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A load increment method for ductile reinforced concrete 
(RC) frame structures considering strain 

hardening effects

M. Günhan Aksoylu* and Konuralp Girgina

Department of Civil Engineering, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey

(Received February 26, 2010, Accepted December 12, 2010)

Abstract. This study introduces a new load increment method for the ductile reinforced concrete (RC)
frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis
technique employed for RC frame structures subjected to constant gravity loads and monotonically
increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting
plastic hinge concept which is extended by including the strain hardening as well as interaction between
bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented
to the method as well.

Keywords: RC frames; strain-hardening; load increment method; seismic evaluation; non-linear static
analysis; second-order effect.

1. Introduction

The non-linear analysis methods result both more realistic and more economical solutions in
design of RC structures. Non linear response of these structures can be easily predicted by using
these methods. Furthermore, it can be employed to evaluate seismic performance of RC structures. 

This study introduces a new effective load increment method for the materially and geometrically
nonlinear analysis of ductile RC structures by including the strain-hardening effects. Material
nonlinearity exists when there is a nonlinear relationship between force and displacement.
Geometrical nonlinearity is called second order effect as well. 

2. Literature survey

Many papers about the nonlinear analysis of RC structures are available in the current literature,
i.e., Kunnath et al. (1992), Elnashai (2001), Chopra and Goel (2002) and Aydinoglu (2003).

A load increment method for the non-linear analysis of plane steel frames was proposed by Özer
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(1987); the method has been applied and further extended to 3D steel and RC frame structures by
rtem (1991) and Girgin (1996) in their PhD theses, respectively. By including the lumped plasticity

approach and the second order effects, Türker (2005) presented an effective multi modal adaptive
pushover analysis for the RC plane frames in his PhD thesis and the findings are available in Türker
and rtem (2007). Aksoylu (2006) introduced a new load increment method by including the strain-
hardening effects for the materially and geometrically non-linear analysis of RC structures.

Mwafy and Elnashai (2001) investigated the applicability and accuracy of the inelastic pushover
analysis in evaluation seismic responses of RC buildings. Liew et al. (2000) proposed a
methodology for the adaptive nonlinear analysis of space frame structures by adopting the plastic
hinge model and the detailed beam-column formulation. Their method takes into consideration the
second order effect, the bowing effect and the elastic coupling effects between axial, flexural and
torsional displacements. It is particularly suitable for space frame structures where slender members
are subjected to high axial forces.

Long and Hung (2008) presented an algorithm by considering strain hardening effects for the
plastic-hinge assumption in the analysis of 3D steel frames by adopting elasto-plastic incremental
relationship between the modal forces and the corresponding displacements. Dutta et al. (2009) have
investigated the efficiency of pushover analysis methodologies. Yukio and Mashiko (1992)
developed a general theory for the elasto-plastic analysis of structures by extending the basic theory
of the plastic node method (PNM) and by considering strain-hardening effects. Sebastian (2007)
defined an iterative computational procedure where secant flexural stiffness is used in the analysis,
to predict ultimate loading in indeterminate RC structures by including strain hardening effects.

Iu et al. (2009) presented a numerical procedure for composite steel-concrete structures by taking
the geometric and material nonlinearities into consideration. They employed a refined plastic hinge
approach where the elasto-gradual-plastic material nonlinearity including strain-hardening under the
interaction of bending moment and axial force is used. Ziemian and McGuire (2002) proposed a
modified tangent modulus approach in the application of the second-order inelastic hinge method
that can produce more accurate results in the analysis of in-plane behaviour of frames having
compact doubly symmetric-section.

3. Descriptions of the load increment method

3.1 Assumptions

Basic assumptions made in the RC section subjected to bending moment and axial force are as
follows:

a. plane sections remain plane after bending,
b. full bond exists between concrete and reinforcement steel,
c. tensile strength of concrete after cracking is negligible.

The following assumptions and limitations are imposed throughout this study:
a. The relationships between bending moment and curvature in RC sections subjected to constant

axial force can be idealized to be bilinear.
b. Non-linear deformations can be assumed to be accumulated at plastic sections while the remaining

part of structure remains linear-elastic. In this study, the classical plastic hinge concept is extended
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by taking into account axial deformations in addition to bending deformations. 
c. Yield and failure conditions of a cross section may be expressed in terms of bending moment

and axial force. Effect of shear forces on these conditions is neglected. 
d. Non-linear yield and failure conditions can be linearized.
e. Plastic deformations due to bending moments and axial forces are governed by the normality

criterion. 
f. Second order effects are taken into consideration in slender elements subjected to high axial

forces. 

3.2 Principles of the method

In the proposed method, the structure is analyzed under anticipated constant gravity loads and
proportionally increasing lateral loads. When the gravity loads are known, the member axial forces
can be easily estimated by using equilibrium equations only. The second-order effects of the
estimated axial forces are considered by modifying the elements of the stiffness and loading
matrices. When the axial forces obtained at the end of the analysis are not close to the estimated
ones, the analysis is repeated. However, in most practical cases such a repetition is not required.

In this method, the structure is analyzed by considering load increments. At the end of each load
increment, it is controlled whether a new plastic section occurs by checking internal forces at any
critical section reaches to the state defined by the yield condition. The plastic rotation of the section
θp is introduced as a new unknown for the next load increment. At the same time, an equation is
added to the system of equations to express the relationship between the increments in the internal
forces and the plastic deformations developed in the last formed plastic section. Because the yield
condition is idealized by linear segments, this new equation is linear. Since the system of equations
corresponding to the previous step of the load increment has already been solved, the solution for
the current load increment is obtained by eliminating of the new unknown.

In the elasto-plastic theory including the second order effects, the structures generally collapse at
the second-order limit load due to the lack of stability of the structural system. This situation is
evaluated by checking the determinant of the extended system of equations. When the determinant
is less than or equal to zero, the system reaches to its second-order limit load; hence, the
computational procedure is terminated.

4. Moment-curvature relationship for reinforced concrete sections and linearization

The relationship between the bending moment M and the curvature χ for a RC section subjected
to a constant axial force No is given in Fig. 1. The strain-hardening effect is considered by assuming
a bilinear relationships between M and χ. Herein, ML1 represents the first plastic deformations
occurred in the section and ML2 is the ultimate moment carrying capacity. The curvatures of χL1 and
χL2 correspond to the bending moments ML1 and ML2, respectively.

The materially non-linear analysis is performed due to the nonlinearity in the constitutive
equation. It means that large plastic deformations occur in addition to elastic ones. In this analysis
the plastic hinge approach is adopted which means that plastic deformations are accumulated at
certain sections, called as the plastic hinges, while other parts of the structure remain linear-elastic.
In this study the classic plastic hinge concept is generalized by including the strain hardening and
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by considering combined effects of axial force and bending moment as well.
In the plastic hinge concept, an idealized relationship between the bending moment M and the

plastic rotation θp is necessary for the non-linear analysis of structures. This idealized relationship
(Fig. 2) for constant axial force (No) is as follows 

for  (1)

where

 (2)

 (3)

The lp length of plastic section is assumed to be h/2 where h is the height of the cross section in
the bending direction.

 

5. Interaction of bending moment and axial force (yield/failure surfaces) and ideali-
zation 

The yield and failure conditions in RC sections subjected to bending moment and an axial force
are idealized by linear segments, as given in Fig. 3.

In Fig. 3, the points 2 and 2’ denote to the balance points where the ultimate bending moments
occur, and the points 3 and 3’ signify the pure bending case. The points 1,1’ and 4, 4’ are the pure
axial load case of compression and tension force only, respectively.

6. Yield, failure conditions and plastic deformation vector

The yield condition can be defined as a boundary where plastic deformations start to occur and it

M ML1

θp

θp max,

------------- ML2 ML1–( )+= M ML1>

θp χ χL1–( )lp χplp= = χ χL1>( )

θp max, χL2 χL1–( )lp χp max, lp= =

Fig. 1 The actual and the idealized relationships
between M and χ for a RC section subjected
to a constant axial force 

Fig. 2 The idealized relationship between M and θp

for constant No in a plastic section
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is represented on the bending moment-axial force plane (Fig. 3). While the internal forces are in the
inner region of the yield curve, the deformations are linearly elastic. Beyond the linear-elastic limit,
internal forces are between the yield and the failure curves, thus plastic deformations develop in the
RC section. Internal forces are limited by the failure curve governed by the failure conditions.

The yield vector represents the plastic deformation increments due to increments of the bending
moment and the axial force. This vector is assumed to be normal to the yield surface (Fig. 4). The
normality rule is not proven but its accuracy has been verified theoretically by Çakiroglu et al.

(1999). Karabinis and Kiousis (2001) employed this rule in their study as well. 
By neglecting the effects of shear forces, the yield condition can be expressed as follows 

K(M, N) = 0 (4)

An increment of the internal forces between the yield and failure surface results a K increment in
the potential function K, which can be expressed as

Fig. 3 Interaction of bending moment and axial force (The actual and idealized surfaces) 

Fig. 4 Plastic deformation vector
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(5)

where the combined effect of the bending moment and the axial force can be seen. If rigid-plastic
behaviour is considered in plastic sections, the yield surface and the failure surface are the same,
this means that any increment in the potential is not under consideration i.e., (∆K = 0). 

When strain hardening property is present, the relationship between the bending moment Mx and
the plastic rotation θp is schematically displayed in Fig. 5. The dashed line segment displays the
relationship between the bending moment and the plastic rotation after plastic section is formed. On
the other hand, solid line segment denotes the same relation when the point on the intersection point
moves beyond the yield surface where kx is the slope of the idealized Mx-θp relationship in the
strain-hardening region. Numerical analyses indicated that the slope kx remains constant for the
different levels of axial load. 

If the strain-hardening on the rigid-plastic behaviour is under consideration and kx is assumed to
be independent from the effect of axial force as well, the linear relationship between the bending
moment and plastic rotation can be written as

 (6a)

K∆ ∂K

∂Mx

---------- Mx∆ ∂K

∂N
------- N∆+=

Mx∆ Mx

1( )∆ Mx

2( )
+ Mx

1( )∆ kxθx–= =

Fig. 5 The Mx-θp relationships in a plastic section for two axial forces

Fig. 6 The idealized N-ε relationship
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where the minus sign in front of kx signifies the internal forces and plastic deformations in opposite
directions. On the other hand, by assuming axial force-axial deformation relationship to be ideal
elasto-plastic (Fig. 6), the axial force increment ∆N in any step of the load increment can be
expressed as 

 (6b)

By substituting 6a-6b into Eq. (5), the increment in internal forces is found to be 

 (5a)

Since the yield vector is assumed to be normal to the yield surface, the plastic deformations can
be expressed in terms of a single parameter θ 

,  (7)

Since the yield surface is expressed by linear segments, the linear yield condition can be written as

 (8)

The plastic deformations θx and ∆ corresponding to the internal forces Mx and N

,  (9)

In case of strain hardening, the plastic behavior of the section between the yield and the failure
surfaces is expressed as follows 

 (10)

7. Mathematical formulation

Plane frame structures having plastic sections are analyzed in the each step of load increments.
The unknowns are the displacement and plastic rotation components of nodal points. Equations for
these unknowns are:

a. equilibrium equations written in the directions of nodal displacements
b. relationships between the internal forces and plastic rotations in plastic sections.
These equations can be combined and written as 

 (11)

where n denotes the number of the nodal points, m is the number of the plastic sections. 
[Sdd] is the elastic stiffness matrix of the system without taking into account plastic hinges. If the

second order theory is under consideration, the related terms of element stiffness and loading
matrices for the members under compression should be obtained according to this theory. 

[Sdθ] is a rectangular matrix which represents the effect of unit plastic deformations in the plastic
sections on the equilibrium equations. Its kth column consists of the end-forces due to the unit
plastic rotation θk = 1, while all other plastic rotations and all nodal displacements are zero. 

N∆ N
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[d] and [θp] are the column matrices respectively including nodal displacements and the plastic
rotations in plastic sections.

[q] is the column matrix of the nodal external loads.
In each incremental step, the relationships between the internal forces and the plastic deformations

should satisfy Eq. (10). These relationships can be rewritten in matrix form, as follows 

(12)

By using the Betti’s reciprocal theorem and by assuming the incremental plastic deformation
vector to be normal to the yield surface .

 

where  is a square diagonal matrix having positive diagonal terms and its kth column
represents the increment in the internal forces due to the only unit plastic rotation in plastic section
k while all nodal displacements and the external forces are zero. 

The increment of the internal forces in the plastic sections are defined as

(13)

 is a diagonal matrix where its kth diagonal term corresponds to the increment of the
internal force defined as

 (14)

due to the unit plastic rotation in the plastic section k while all nodal displacements and external
forces are zero. The generalized equation system of a symmetric coefficient matrix can be rewritten
as follows

 (15)

8. Analysis steps of the proposed method

By including the second order effect, the steps of the analysis can be given as:
i. Factored vertical loads are determined by increasing the vertical service loads by anticipated

load factors.
ii. Axial forces due to the factored vertical loads can be obtained by using force equilibrium

conditions only. (If axial forces can not be easily estimated, the system should initially
analyzed according to the first order theory). 

iii. Relationships between the bending moments and the plastic rotations under constant axial
forces are obtained in the potential plastic sections. 

iv. System is analyzed under the factored vertical loads. If any plastic sections occur in the
system, vi.viiith steps are repeated for each plastic section.

v. System is analyzed for unit lateral load and the plastic section is determined by employing the
yield conditions for all critical sections.

vi. Plastic rotation θp of the newly formed plastic section is taken an new unknown and is added
to the current equation system. The new equation represents the incremental relationship

Sθd[ ] d[ ] S θθ[ ] θp[ ]+ 0[ ]=

Sθd[ ] Sdθ[ ]T=

S θθ[ ]m m× Sθθ[ ] R[ ]+=

Sθθ[ ]m m×

A1 Mx∆ A2 N∆+

R[ ]m m×

A1

2
kx

Sdd[ ]  Sdθ[ ]

Sθd[ ]  S θθ[ ]

d[ ]
θp[ ]

q[ ]
0[ ]

=
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between the bending moment and the axial force. Only new added equation is solved.
vii.By solving the extended equation system, all unknowns are obtained.
viii.Load is increased and the analysis is completed when the internal forces in any section

correponds to the ultimate rotation capacity θp,max, otherwise the steps from v to viiith are
repeated.

9. Numerical examples

Two RC plane frames are presented for the applicability and the verification of the method. The
frames are analyzed under constant gravity loads and proportionally increasing lateral loads. Both
geometric and material non-linearities are taken into consideration and all the results are verified
with SAP2000 as well.

Example 1

Geometrical properties, factored vertical and service lateral loads of an one-storey RC plane frame
structure are given Fig. 7. Dimensions of cross sections and areas of steel reinforcement are given
in Tables 1 and 2, respectively. 

Material properties are summarized below.

Concrete (C25): fc = 25 MPa, εco = 0.002, εcu = 0.010, Ec = 30.25 × 103 MPa
Reinforcement steel (S420): fsy = 420 MPa, fsu = 500 MPa, Es = 2 × 105 MPa 
Reinforcement steel (S420): εsh = 0.01, εsu = 0.10

Ec, Es are the elastic modulus of concrete and reinforcement steel, respectively.  relationships
of concrete and reinforcement are given in Fig. 8.

M-θp relationship for the beam sections and the M-N interaction diagram of the columns are
presented in Fig. 9(a) and (b). It is clear that the M-N interaction diagram is obtained by using the

σ ε–

Fig. 7 Geometrical properties and loads of one-storey RC plane frame structure

Table 1 Dimensions of cross sections

Member  h (mm) b (mm) bw (mm) hf (mm)

1-2, 2-3 800 2100 300 150

4-1, 3-5 800 300 --- ---
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Table 2 Reinforcement of beams and columns

Member Location Longitidunal reinforcement

1-2, 2-3

left and right ends top 4φ22+3φ16

of beam bottom 5φ22

midspan of beam
top 3φ16

bottom 5φ22

4-1, 3-5 along the column - 10φ22

Fig. 8 σ − ε relationships of concrete and reinforcement steel

Fig. 9a M-θp relationships for sections at midspan and left/right side of beams (1-2, 2-3) 

Fig. 9b Interaction of bending moment and axial force for columns (1-4, 3-5)
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Fig. 10 Distribution and evolution of plastic sections

Fig. 11 Base shear-lateral top displacement diagram 

Table 3 The locations of plastic sections and rotations at the final step

Location of plastic section Plastic rotations (radian)

Member
Distance from 
left end (m)

θp 
(Present Study)

θp 
(SAP2000)

First Order Theory

2-3 5.00 0.025834 0.025837

1-2 5.00 0.024405 0.026374

3-5 6.00 0.0123 0.0123

1-4 6.00 0.011599 0.0116

Second Order Theory

2-3 5.00 0.025865 0.026053

1-2 5.00 0.024446 0.026835

3-5 6.00 0.0123 0.0123

1-4 6.00 0.011590 0.011524
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 relationships of concrete and reinforcement steel. 
Non-linear analysis of system is performed by the proposed load increment method. The steps of

the load increment method are explained in the previous sections of the paper and the locations of
the plastic hinges are displayed in Fig. 10, the base shear and the lateral top displacement diagram
is illustrated in Fig. 11. The locations of the plastic sections and the rotations at the end of the load
increments are shown in Table 3.

Example 2

Geometrical properties, factored vertical and service lateral loads of six-story RC plane frame
structure are given Fig. 12. Dimensions of cross sections, steel reinforcement areas are presented in
Tables 4 and 5, respectively.

Concrete (C30): fc = 30 MPa, εco = 0.002, εcu = 0.010, Ec = 31.80 × 103 MPa 
Reinforcement steel (S420): fsy = 420 MPa, fsu = 500 MPa, Es = 2 × 105 MPa,
                                     εsh = 0.01, εsu = 0.10

The  relationships of concrete and reinforcement are illustrated in Fig. 13.
By employing the method presented herein, Example 2 is analyzed and base shear- lateral top

displacement diagrams are evaluated according to the first and the second order theories in
comparison with SAP 2000 (Fig. 14). The evolution and distribution of plastic sections are given in
Fig. 15. For the second-order theory, the locations of the plastic sections and the rotations at the end
of the loading are displayed in Table 6. 

σ ε–

σ ε–

Fig. 12 Geometrical properties, loads and joint number of six-storey frame
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Table 4 Dimensions of beams and columns

Member h (mm) b (mm) bw (mm) hf (mm)

1-5, 6-10, 11-15, 16-20, 21-25,26-30 800 1790 350 120

1-6, 5-10, 6-11, 10-15 350 350 ---- ----

11-16, 15-20, 16-21, 20-25 400 400 ---- ----

21-26, 25-30, 26-31, 30-32 500 500 ---- ----

Table 5 Reinforcement of beams and columns

Member Location Longitidunal reinforcement

1-5

left- right ends
top 3φ20+3φ14

bottom 4φ28

midspan
top 3φ14

bottom 4φ28

6-10

left- right ends
top 3φ20+3φ14

bottom 4φ28

midspan
top 3φ14

bottom 4φ28

11-15

left- right ends
top 3φ20+3φ28

bottom 4φ28

midspan
top 3φ20

bottom 4φ28

16-20

left- right ends
top 3φ20+3φ28

bottom 4φ28

midspan
top 3φ20

bottom 4φ28

21-25

left- right ends
top 3φ20+4φ30

bottom 4φ28

midspan
top 3φ20

bottom 4φ28

26-30

left- right ends
top 3φ20+4φ30

bottom 4φ28

midspan
top 3φ20

bottom 4φ28

1-6, 5-10

along the column

8φ22

6-11, 10-15 8φ22

11-16, 15-20 8φ28

16-21, 20-25 8φ28

21-26, 25-30 8φ28

26-31, 30-32 8φ28
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Fig. 13 σ − ε relationships of concrete and reinforcement

Fig. 14 Base shear-lateral top displacement diagram 

Fig. 15 Distribution and evolution of plastic sections with respect to (a) the first order theory (b) the second
order theory
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The unloading branches of base shear-lateral top displacement diagrams in Fig. 11 and Fig. 14
correspond to a sharp drop in the moment capacity at plastic sections. 

The proposed method was applied to several numerical examples, for the sake of brevity only two
of them are presented herein, and it is seen that all the results agree very well with the results from
SAP2000.

10. Conclusions

This study introduces an efficient load increment method developed for the ductile reinforced
concrete (RC) frame structures. The materially nonlinearity (nonlinearity due to the nonlinear
constitutive conditions) in RC structural elements is represented by adopting plastic hinge concept
and it is further extended by including the strain hardening effects as well as the interaction of
bending moment and axial force. The method includes the geometric nonlinearity (second order
effect) as well. Since plastic hinge locations and rotations are obtained in every steps of load
increment method, seismic performance for existing RC structures can be efficiently evaluated, and
suitable strengthening techniques can be developed. This method can be employed in the design of
earthquake resisting structures as well. It should be noted that current status of the method is

Table 6 Locations of plastic sections and rotations at the end of load increments including second-order effect

Location of plastic section Plastic rotation (radian)

Member
Distance from the

 left end (m)
θp

 (Present Study)
θp

(SAP2000)

10-15 0.00 0.004861 0.004831

20-25 0.00 0.008643 0.009201

20-25 4.00 0.006318 0.009201

10-15 4.00 0.004517 0.004569

30-32 5.00 0.009180 0.008428

16-21 4.00 0.000697 0.004537

26-27 0.00 0.010319 0.009337

16-21 0.00 0.007134 0.009201

15-20 0.00 0.000702 0.000681

29-30 2.00 0.009865 0.008797

26-31 5.00 0.008733 0.007994

15-20 4.00 0.000058 0.000443

21-22 0.00 0.008747 0.007570

25-30 0.00 0.005495 0.004430

6-11 0.00 0.003079 0.003132

6-11 4.00 0.002827 0.002847

30-32 0.00 0.000086 0.000224

24-25 2.00 0.002893 0.002923

19-20 2.00 0.000475 0.000324
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appropriate for regular and middle-rise RC buildings. The verification of method has been
successfully performed on several examples. The method can be used to assess the seismic
performance of steel structures as well. 
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