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Abstract. This study presents an innovative method to estimate the reliability sensitivity based on the
low-discrepancy sampling which is a new technique for structural reliability analysis. Two advantages are
contributed to the method: one is that, by developing a general importance sampling procedure for
reliability sensitivity analysis, the partial derivative of the failure probability with respect to the
distribution parameter can be directly obtained with typically insignificant additional computations on the
basis of structural reliability analysis; and the other is that, by combining various low-discrepancy
sequences with the above importance sampling procedure, the proposed method is far more efficient than
that based on the classical Monte Carlo method in estimating reliability sensitivity, especially for problems
of small failure probability or problems that require a large number of costly finite element analyses.
Examples involving both numerical and structural problems illustrate the application and effectiveness of
the method developed, which indicate that the proposed method can provide accurate and computationally
efficient estimates of reliability sensitivity.

Keywords: reliability sensitivity; failure probability; importance sampling; Quasi-Monte Carlo; low-
discrepancy sampling.

1. Introduction

For design under uncertainty, probabilistic sensitivity analysis methods have been developed to

provide an important insight into the probabilistic behavior of a complex model so that one can

make informed decisions on minimizing the variability of a system or optimizing a system’s

performance with an acceptable risk (Du and Chen 2002, Enevoldsen and Sorensen 1994). Various

probabilistic sensitivity analysis methods have different meanings, and the definition of a

probabilistic sensitivity differs between application fields and users. Probability-based sensitivity

methods have a long and storied history with respect to first and second order reliability methods.

In general, the reliability sensitivity refers to the partial derivative of the failure probability with

respect to probability distribution parameters of the random variables. It can be used to identify and

rank the distribution parameters of the design variables and to adjust a design to achieve reliability-

based objectives. It is therefore important to develop an applicable method for reliability sensitivity

analysis.
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There are a number of approaches to assess the reliability sensitivity, including the first and

second order reliability methods, the simulation method and the finite-difference method (Ditlevsen

and Madsen 1996, Karamchandani and Cornell 1992, Bjerager and Krenk 1989, L’Ecuyer and

Perron 1994, Melchers and Ahammed 2004, Wu 1994, Wu and Mohanty 2006, Sues and Cesare

2005, Au 2005, Lu et al. 2008, Song et al. 2009). Although there are many reasons for choosing

one method over another, the most widely employed method is the Monte Carlo (MC) simulation

method for complex problems. But, the MC method demonstrates a poor computational efficiency

in evaluating problems of small failure probability or problems that require a large number of costly

finite element analyses in each sampling cycle. The challenge is to minimize the computational cost

for achieving the required accuracy of reliability sensitivity, and many efforts have been made in

this direction recently. Wu (1994) proposed a reliability sensitivity method based on the CDF of the

structural response variable, the normalized reliability sensitivity coefficient is expressed as an

expectation of the partial derivative of the PDF, wherein the sampling-based method can be used to

compute the reliability sensitivity. Sues and Cesare (2005) applied the most probable point system

simulation (MPPSS) and the sampling-based reliability sensitivity method to system reliability

problems. Au (2005) presented a method of reliability-based design sensitivity analysis by efficient

simulation, and this simulation is in fact a subset simulation on the basis of Markov Chain Monte

Carlo (MCMC). Lu et al. (2008) and Song et al. (2009) provided two reliability sensitivity methods

that are based on the line sampling and the subset sampling, which are new techniques for

evaluating high-dimensional structural reliability problems. Although the above methods require

much fewer samples than crude MC, in some cases their samples required can still be considered as

large, especially when the computation of each sample is very costly as it may involve expensive

nonlinear finite element solutions.

Although the reliability sensitivity analysis and the reliability analysis serve different aims, in

practice, the implementation of the reliability analysis and that of the reliability sensitivity analysis

are closely connected on both a conceptual and a computational level (Lu et al. 2008, Helton et al.

2006). Thus the available reliability sensitivity methods are mostly based on the corresponding

reliability analysis methods. Therefore, this paper presents an innovative method to estimate the

reliability sensitivity based on the low-discrepancy sampling which is a quite new approach for

structural reliability analysis (Shinoda 2007, Dai and Wang 2009, Bucher 2009). The reason why

the low-discrepancy sampling method is used to construct the novel reliability sensitivity method is

that it can often achieve a given accuracy with far fewer samples and effectively decrease the total

computational cost when compared with the traditional MC method. 

This paper is organized as follows: Section 2 gives a brief description of MC and Quasi-Monte

Carlo (QMC) integration algorithms and the construction of the low-discrepancy sequences. Section

3 presents a comprehensive illustration of the proposed low-discrepancy sampling method for

estimating the reliability sensitivity. In Section 3.1, a general importance sampling (IS)-based

procedure, which can directly estimate the reliability sensitivity rather than the sensitivity coefficient

in Wu (1994), is derived in detail. Then the proposed method in which the low-discrepancy

sequences are combined with the above IS technique is innovatively developed for reliability

sensitivity analysis in Section 3.2. After the examples verify the accuracy and efficiency of the

proposed method in comparison with MC and IS methods in Section 4, Section 5 concludes with a

summary of the main advantages of the proposed methodology.
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2. Formulation of the low-discrepancy sampling

2.1 Quasi-Monte Carlo integration

To gain an insight into the QMC approach, the traditional MC method is briefly reviewed herein.

Suppose  is an integrable function defined on the s-dimensional unit cube .

Consider the integral 

 (1)

The MC integration draws a random point sequence  in Cs and then

approximates the integral in Eq. (1) through

(2)

By the Strong Law of Large Numbers the estimate  stochastically converges to  with

probability one as . Moreover, the Central Limit Theorem guarantees that  is

asymptotically normally distributed when the sample size N is large enough. The convergence rate

for MC integration is, in average, of the order , regardless of the integral dimensionality s.

The QMC approach aims to improve the MC approximation in terms of faster convergence rate

and less computational cost. The key idea is to use the deterministic uniformly distributed sequences

known as low-discrepancy sequences, instead of the MC random samples. The reason behind this is

due to the famous Koksma-Hlawka inequality

(3)

where  is the bounded total variation of function  over  in the sense of Hardy and

Krause (Fang and Wang 1994). The quantity  which measures the evenness of spread of the

point sequence , is defined as

 (4)

where  is the uniform distribution in  and  is the empirical distribution of PN. 

in Eq. (4) is known as the discrepancy of  in analytical number theory. Further details of the

above concepts can be found in Fang and Wang (1994), Niederreiter (1992).

2.2 Low-discrepancy sequences

There are a few well known and commonly used low-discrepancy sequences. The following only

briefly introduces four kinds of such sequences which have been successfully used for structural

reliability analysis in Dai and Wang (2009). More details on the construction of low-discrepancy

sequences can also be found in Fang and Wang (1994), Niederreiter (1992).
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N ∞→ Î f PN,( )

O N
1/2–( )
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 and the greatest common divisor  for . Then, let

(5)

where the operation mod confines qki to the range between 1 and N. 

The point set  is known as lattice points with the

generating vector . Once PN has the smallest discrepancy among all possible

generating vectors, then PN is the GLP set. (Fang and Wang 1994, Hua and Wang 1981) give the

methods for finding the best generating vectors and tabulate the corresponding results for different

numbers s and N. It is noted that the shortcoming of GLP set is that it is only available for the

dimensions of 2-18 and for a few numbers of sample points given in Fang and Wang (1994).

2.2.2 Hua-Wang (H-W) point set
Let . If the first N terms of the set  has the

discrepancy ,  then P is called a good point (GP) set and γ is a

good point. The most effective method for generating good point γ is suggested by Hua and Wang

(1981) with

 (6)

where p is a prime and . Thus, the sequence P obtained in this way is called H-W point

set.

2.2.3 Halton sequence

Let m be a prime number, and then any natural number k has a unique m-digits representation

(7)

where  for , and . Define the base-m radical inverse

function  as 

(8)

Notice that for every k, . 

Let  be s distinct prime numbers, and then the s-dimensional sequence P =

,  is called Halton sequence. 

2.2.4 Hammersley sequence
Halton sequence has many variants which have smaller discrepancies, and one of them is the

Hammersley sequence. Let  and  be  distinct prime numbers, and then the

sequence  is called Hammersley sequence.
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3. Low-discrepancy sampling-based reliability sensitivity analysis

As pointed out above, Wu (1994) firstly developed a sampling-based reliability sensitivity method,

in which the normalized reliability sensitivity coefficient was suggested to compute reliability

sensitivity. This pioneer work demonstrates the potential of the sampling technique in its application

to reliability sensitivity analysis, and many efforts have been done followed his work. However, a

further research needs to be done in this direction in order to pursue a more general and efficient

use of the sampling technique for assessing the reliability sensitivity. Therefore, this study firstly

presents a new IS-based procedure to directly estimate the partial derivative of the failure

probability with respect to the distribution parameter based on Wu’s work and then develops a

method in which the low-discrepancy sequences are combined with the above IS technique for

efficiently estimating reliability sensitivity. Generally, the proposed methodology can obtain lower

error and improved convergence due to the low-discrepancy sequences.

3.1 Reliability sensitivity analysis by importance sampling

3.1.1 General distributions

In structural reliability analysis, the probability of failure PF is defined as

(9)

where x is the vector of random variables described by the joint probability density function ;

 is the function that defines the limit state such that  represents the failure domain F;

s is the dimension of the problem and  denotes the indicator function of F.

Structural reliability sensitivity is defined as the partial derivative of the failure probability with

respect to probability distribution parameters of the basic random variables. Based on this definition,

one can take the partial derivative of both sides of Eq. (9) in order to compute the partial derivative

of PF with respect to parameter of the i-th random variable θi

(10)

where θi represents a parameter of the i-th random variable, e.g., mean, standard deviation, shape or

scale factor. If the random variables are independent, the joint probability density function can be

written as a product of the individual random variables and Eq. (10) becomes

(11)

The expected value in Eq. (11) can be approximated using the MC method as

(12)

where  are samples that drawn from  and N is the number of the samples. 

The samples simulated from the PDF f(x), for the crude MC method, are mostly located in the

safe region for problems of small failure probability, and this will lead to the poor computational

efficiency in estimating the reliability sensitivity. It has to introduce the IS density function , as
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the manner that is in structural reliability analysis, to address this problem. Thus, the Eq. (11) can

be re-expressed as

(13)

where  is an auxiliary density function intended to produce samples in the region that

contributes most to the integral (9). Then the estimate of the reliability sensitivity becomes

(14)

where the samples  are now drawn from . The variance of the estimator in Eq. (14) can be

derived approximately as

(15)

It is well known that the choice of the IS density  in structural reliability analysis is a crucial

factor affecting the efficiency of the IS method. One of the popular choices for the IS density is to

center it at design point because the design point has the highest probability density among other

points on the failure domain. In this study, the IS density function is taken as the multivariate

Gaussian distribution, with random variable means shifted to the design point although this point

may not have the highest probability density in reliability sensitivity analysis. The appealing

character of this choice is that if IS technique is used, the failure probability and the reliability

sensitivity estimates are computed with respect to the same IS density function and, therefore, the

same samples can be used for both. As a result, reliability sensitivities can be obtained with

typically insignificant additional computations on the basis of structural reliability analysis.

3.1.2 Independently normal distributions

In general, the independently normal random variables are extremely important for structural

reliability and reliability sensitivity analysis, because any non-normal correlated random variable

can be transformed into independently normal one by applying Rosenblatt’s transformation or

Nataf’s transformation (Melchers 1999). Consider a normal random variable xi, the partial derivative

of  with respect to its distribution parameter µi and σi can be easily obtained as 

(16)

(17)

where µi and σi is the mean value and the standard deviation of the variable xi, respectively.

Substituting Eqs. (16) and (17) into Eq. (14), the reliability sensitivities of PF with respect to µi and

σi can be obtained by Eqs. (18) and (19)
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(19)

where the samples  are drawn from . The variance of the estimator in Eqs. (18) and (19)

can be derived approximately as Eqs. (20) and (21)

(20)

(21)

3.2 Reliability sensitivity analysis by low-discrepancy sampling

Although the developed IS procedure above requires fewer samples than crude MC in estimating

the reliability sensitivity, one may still try to adapt it to QMC procedure to further improve the

computational efficiency. The following focuses on the use of the low-discrepancy sequences in

conjunction with the above IS technique for efficient reliability sensitivity analysis.

As mentioned in Section 2, the QMC method can be described in simple terms as the

deterministic version of the MC method, and the integration rule for the QMC method are also

taken from the appropriate MC estimate. Consider the integration in Eq. (1), QMC method

approximates it through

 (22)

where  is the i-th element of a low-discrepancy sequence. In contrast to Eq. (2), one can clearly

see that the only difference between the two methods is that the random samples in the MC method

are replaced by the low-discrepancy sequences. 

The concept of the proposed low-discrepancy sampling method is to draw samples of the vector

of the low-discrepancy sequence from a distribution  which is concentrated in the ‘important

region’ of the random variable space, and this can be easily done by suitably transforming the

uniform low-discrepancy sequences. Thus, Eq. (13) can be re-written as

(23)

and using an estimator of the form

(24)

where the sample points  are generated as low-discrepancy sequences such as GLP, H-W,

Halton or Hammersley sequence. The variance of  is given by

(25)
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(26)

It is known that random number sampling in the MC method is prone to clustering: for any

sampling there are always empty areas as well as regions in which random points are wasted due to

clustering. As new points are added randomly, they do not necessarily fill the gaps between already

sampled points. A higher rate of convergence and more precise integral estimate can be obtained by

using low-discrepancy sequences instead of pseudo random numbers. Therefore, the proposed low-

discrepancy sampling method can greatly improve the computational efficiency of the MC method

for reliability sensitivity analysis.

4. Numerical examples

The proposed method, in which the low-discrepancy sequences are combined with the developed

IS procedure, is applied to five examples involving both numerical and structural problems to

investigate its accuracy and efficiency in estimating the reliability sensitivity. These examples,

which cover a wide variety of possible limit state functions of varying complexity, were developed

to compare different methods with respect to the following aspect: space dimension (number of

RVs), probability level (value of failure probability), nonlinear problem and system problem. For

comparison purposes, the results calculated by the MC-based method in Wu (1994) are referred to

exact ones, denoted as MC. In all cases, the comparison is made with respect to the exact results,

the results given by the presented IS method (denoted as MC+IS), and the results given by the

proposed low-discrepancy sampling method (denoted as QMC/GLP+IS, QMC/H-W+IS, QMC/

Halton+IS and QMC/Hammersley+IS). It is noted that the computational cost of estimating the

failure probability or the reliability sensitivity is governed by the number of structural analyses that

have to be carried out. Therefore, the comparison criterion used to assess the computational

efficiency of different methods in this study is the number of sample points that must be carried out

in order to achieve the same level of accuracy.

4.1 Example 1: a multi-dimensional case

The limit state function for the first example, which was also studied in Engelund and Rackwitz

(1993), Nie and Ellingwood (2004) is an n-dimensional hyperplane

(27)

where Ui,  are independent standard normal distributed variables. The example was

calculated for  and  corresponding to s = 2 and s = 20, respectively. The purpose is

to investigate the performance of the proposed method for different probability levels and different

number of RVs. The similar results for different combinations of β and s were obtained and only

the results for the case  and s = 2 are shown as follows for the sake of simplification in the

paper. 

The results of the structural reliability sensitivity are shown in Table 1. For the sake of

comparison with GLP procedure, the number of samples was selected as . It can be seen
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that the results calculated by the presented method including the MC+IS method are in good

agreement with the exact ones with much fewer samples than the MC method. In particular,

different versions of QMC+IS procedures give noticeably smaller error estimates than MC+IS

method with the same number of samples, indicating that the proposed method can achieve higher

accuracy for linear limit state function that contains different number of RVs. In addition, it is found

that the value between  and ,  and  are similar, indicating that

U1 and U2 have the comparable effect on PF. Thus, the significance of the distribution parameter

with respect to the failure probability can be reflected by the results of the reliability sensitivity. It is

also noted that when failure probability is computed by the low-discrepancy sampling method, the

reliability sensitivity can be addressed with only a little extra computational effort on the basis of

getting structural reliability results.

Fig. 1(a) and (b) shows the estimates of the reliability sensitivity  relative to the exact

value (relative error of estimates) and the coefficients of variation of these estimates as a function of

the number of samples for different methods, respectively. It can be seen that, with comparable

coefficients of variation, the results computed by different versions of QMC+IS procedures quickly

and stably converge to the exact solution with the increasing of the number of samples. The relative

error of estimates are continuously less than 5% as long as the number of samples N reaches 300 for

∂P̂F/∂µ1 ∂P̂F/∂µ2 ∂P̂F/∂σ1 ∂P̂F/∂σ2

∂P̂F/∂µ1

Table 1 The reliability and sensitivity results of Example 1

MC MC+IS
QMC/GLP

+IS
QMC/H-W

+IS
QMC/Halton

+IS
QMC/

Hammersley+IS

9.461 × 10-5 10.337 × 10-5 9.506 × 10-5 9.448 × 10-5 9.408 × 10-5 9.549 × 10-5

9.463 × 10-5 10.127 × 10-5 9.520 × 10-5 9.689 × 10-5 9.625 × 10-5 9.571 × 10-5

2.678 × 10-4 3.104 × 10-4 2.685 × 10-4 2.612 × 10-4 2.643 × 10-4 2.710 × 10-4

2.679 × 10-4 2.515 × 10-4 2.694 × 10-4 2.749 × 10-4 2.766 × 10-4 2.719 × 10-4

PF 3.167 × 10-5 3.463 × 10-5 3.184 × 10-5 3.205 × 10-5 3.188 × 10-5 3.200 × 10-5

Sample size 106 610 610 610 610 610

∂PF/∂µ1

∂PF/∂µ2

∂PF/∂σ1

∂PF/∂σ2

Fig. 1 Relative error of estimates and coefficients of variation as a function of number of samples for
example 1 
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all QMC+IS procedures, while the relative error of estimate produced by MC+IS is still nearly 10%

although N = 610. The above observations reveal that the low-discrepancy sequences lead to the

merits in expediting convergence and increasing solution stability for reliability sensitivity analysis.

4.2 Example 2: a highly non-linear case

The second example has been discussed by several researchers including Kim and Na (1997), Lu

et al. (2008). The limit state function is

(28)

where Ui,  are independently standard normal variables. The objective of this example is to

demonstrate the accuracy and efficiency of the proposed method for solving a problem with high

nonlinear behavior.

The results of the reliability sensitivity are shown in Table 2. It can be observed that this example

gives almost the same results as the previous one, the reliability sensitivity results obtained by the

presented method, including the MC+IS method, are consistent with the exact solutions calculated

by the MC method with much fewer sample points. On the other hand, the proposed method gives

the noticeably smaller error estimates when compared with MC+IS with the same number of

samples. It can be also seen that the value of  is negative, implying that the increase of the

mean value µ1 can lead to the decrease of the failure probability. While the value of  is

positive, indicating that the increase of the variability of variable U2 can lead to the decrease of the

reliability. Thus, the influential tendency of the distribution parameter with respect to the failure

probability can be judged by the sign of reliability sensitivity estimator.

Fig. 2(a) and (b) shows the relative error of estimates of  and the coefficients of variation

of these estimates as a function of the number of samples for different methods, respectively. As the

observation described in Fig. 1, the results obtained by MC+IS procedure strongly oscillate in the

neighborhood of the exact solution while QMC+IS method make the results converge the exact

solution more quickly and stably. It is obvious that the low-discrepancy sampling method requires

much fewer sample points than MC+IS method to achieve the same level of accuracy, indicating

that the efficiency of the proposed method is much higher than that of the IS method. For instance,

QMC/Halton+IS procedure needs 400 samples to decrease the relative error of estimates within 3%,

whereas MC+IS more than 1000 samples.

g2 exp 0.4U1 7+( ) exp 0.3U2 5+( )– 200–=

i 1 2,=

∂P̂F/∂µ1

∂P̂F/∂µ2

∂P̂F/∂σ1

Table 2 The reliability and sensitivity results of Example 2

MC MC+IS
QMC/GLP

+IS
QMC/H-W

+IS
QMC/Halton

+IS
QMC/

Hammersley+IS

-0.01033 -0.00876 -0.01011 -0.01022 -0.01033 -0.01001

0.00385 0.00306 0.00378 0.00376 0.00379 0.00362

0.02598 0.02237 0.02548 0.02573 0.02602 0.02538

0.00414 0.00265 0.00393 0.00353 0.00377 0.00364

PF 0.003689 0.003087 0.003605 0.003640 0.003683 0.003548

Sample size 2.5 × 106 987 987 987 987 987

∂PF/∂µ1

∂PF/∂µ2

∂PF/∂σ1

∂PF/∂σ2
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4.3 Example 3: one-story one-bay frame

The one-story one-bay elastoplastic frame, shown in Fig. 3 is used to test whether or not the

proposed method can handle the system problem. The four potential failure modes of the system are

defined by four linear limit state functions as follows (Song et al. 2009, Zhao and Ang 2003) 

(29)

Since this is a series system, the limit state function g3 of the structural system can be defined as

the minimum of the above, i.e.

 (30)

g3

1( )
2M1 2M3 4.5S–+=

g3

2( )
2M1 M2 M3+ 4.5S–+=

g3

3( )
M1 M2 2M3 4.5S–+ +=

g3

4( )
M1 2M2 M3 4.5S–+ +=

g3 min g3

1( )
g3

2( )
g3

3( )
g3

4( ), , ,{ }=

Fig. 2 Relative error of estimates and coefficients of variation as a function of number of samples for
example 2 

Fig. 3 One-story one-bay elastoplastic frame of example 3 
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where the yield moment capacity  and the lateral load S are independently normal

random variables with means and standard deviations given by , 

 , , . The different branches have

comparable contribution to the system failure probability. The reliability sensitivity results of

example 3 are shown in Table 3.

4.4 Example 4: beam-cable system

Consider the simple elastoplastic beam-cable system shown in Fig. 4. The limit state functions of

the potential failure modes are listed below (Lu et al. 2008, Zhao and Ang 2003) 

(31)

Mi i 1 2 3, ,=( )
µMi

5.2872 kN·m= σMi
=

0.1492 kN·m i 1 2 3, ,=( ) µS 3.8378 kN= σS 0.3853 kN=

g4

1( )
6M ωL

2
/2–=

g4

2( )
F1L 2F2L 2ωL

2
–+=

g4

3( )
M F2L ωL

2
/2–+=

g4

4( )
2M F1L ωL

2
–+=

Table 3 The reliability and sensitivity results of Example 3

MC MC+IS
QMC/GLP

+IS
QMC/H-W

+IS
QMC/Halton

+IS
QMC/

Hammersley+IS

-0.03818 -0.03729 -0.03817 -0.03709 -0.03848 -0.03659

-0.02390 -0.02508 -0.02317 -0.02426 -0.02155 -0.02399

-0.03819 -0.03770 -0.03773 -0.03539 -0.03730 -0.03752

0.11305 0.11219 0.11279 0.11380 0.11365 0.11390

0.01748 0.01294 0.01391 0.01840 0.02043 0.01633

0.01962 0.01052 0.01807 0.01684 0.02321 0.02077

0.01762 0.01550 0.01618 0.01486 0.01914 0.01902

0.23148 0.23035 0.23145 0.23331 0.23267 0.23329

PF 0.01813 0.01792 0.01806 0.01823 0.01822 0.01826

Sample size 107 12004 12004 12004 12004 12004

∂PF/∂µM
1

∂PF/∂µM
2

∂PF/∂µM
3

∂PF/∂µS

∂PF/∂σM
1

∂PF/∂σM
2

∂PF/∂σM
3

∂PF/∂σS

Fig. 4 Beam-cable system of example 4 
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where  and ω are normal random variables with mean values of µM = 1.356 kN·m,

, ,  and coefficients of variation are Cov(M) =

Cov(Fi) = , . The reliability sensitivity results of example 4 are shown

in Table 4. The GLP procedure was not considered in this example for the limitations of its

generating vector.

4.5 Example 5: 10-bar truss structure

A ten-bar truss structure, which has been widely studied by Kang et al. (2010), Rahman and Wei

(2006), is used to examine the effectiveness of the proposed method for problems where closed-

form failure functions are not available. The Young’s modulus of the material is 68.96 GPa. Two

concentrated forces of 444.8 kN are applied at nodes 2 and 3, as shown in Fig. 5. The cross-

sectional area Xi,  for each bar follows normal distribution with mean value

 and standard deviation . According to the loading condition, the

maximum stress  occurs at element 3, as shown in Fig. 5, thus the limit state

function of the truss structure can be expressed as 

(32)

where the permissible stress  is limited to 172.4 Mpa. For the purpose of simplicity, only the

reliability sensitivity results for element 1, 3, 5, 7 and 8 are listed in Table 5 because the results for

the rest elements are similar with them. Also, the GLP procedure was not considered in due to the

limitations of its generating vector.

In examples 3, and 4, the structural systems are series ones with multiple failure modes. While in

example 5, the limit state function is implicit and the finite element analysis has to be carried out to

compute the failure probability and the reliability sensitivity. From the results in Tables 3, 4 and 5,

it can be seen that the results calculated by the proposed method are in good agreement with the

exact ones with far fewer samples. In addition, it can be also found that the results calculated from

QMC+IS procedures lie within the smaller error bound when compared with those from MC+IS

M F1 F2, ,
µF

1
266.9 kN= µF

2
133.4 kN= µω 29.2 kN/m=

0.1 i 1 2,=( ) Cov ω( ) 0.2=

i 1 … 10, ,=

µ 3.2 10
4–
m

2×= σ 3.2 10
4–
m

2×=

σ3 X1 … X10, ,( )[ ]

g5 σallow σ3 X1 … X10, ,( )–=

σallow

Table 4 The reliability and sensitivity results of Example 4

MC MC+IS
QMC/H-W

+IS
QMC/Halton

+IS
QMC/

Hammersley+IS

-3.426 × 10-5 -3.824× 10-5 -3.204 × 10-5 -3.290 × 10-5 -3.397 × 10-5

 -6.944 × 10-5 -7.853 × 10-5 -7.085 × 10-5 -6.171 × 10-5  -6.669 × 10-5

-2.657 × 10-6 -1.844 × 10-6 -2.890 × 10-6 -2.283 × 10-6 -2.171 × 10-6

0.00115  0.00104 0.00110 0.00105 0.00110

5.006 × 10-5 5.838 × 10-5 4.075 × 10-5 5.008 × 10-5 5.170 × 10-5

 1.007 × 10-4 1.261 × 10-4 1.054 × 10-4  0.869 × 10-4 1.004 × 10-4

8.185 × 10-6  4.349 × 10-6 6.123 × 10-6  6.290 × 10-6 6.479 × 10-6

0.00348  0.00324 0.00325 0.00321 0.00334

PF 1.428 × 10-4  1.570 × 10-4  1.365 × 10-4 1.302 × 10-4  1.373 × 10-4

Sample size  5 × 107 5000 5000 5000 5000

∂PF/∂µF
1

∂PF/∂µF
2

∂PF/∂µM

∂PF/∂µ
ω

∂PF/∂σF
1

∂PF/∂σF
2

∂PF/∂σM

∂PF/∂σ
ω
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method. This again proves the advantage of using the proposed method for reliability sensitivity

analysis. Another benefit of the proposed method is that the reliability sensitivity can be addressed

with only a little extra computational effort on the basis of getting structural reliability results.

5. Conclusions

The low-discrepancy sampling for structural reliability analysis is successfully applied to establish

a method for efficient reliability sensitivity analysis. Two innovative features of the proposed

methodology are: Firstly, the partial derivative of the failure probability with respect to the

Fig. 5 10-bar truss structure of example 5  

Table 5 The reliability and sensitivity results of Example 5

MC MC+IS
QMC/H-W

+IS
QMC/Halton

+IS
QMC/

Hammersley+IS

-1.378 × 10-3 -1.483 × 10-3 -1.577 × 10-3 -1.391 × 10-3 -1.444 × 10-3

-1.151 × 10-2 -1.211 × 10-2 -1.178 × 10-2 -1.162 × 10-2 -1.141 × 10-2

2.341 × 10-4 3.529 × 10-4  1.897 × 10-4 2.318 × 10-4 2.783 × 10-4

-1.992 × 10-3 -2.182 × 10-3 -2.145 × 10-3 -2.039 × 10-3 -1.799 × 10-3

1.515 × 10-3 1.403 × 10-3 1.624 × 10-3 1.577 × 10-3 1.274 × 10-3

8.948 × 10-4 1.020 × 10-3  9.216 × 10-4 8.185 × 10-4 9.485 × 10-4

5.469 × 10-2 5.598 × 10-2 5.560 × 10-2 5.420 × 10-2 5.343 × 10-2

-3.322 × 10-5 -1.778 × 10-5 -2.466 × 10-5 -3.359 × 10-5 -2.125 × 10-5

1.734 × 10-3 1.691 × 10-3 1.947 × 10-3 1.979 × 10-3 1.420 × 10-3

 8.405 × 10-4  6.924 × 10-4 8.001 × 10-4 8.916 × 10-4 7.592 × 10-4

PF 7.660 × 10-7 7.993 × 10-7 7.758 × 10-7 7.738 × 10-7 7.561 × 10-7

Sample size 5 × 105 2000 2000 2000 2000

∂PF/∂µA
1

∂PF/∂µA
3

∂PF/∂µA
5

∂PF/∂µA
7

∂PF/∂µA
8

∂PF/∂σA
1

∂PF/∂σA
3

∂PF/∂σA
5

∂PF/∂σA
7

∂PF/∂σA
8
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distribution parameter can be obtained with typically insignificant additional computations on the

basis of structural reliability analysis by developing a general importance sampling method for

reliability sensitivity analysis. Secondly, the advantages of the low-discrepancy sampling for

structural reliability analysis are propagated to that for reliability sensitivity analysis by combining

the low-discrepancy sequences with the above importance sampling technique. Examples illustrate

that the proposed method gives noticeably higher accuracy than MC or IS method with the same

number of samples to estimate the reliability sensitivity. That is, for the given accuracy, the

proposed method needs far fewer samples and thus decreases the total simulation effort with a

remarkable stability when compared with traditional method. Therefore, the low-discrepancy

sampling method qualifies as a comprehensive tool in reliability sensitivity analysis.
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