrix equation of motion of viscoelastic oscillators with parameters Mo, ko, co can

be determined with the use of the d’Alembert principle for masses Mo (Fig. 4(b)). The result has the

following implicit form

(29)

where

, 

, (30)

while dynamic interaction  is determined by Eq. (27).

In task 4 (model MMo) the beam is loaded with a uniform stream of double-mass viscoelastic

oscillators, Fig. 1(d). Unsprung mass M can be replaced by sprung mass M with the use of one-way

contact spring of stiffness kM like in task 2. Two additional generalized coordinates vectors are

introduced (Fig. 5)

(31)

where , qio represent the displacements of masses M and Mo in the i-th moving element,

respectively.

At the initial instant the oscillator is in the static equilibrium state, thus masses M and Mo do not

produce any vertical vibrations. The shortening amounts to  for the upper spring, and to

 for the lower one. The initial conditions for the double-mass oscillators set have the

form of

,

, (32)
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qo 0( ) Mog/ko Mo M+( )g/kM+[ ]1= q· o 0( ) 0=

qM 0( ) Mo M+( )g/kM[ ]1= q·M 0( ) 0=

Fig. 5 A single moving element in model MMo (a) the element before the modelling out, (b) modelling out of
mass M to sprung mass, (c) a set of vertical forces influencing masses M and Mo
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The interactions amount to (Fig. 5)

(33)

while the following displacement,  is determined by Eqs. (9), (10).

Additional equations of motion of double-mass viscoelastic oscillators with parameters Mo, M, ko,

co, kM can be derived from of the d’Alembert principle for masses Mo and M, i.e. (Fig. 5(c))

(34)

After inserting Eq. (33)2 into Eq. (34) one obtains

,

, (35)

Based on Eq. (35) the additional matrix equation of motion for the double-mass oscillators stream

has the following implicit form

(36)

where

, ,

,

, , ,

, , (37)

while

, (38)

2.4 Analysis of the equations governing vibrations of the beam – moving elements
stream system

Beam vibrations induced by a moving forces stream (model P) are described by Eq. (16) being a

matrix equation of motion with constant matrix coefficients. The interaction vector is defined by

Eq. (18). The explicit equations of motion are integrated numerically with the explicit type

algorithm. The initial conditions are determined by Eq. (17).
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··
io Rio+⇒ Mog= =

Mg Mq··iM Rio+– Ri– 0 Mq··iM Rio– Mg Ri–=⇒=

Moq
··
io co q· io q· iM–( ) ko qio qiM–( )+ + Mog= i 1 2 … N, , ,=

Mq··iM co q· io q· iM–( )– ko qio qiM–( )– Mg Ri–= i 1 2 … N, , ,=

Bsq
··
s t( ) Dsq

·
s t( ) Ksqs t( )+ + Fs=

Bs
Mo{ } 0

0 M{ }
= Ds

co{ } co{ }–

co{ }– co{ }
= Ks

ko{ } ko{ }–

ko{ }– ko{ }
=

qo
qo

qM

= Fs
G0

G R–
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Mo{ } MoI= M{ } MI= co{ } coI= ko{ } koI=

Go{ } Mog1= G Mg1= R R1 t( ) R2 t( ) … RN t( ), , ,[ ]T=

I diag 1 1 … 1, , ,( ), dimI N N×= =

1 1 1 … 1, , ,[ ]T= dimI N=
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Beam vibrations induced by an unsprung masses stream (model M) are described by Eqs. (16),

(23) being matrix equations of motion with constant matrix coefficients. The interaction vector, R,

is described by Eqs. (14)2, (22). Incorporating the contact springs representing the rail-vehicles’

wheel sets stiffness has simplified the form of equations of motion and simultaneously has enabled

taking one-way constraints into consideration. The implicit equations of motion are integrated

numerically according to the implicit type algorithm. The initial conditions are determined by Eqs.

(17), (21).

Beam vibrations induced by a single-mass viscoelastic oscillators stream (model Mo) are described

by Eqs. (16), (29) of constant matrix coefficients. The interaction vector, R, is determined by Eqs.

(14)2, (27). Separation of the oscillators from the track does not occur. The implicit equations of

motion are integrated numerically in accordance with the implicit type algorithm. The initial

conditions are determined by Eqs. (17), (26).

Beam vibrations induced by a double-mass viscoelastic oscillators stream (model MMo) are

governed by Eqs. (16), (36) also of constant matrix coefficients. The interaction vector, R, is

determined by Eqs. (37)2, (33)1. The contact springs of stiffness kM allow to take one-way

constraints into account and to simplify the mathematical description of the B-S system. The

implicit equations of motion are integrated numerically with the implicit type algorithm. The initial

conditions are determined by Eqs. (17), (32).

3. Algorithms for numerical integration of equations of motion

To date, a great deal of one-step and multi-step methods for numerical integration of equations of

motion of discrete systems have been developed. One-step methods are natural for these equations

due to initial conditions. One-step methods are divided into two groups, i.e., the methods without

numerical damping (e.g., a set of Newmark’s methods with parameter γN = 1/2) and the methods

with numerical damping (e.g., a set of Newmark’s methods with parameter γN ≠ 1/2) (Newmark

1959).

Methods without numerical damping are analysed due to the stability limit, the amplitude error

and the period error (Langer 1986). A finite stability limit causes a rapid growth of numerical

integration errors nearby this limit. The amplitude error influences the simulation accuracy,

however, it does not accumulate itself during the integration process. The period error crucially

influences the simulation accuracy since it accumulates itself during the integration process.

The Newmark average acceleration method with parameters βN = 1/4, γN = 1/2 is selected to be

applied in tasks 1÷4. In the case of explicit equations, this method is unconditionally stable. The

amplitude error vanishes, while the period error is close to the error for the central differences

method. The influence of the period error can be freely reduced via assuming a relatively small

integration step determined from the initial numerical tests.

In task 1 (model P) the numerical integration algorithm for Eq. (18) is explicit. The dynamic

response of the system is determined in equidistant time points in the [0, Tp] interval, i.e.

, (39)

where Tp is the dynamic process duration time,  is a time step,  is number of

integration steps. The following discrete values are introduced 

tj 1+ j 1+( )h= j 0 1 … Np 1–, , ,=

h t∆= Np Tp/h=
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, , , (40)

and the Newmark recurrent formulae for βN = 1/4, γN = 1/2 are applied (Newmark 1959), i.e.

(41)

The acceleration vector is determined from the condition of collocation at the end of the time step

what leads to an algebraic system of linear equations (Langer 1986), i.e.

(42)

where

(43)

Matrix A is reversed only once. Vector R is constant in time. In the extended version the initial

conditions defined by Eq. (17) take the form

,  (44)

In task 2 (model M), the algorithm for numerical integration of Eqs. (16), (23) is implicit due to

the interaction vector, R. Eqs. (40)-(43) for the unsprung moving masses are in the form

(45)

There is applied a linear prediction of vector R (Podworna 2005b), i.e.

(46)

while  due to the static equilibrium of the system in the  interval. In the extended

version the initial conditions defined by Eqs. (17), (21) take the form

,  

, ,

(47)

The implicit algorithm for numerical integration of Eqs. (16), (23) consists of the following

calculation stages:

qj q tj( )= q· j q· tj( )= q·· j q·· tj( )= Sj 1+ S tj 1+( )=

qj 1+ qj hq· j
1

4
---h

2
q·· j q·· j 1++( )+ +=

q· j 1+ q· j
1

2
---h q·· j q·· j 1++( )+=⎩

⎪
⎨
⎪
⎧

Aq·· j 1+ Vj 1+= q·· j 1+ A
1–
Vj 1+⇒

A B
1

2
---hD

1

4
---h

2
K+ +=

Vj 1+ Sj 1+ Rj 1+ D q· j
1

2
---hq··j+⎝ ⎠

⎛ ⎞ K qj hq· j
1

4
---h

2
q·· j+ +⎝ ⎠

⎛ ⎞––=

q0 0= q· 0 0   q··0 0=,=

qM j, qM tj( )   q·M j, q·M tj( )=   q··M j, q··M tj( ),  Rj=, , R tj( )= =

qM j, 1+ qM, j hq·M, j
1

4
---h

2
q··M, j q··M j, 1++( )+ +=

q·M j, 1+ q·M, j
1

2
---h q··M, j q··M j, 1++( )+=⎩

⎪
⎨
⎪
⎧

q··M j, 1+ M{ } 1–
G Rj 1+–( )=

Rj 1+

p
2Rj Rj 1––=

R 1– R0= t 0≤

q0 0= q· 0 0   q··0 0=,=

qM 0, Mg/kM( )1= q·M 0, 0= q··M 0, 0=

R0 G Mg1= =
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1) prediction of  according to Eq. (46),

2) calculation of  from Eqs. (42), (45)7,

3) calculation of  from Eqs. (41), (45)5,6, 

4) correction of  according to the formula resulting from Eq. (22), i.e.

(48)

    where

, (49)

5) control of the iteration ending condition 

, (50)

5) where ε > 0 is an accuracy parameter;

5) if Eq. (50) is met then go to the next time step;

5) if Eq. (50) does not met then substitute

(51)

 5) and go to stage 2.

In task 3 (model Mo) the algorithm for numerical integration of Eqs. (16), (23) is also implicit

because of the interaction vector, R. Eqs. (40)-(43) for the single-mass viscoelastic oscillators

stream take the form

, , ,

(52)

Eq. (46) defining linear prediction of vector R remains valid and  due to the static

equilibrium of the system in the  interval. In the extended version the initial conditions defined

by Eqs. (17), (26) take the form

,  

, ,

(53)

The implicit algorithm for numerical integration of Eqs. (16), (29) consists of the following

stages:

Rj 1+

p

q·· j 1+ q··M j, 1+,
qj 1+ q· j 1+ qM j, 1+ q·M j, 1+, , ,

Rj 1+

c

Ri j 1+,

c kM qiM j 1+,
Wi j 1+,

–( ),  dla qiM j 1+,
Wi j 1+,

– 0>

0,                               dla qiM j 1+,
Wi j 1+,

– 0≤⎩
⎨
⎧

=

Wi j 1+,
qj 1+

T
Si j 1+,

= Si j 1+,
Si tj 1+( )=

Ri j 1+,

c
Ri j 1+,

p
– ε≤ i 1 2 … N, , ,=

Rj 1+

p
 ..= Rj 1+

c

qo j, qo tj( )= q· o j, q· o tj( )= q··o j, q··o tj( )= Rj R tj( )=

qo j, 1+ qo, j hq· o, j
1

4
---h

2
q··o, j q··o j, 1++( )+ +=

q· o j, 1+ q· o, j
1

2
---h

2
q··o, j q··o j, 1++( )+=⎩

⎪
⎨
⎪
⎧

q··o j, 1+ Mo{ } 1–
Go Rj 1+–( )=

R 1– R0=

t 0≤

q0 0= q· 0 0   q··0 0=,=

qo 0, Mog/ko( )1= q· o 0, 0= q··o 0, 0=

R0 Go Mog1= =
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1) prediction of  from Eq. (46),

2) calculation of  from Eqs. (42), (52)7 ,

3) calculation of  from Eqs. (41), (52)5,6 ,

4) correction of  according to the formula resulting from Eq. (27), i.e.

(54)

4) where

,

, (55)

 5) control of the iteration ending condition according to Eq. (50).

In task 4 (model MMo), the algorithm for numerical integration of Eqs. (16), (36) is also implicit.

Eqs. (40)-(43) for the double-mass viscoelastic oscillators stream take the form

, , ,

 (56)

Eq. (46) defining linear prediction of vector R remains valid and  due to the static

equilibrium of the system in the  interval. The extended initial conditions defined by Eqs. (17),

(32) equal

,  

,

(57)

The implicit algorithm for numerical integration of Eqs. (16), (36) consists of the following

stages:

1) prediction of  according to Eq. (46),

2) calculation of  according to Eqs. (42), (56)7,

3) calculation of  from Eqs. (41), (56)5,6, 

4) correction of  according to Eqs. (48), (49) resulting from Eq. (33)1, 

5) control of the iteration ending condition according to Eq. (50).

Rj 1+

p

q·· j 1+ q··o j, 1+,
qj 1+ q· j 1+ qo j, 1+ q· o j, 1+, , ,
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c
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qj 1+

T
S
·
i j 1+,

+=

Si j 1+,
Si tj 1+( )= S

·
i j 1+,

S
·
i tj 1+( )=

qs j, qs tj( )= q· s j, q· s tj( )= q··s j, q··s tj( )= Rj R tj( )=

qs j, 1+ qs, j hq· s, j
1

4
---h
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1

4
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1

2
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1

4
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4. Conclusions

A new conception of the fundamental tasks in dynamics of the bridge-track-train systems has

been developed. Four fundamental tasks corresponding to moving load models in the form of a

moving forces cyclic stream (model P), an unsprung masses cyclic stream (model M), a single-mass

viscoelastic oscillators cyclic stream (model Mo) and a double-mass viscoelastic oscillators cyclic

stream (model MMo) have been considered.

A new approach to the moving load problem has been proposed in the form of modelling out of

unsprung masses to sprung masses using one-way contact springs. A method for formulating

implicit matrix equations of motion, governing vibrations of bridge-track-train systems, has been

developed that results in very effective numerical simulation algorithms.

The governing equations and the numerical integration algorithms constitute a base for numerical

simulation of the considered systems. These simulations and the analysis of the results is presented

in the second part of this study (Podworna 2010).
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