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Abstract. A new nonlinear model was developed to evaluate the shear resistance of steel fiber-
reinforced concrete beams (SFRCB) using linear genetic programming (LGP). The proposed model relates
the shear strength to the geometrical and mechanical properties of SFRCB. The best model was selected
after developing and controlling several models with different combinations of the influencing parameters.
The models were developed using a comprehensive database containing 213 test results of SFRC beams
without stirrups obtained through an extensive literature review. The database includes experimental results
for normal and high-strength concrete beams. To verify the applicability of the proposed model, it was
employed to estimate the shear strength of a part of test results that were not included in the modeling
process. The external validation of the model was further verified using several statistical criteria
recommended by researchers. The contributions of the parameters affecting the shear strength were
evaluated through a sensitivity analysis. The results indicate that the LGP model gives precise estimates of
the shear strength of SFRCB. The prediction performance of the model is significantly better than several
solutions found in the literature. The LGP-based design equation is remarkably straightforward and useful
for pre-design applications.

Keywords: fiber-reinforced concrete beams; linear genetic programming; SFRC beam; shear strength;
formulation.

1. Introduction 

Fiber-reinforced concrete (FRC) may be defined as a composite materials made with Portland

cement, aggregate, and incorporating discrete discontinuous fibers (Chanh 2004). Shear failure of

reinforced concrete beams occurs when the principal tensile stress within the shear span exceeds the

tensile strength of concrete and a diagonal crack propagates through the beam web. The addition of

steel fibers into the concrete mix is known to increase its shear strength (Gencoglu 2007). If

sufficient fibers are added, a brittle shear failure can be suppressed in favor of more ductile

behavior. The increased shear strength and ductility of steel fiber-reinforced concrete beams

(SFRCB) stems from the post-cracking tensile strength of FRC (Kwak et al. 2002). Use of fibers is
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beneficial, since they are distributed throughout the concrete volume and provide equal resistance to

stress in all direction. This is advantageous in structures particularly designed to resist earthquake

and wind loading (Li et al. 1992). Fiber reinforcement may also significantly reduce construction

Fig. 1 Different types of steel fibers (Wang 2006)

Table 1 Evaluated properties in the literature for the shear strength of SFRC beams

Author(s)
No. of 
tests

Properties and parameters

Vf  (%) Lf /Df ρ (%) fc' (MPa) a/d

Batson (1972) 42 X X X X

Roberts and Ho (1982) 6 X X X

Jindal (1984) 1

Swamy and Bahia (1985) 4 X

Uomoto et al. (1986) 24 X X X X X

Kadir and Saeed (1986) 4 X

Mansur et al. (1986) 9 X X

Kaushik et al. (1987) 9 X X

Murthy and Venkatacharyulu (1987) 7 X X X

Narayanan and Darwish (1987) 29 X X X X X

Lim et al. (1987) 6 X X

Narayanan and Darwish (1988) 7 X X X

Li et al. (1992) 6 X X

Tan et al. (1992) 5 X X

Ashour et al. (1992) 8 X X X

Swamy et al. (1993) 6 X X

Imam (1994) 5 X

Shin et al. (1994) 6 X X

Adebar et al. (1997) 6 X X

Oh et al. (1998) 2 X

Casanova (1999) 2

Noghabai (2000) 11 X X

Kwak et al. (2002) 4 X X X

Cucchiara et al. (2004) 4 X X

Total 213 18 9 7 5 14

Vf (%): Fiber volume fraction; Lf /Df : fiber aspect ratio; ρ (%): Flexural steel reinforcement ratio; fc' (MPa):
Cylinder compressive strength of concrete; a/d: Shear span-depth ratio. 
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time and costs, especially in an era of high labor costs and possibly even labor shortages. A

possible reason is that conventional stirrups require relatively high labor input to bend and fix in

place. Fiber concrete can also be easily placed in thin or irregularly shaped sections, such as

architectural panels, where it may be very difficult to place stirrups. Another potential area of fiber

use is in high-strength concrete. The use of high-strength concrete is attractive for longer spans and

taller structures (Khuntia 1999). The relative brittleness and lack of ductility of high-strength

concrete can be overcome by inclusion of fibers in high-strength concrete mix (Khuntia et al. 1999).

The increase in shear strength can vary drastically depending on the beam geometry and material

properties. Li et al. (1992) found that the material strength of steel FRC is significantly affected by

the volume ratio, aspect ratio, and steel fiber shape. Different types of steel fibers are shown in

Fig. 1. These fibers have different mechanical properties such as tensile strength, grade of

mechanical anchorage, and capability of stress distribution and absorption. Hence they have

different influence on concrete properties (Wang 2006). The literature describes numerous

experimental studies of rectangular, fiber-reinforced beams without stirrups. In these studies, several

aspects of the FRC beams are evaluated. The geometrical and material properties used in some of

these works are summarized in Table 1.

Numerous reports published over the past 30 years have considered the possibility of utilizing

FRC by assigning the function of shear reinforcement to the fibers. The achievable advantages are

emphasized by ACI Committee 544 (1988) and by RILEM TC 162-TDF (2000). Over the years,

several empirical or semi-empirical relations have been developed to determine the ultimate shear

strength of SFRCB. Different prediction equations proposed by researchers are presented in Table 2.

Several computer-aided data mining approaches have been developed by extending developments

in computational software and hardware. Pattern recognition system, as an example, learns

adaptively from experiences and extracts various discriminators. Computational intelligence (CI)

(Schwefel et al. 2002) techniques are well-known pattern recognition methods. Artificial neural

networks (ANNs) are the most widely-used branches of the CI methods. They have successfully

been applied to the evaluation of the SFRC beams (Adhikary and Mutsuyoshi 2006). Although

Table 2 Different prediction equations for the ultimate shear strength of SFRC beams

No. Author(s) Equation

1 Swamy et al. (1993)

2 Sharma (1986)  where 
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Table 2 Continued

No. Author(s) Equation

4 Ashour et al. (1992)

5 Ashour et al. (1992)

6 Kwak et al. (2002)

7 Kwak et al. (2002)

8 Li et al. (1992)

9 Khuntia et al. (1999)

10 Shin et al. (1994)

11 Mansur et al. (1986)

vfrc: ultimate shear strength, MPa; τ: average fiber matrix interfacial bond stress = 4.15 MPa; vc: concrete
contribution to shear strength and calculated according to ACI design code = ; fspfc computed value
of split-cylinder strength of fiber concrete, MPa; ft: Splitting tensile strength, MPa; ff: modulus of rupture
MPa; α1 = coefficient representing the fraction of bond mobilized at first matrix cracking = 0.5 and α2:
efficiency factor of fiber orientation in the uncracked state of the composite = 1 (Naaman and Reinhardt
2003); V: shear force at section, N; M: bending moment at section, N.mm; νb: 0.41 τF, MPa; F: fiber factor
(df (Lf /Df) Vf); df: bond factor.

vfrc

2.11 fc3 7F+( ) ρ
d

a
---⎝ ⎠

⎛ ⎞
1/3

                             For 
a

d
--- 2.5≥

2.11 fc3 7F+( ) ρ
d

a
---⎝ ⎠

⎛ ⎞
1/3

5d

2a
------ vb 2.5

a

d
---–⎝ ⎠

⎛ ⎞ For  
a

d
--- 2.5<+

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

vfrc 0.7 fc′ 7F+( )d
a
--- 17.2ρ

d

a
---+=

vfrc 2.1efspfc
     0.7 ρ

d

a
---⎝ ⎠

⎛ ⎞
0.22

0.8vb

0.97
+= e

1         
a

d
--- 3.5>

3.5
d

a
---

a

d
--- 3.5≤⎩

⎪
⎨
⎪
⎧

=

vfrc 3.7efspfc
     2/3 ρ

d

a
---⎝ ⎠

⎛ ⎞
1/3

0.8vb+= e

1         
a

d
--- 3.4>

3.5
d

a
---

a

d
--- 3.4≤⎩

⎪
⎨
⎪
⎧

=

vfrc

1.25 4.68 ff fspfc
     ( )3/4

ρ
d

a
---⎝ ⎠

⎛ ⎞
1/3

d
1/3–

 For FRC+

0.53 5.47 ff fspfc
     ( )3/4

ρ
d

a
---⎝ ⎠

⎛ ⎞
1/3

d
1/3–

 For FRM+

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

vfrc 0.167α 0.25F+( ) fc′= α

1                     
a

d
--- 2.5≥

min 2.5
d

a
--- 3,⎝ ⎠

⎛ ⎞   
a

d
--- 2.5<

⎩
⎪
⎪
⎨
⎪
⎪
⎧

=

vfrc

0.19fspfc 93ρ
d

a
--- 0.34τF  For  

a

d
--- 3≥+ +

0.22fspfc 217ρ
d

a
--- 0.34τF  For  

a

d
--- 3<+ +⎩

⎪
⎨
⎪
⎧

=

vfrc 0.41 τVf

Lf

Df

-----⎝ ⎠
⎛ ⎞ 0.16 fc 17.2

ρVd

M
----------+⎝ ⎠

⎛ ⎞+=

0.167 fc′



Nonlinear modeling of shear strength of SFRC beams using linear genetic programming 5

ANNs are successful in prediction, they are not usually able to produce practical prediction

equations. Furthermore, they require the structure of the network (e.g., number of inputs, transfer

functions, number of hidden layers, etc.) to be identified a priori. The ANN method is mostly

appropriate to be used as a part of a computer program. 

Genetic programming (GP) (Koza 1992, Banzhaf et al. 1998) is another alternative approach for

behavior modeling of structural engineering problems. GP is a relatively new branch of the CI

techniques inspired from Darwin’s evolution theory. It may generally be defined as a supervised

machine learning technique that searches a program space instead of a data space (Banzhaf et al.

1998). The programs generated by traditional GP are represented as tree structures and expressed in

the functional programming language (Koza 1992). The main advantage of the GP-based

approaches over the conventional statistical and ANN techniques is their ability to generate

prediction equations without assuming prior form of the existing relationship. Many researchers

have employed GP and its variants to discover any complex relationships among experimental data

(e.g., Johari et al. 2006, Alavi et al. 2010a, Gandomi et al. 2010a, Mousavi et al. 2010). Linear

genetic programming (LGP) (Brameier and Banzhaf 2007) is a new subset of GP with a linear

structure similar to the DNA molecule in biological genomes. LGP is a machine learning approach

that uses sequences of imperative instructions as genetic material. More specifically, LGP operates

on genetic programs that are represented as linear sequences of instructions of an imperative

programming language (Brameier and Banzhaf 2001, 2007). Based on the numerical experiments,

the LGP approach is able to significantly outperform similar techniques (Oltean and Grossan 2003,

Baykasoglu et al. 2008). Unlike tree-based GP and other soft computing tools like ANNs, the LGP

applications to solve problems in civil engineering are restricted to relatively fewer areas. Some of

these limited scientific efforts include predicting limestone compressive and tensile strength

(Baykasoglu et al. 2008), formulation for compressive strength of CFRP confined concrete cylinders

(Gandomi et al. 2010b), prediction of circular pile scour (Guven et al. 2009), and formulation of

geotechnical engineering systems (Alavi and Gandomi 2011).

In this study, the LGP approach was utilized to derive an empirical prediction model for the shear

capacity of SFRC beams without stirrups. The derived model relates the shear strength to a couple

of influencing parameters. LGP is useful in deriving prediction equations for the shear capacity by

directly extracting the knowledge contained in the experimental data. The proposed model was

developed based on several published shear tests on SFRC beams. The results made by the

developed model were further compared with those obtained by several researchers.

2. Genetic programming

Evolutionary algorithms (EAs) (Bäck 1996) are a subset of evolutionary computations. They use

biology-inspired mechanisms to optimize a solution with regard to desired result. CI includes EAs

and all of their different branches with ANNs and fuzzy logic. The CI techniques have wide ranging

applications for approximating the nonlinearities. Developments in the computer hardware during

the last two decades have made it much easier for these techniques to grow into more efficient

frameworks. In addition, it has been proven that several CI approaches may be used as efficient

tools in problems where conventional approaches fail or perform poorly. GP is a robust branch of

the CI techniquesthat creates computer programs to solve a problem using the principle of

Darwinian natural selection. The breakthrough in GP came in the late 1980s with the experiments
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on symbolic regression (Koza 1992). GP is an extension of genetic algorithms (GAs). This classical

GP technique is also referred to as tree-based GP (Koza 1992). The main difference between the

GA and GP approaches is that in GP the evolving programs (individuals) are parse trees rather than

fixed-length binary strings. The traditional optimization techniques, like GAs, are in particular used

to minimize an existing objective function. In other words, to perform GA-based analyses, an

objective function should be defined in advance. Conversely, GP is able to generate prediction

equations without any need to establish a pre-defined function or to assume prior form of the

relationship. GP is relatively a new field of pattern recognition methods in contrast with GA. A

survey of the literature reveals the growing interest of the research community in GP.

In addition to traditional tree-based GP, there are other types of GP where programs are

represented in different ways (see Fig. 2). These are linear and graph-based GP (Banzhaf et al.

1998, Poli et al. 2007). The emphasis of the present study is placed on the linear GP

techniques.Several linear variants of GP have recently been proposed such as linear genetic

programming (LGP) (Brameier and Banzhaf 2007) and multi-expression programming (MEP)

(Oltean and Dumitrescu 2002). The linear variants of GP make a clear distinction between the

genotype and phenotype of an individual. In these variants, individuals are represented as linear

strings that are decoded and expressed like nonlinear entities (trees) (Oltean and Grosan 2003).

There are some main reasons for using linear GP. Basic computer architectures are fundamentally

the same now as they were twenty years ago, when GP began. Almost all architectures represent

computer programs in a linear fashion. In other words, computers do not naturally run tree-shaped

programs. Hence, slow interpreters have to be used as part of tree-based GP. Conversely, by

evolving the binary bit patterns actually obeyed by the computer, the use of an expensive

interpreter (or compiler) is avoided and GP can run several orders of magnitude faster (Poli et al.

2007).

2.1 Linear genetic programming

LGP is a subset of GP with a linear representation of individuals. The main characteristic of LGP

in comparison with traditional tree-based GP is that expressions of a functional programming

language (like LISP) are substituted by programs of an imperative language (like C/C++) (Brameier

and Banzhaf 2001, 2007). Fig. 3 presents a comparison of the program structures in LGP and tree-

based GP. A linear genetic program can be seen as a data flow graph generated by multiple usage

of register content. That is, on the functional level the evolved imperative structure denotes a special

directed graph. In the tree-based GP, the data flow is more rigidly determined by the tree structure

Fig. 2 Different types of genetic programming 
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of the program (Brameier and Banzhaf 2001, Alavi et al. 2010b).

In the LGP system described here, an individual program is interpreted as a variable-length

sequence of simple C instructions. The instruction set or function set of LGP consists of arithmetic

operations, conditional branches, and function calls. The terminal set of the system is composed of

variables and constants. The instructions are restricted to operations that accept a minimum number

of constants or memory variables, called registers (r), and assign the result to a destination register,

e.g., r0:= r1 + 1. A part of a linear genetic program in C code is represented in Fig. 4. In this figure,

register r[0] holds the final program output.

Automatic Induction of Machine code by Genetic Programming (AIMGP) is a particular form of

LGP. The programs evolved by AIMGP are stored as linear strings of native binary machine code

and directly executed by the processor during fitness calculation. The absence of an interpreter and

complex memory handling results in a significant speedup in the AIMGP execution compared to

tree-based GP (Brameier and Banzhaf 2007). This machine-code-based LGP approach searches for

the computer program and the constants at the same time. Here are the steps the machine-code-

based LGP follows for a single run (Francone and Deschaine 2004, Brameier and Banzhaf 2007): 

I. Initializing a population of randomly generated programs and calculating their fitness values.

II. Running a Tournament. In this step four programs are selected from the population randomly.

They are compared and based on their fitness, two programs are picked as the winners and

two as the losers.

III.Transforming the winner programs. After that, two winner programs are copied and

transformed probabilistically as follows:

Fig. 3 Comparison of the GP program structures (a) Tree-based GP, (b) LGP (after Alavi et al. 2010b) 

Fig. 4 An excerpt of a linear genetic program
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• Parts of the winner programs are exchanged with each other to create two new programs

(crossover); and/or

• Each of the tournament winners are transformed randomly to create two new programs

(mutation).

IV. Replacing the loser programs in the tournament with the transformed winner programs. The

winners of the tournament remain without change.

V. Repeating steps two through four until termination or convergence conditions are satisfied.

A basic representation of the LGP algorithm is presented in Fig. 5.

Crossover occurs between instruction blocks. Fig. 6 demonstrates a two-point linear crossover

used in LGP for recombining two tournament winners. As it is seen, a segment of random position

and arbitrary length is selected in each of the two parents and exchanged. If one of the two children

would exceed the maximum length, crossover is aborted and restarted with exchanging equally

sized segments (Brameier and Banzhaf 2001). The mutation operation occurs on a single instruction

Fig. 5 A basic representation of the LGP algorithm (Regmi et al. 2004) 

Fig. 6 Crossover in LGP
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set. Inside instructions, mutation randomly replaces the instruction identifier (a variable or a

constant) by equivalents from valid ranges. Comprehensive descriptions of the basic parameters

used to direct a search for a linear genetic program can be found in (Brameier and Banzhaf 2007).

According to Francone and Deschaine (2004), the LGP system can be regarded as an efficient

modeling tool for complex problems for several reasons including: 

• Its speed permits conducting many runs in realistic timeframes. This leads to deriving consistent,

high-precision models with little customization; 

• It is well-designed to prevent overfitting and to evolve robust solutions; and 

• The solutions evolved by the LGP system can be executed very quickly when called by an

optimizer.

3. Modeling of shear strength of SFRC beams

The main purpose of this study is to derive an alternative formulation for the shear strength of

SFRCB without stirrupsusing the LGP approach. The most important factors commonly used in the

previous models and codes (Zsutty 1971, Narayanan et al. 1987, Sharma 1986, Mansur et al. 1986,

Ashour et al. 1992, Li et al. 1992, Swamy et al. 1993, Shin et al. 1994, Khuntia et al. 1999, Kwak

et al. 2002, Adhikary and Mutsuyoshi 2006) were employed as the predictor variables.

Consequently, formulation of the shear strength was considered to be as follows

 (12)

where,

vu = Average shear stress at shear failure, MPa

a/d = Shear span-depth ratio

a = shear span, mm 

b = Beam width, mm

d = Effective depth of beam, mm

fc'  = Cylinder compressive strength of concrete, MPa

ρ = Flexural steel reinforcement ratio, %

F = Fiber factor (df (Lf /Df) Vf)

Lf /Df = Fiber aspect ratio

Lf = Fiber length, mm

Df =Fiber diameter, mm

Vf = volume fraction of steel fibers, %

df = bond factor: 0.50 for round fibers, 0.75 for crimped fibers, and 1.00 for indented fibers

(Narayanan and Darwish 1987)

ω = Reinforcement factor (ρ (1 + 4F))

e = Arch action factor: 1.0 for a/d > a/dtransition, and a/dtransition × d/a for a/d ≤ a/dtransition (a/dtransition = 3)

νb = 0.41 τF, MPa

τ = Average fiber matrix interfacial bond stress, taken as 4.15 MPa, based on recommendations of

Swamy et al. (1974)

ft' = Splitting tensile strength (0.79 fc' ), MPa

fspfc = Computed value of split-cylinder strength of fiber concrete 

vu f
a

d
--- fc′ F ρ ω e vb ft′ fspfc′, , , , , , , ,⎝ ⎠
⎛ ⎞=
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 (13)

where fcuf (MPa) is cube strength of fiber concrete. The above formulation of vu incorporates the

contributions of various geometrical and mechanical factors influencing the shear strength of

SFRCB. To formulate the shear strength of SFRC beams, several models were developed and

analyzed using different combinations of the predictor variables. Table 3 summarizes the considered

input combinations. The selection of the parameters for each of the combination types was based on

the shape of the classical relationships (see Table 2) and also on the basis of a trial study. Although

a maximum of five parameters was considered for the cases, it was tried to include the effect of

several variables, shown by Eq. (12), in each combination. As an example, the sixth combination

consists of a/d, fc' , ρ, and vb, where vb is a function of τ and F and F is itself a function of df, Lf, Df,

and Vf. Thus, this combination incorporates the effect of several influencing variables, i.e., a, d, fc' ,

ρ, τ, F, df, Lf, Df, and Vf. The same is true for other combinations. The advantage of using such

combinations is deriving much simpler models since fewer parameters are involved in the model

development. 

3.1 Experimental database 

The comprehensive database used for developing the models was gathered through an extensive

literature review. The collected data included 213 tests results for the SFRC beams without shear

reinforcement (Batson 1972, Roberts and Ho 1982, Jindal 1984, Swamy and Bahia 1985, Uomoto et

al. 1986, Kadir and Saeed 1986, Mansur et al. 1986, Kaushik et al. 1987, Murthy and

Venkatacharyulu 1987, Lim et al. 1987, Narayanan and Darwish 1987, 1988, Li et al. 1992, Tan et

fspfc
fcuf

20 F–( )
------------------- 0.7 1.0 F MPa( )+ +=

Table 3 The considered combinations of the predictor variables 

Combination # Variables

1 a/d, fc', F, ρ, e

2 a/d, fc', F, ρ

3 a/d, fc', ω, e

4 a/d, fc', ω

5 a/d, fc', vb, ρ, e

6 a/d, fc', vb, ρ

7 a/d, ft', F, ρ, e

8 a/d, ft', F, ρ

9 a/d, ft', ω, e

10 a/d, ft', ω

11 a/d, ft', vb, ρ, e

12 a/d, ft' , vb, ρ

13 a/d, fspfc, ρ, e

14 a/d, fspfc, ρ

15 a/d, fspfc, vb, ρ, e

16 a/d, fspfc, vb, ρ
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al. 1992, Ashour et al. 1992, Swamy et al. 1993, Imam 1994, Shin et al. 1994, Adebar et al. 1997,

Oh et al. 1998, Casanova 1999, Noghabai 2000, Kwak et al. 2002, Cucchiara et al. 2004). A

summary of the number of tests employed herein and the related references is also given in Table 1.

The ranges and statistics of the independentvariables involved in the model development are given

in Table 4. As can be observed from this table, the database contains experimental results for both

normal-strength concrete (NSC) and high-strength concrete (HSC) beams. To visualize the

distribution of the samples, the data are presented by frequency histograms (Fig. 7). The histograms

show a visual impression of the distribution of the experimental data. The cumulative number of the

observations in the considered bins is illustrated by cumulative percentage line. As can be observed

from Fig. 7, the distributions of the predictor variables are not uniform. The models would most

probably provide better predictions for the cases where the densities of the variables are higher.

Overfitting is one of the principal problems in machine learning generalization. It is a case in

which the error on the learning set is driven to a very small value, but when new data is presented

to the model, the error is large. An efficient approach to prevent overfitting is to test other

individuals from the run on a validation set to find a better generalization (Banzhaf et al. 1998).

This technique was used in this study for improving the generalization of the models. For this

purpose, the available data sets were randomly divided into learning, validation and testing subsets.

The learning data were used for training (genetic evolution). The validation data were used to

specify the generalization capability of the evolved programs on data they did not train on (model

selection). In other words, the learning and validation data sets were used to select the best evolved

programs and included in the training process. Thus, they were categorized into one group referred

to as training data. The testing data were finally used to measure the performance of the models

obtained by LGP on data that played no role in building the models. This technique provides decent

results as long as the models perform well on the learning data sets (Banzhaf et al. 1998). In order

to obtain a consistent data division, several combinations of the training and testing sets were

considered. Of the 213 data, 107 data vectors were used for the learning process and 64 data were

taken as the validation data. The remaining 42 sets (20%) were used for the testing of the derived

models. 

Table 4 Descriptive statistics of the independent variables used in the model development

Parameter a (mm) d (mm) fc' (MPa) ρ (%) Lf /Df Vf  (%) df vu (MPa)

Mean 633.142 203.061 47.221 2.811 79.427 0.827 0.728 3.929

Standard Error 39.344 7.358 1.377 0.089 1.677 0.030 0.010 0.178

Median 508 175 40.85 2.9 67 0.75 0.75 3.13

Mode 392 127 33.21 3.08 100 1 0.75 2.43

Standard Deviation 574.203 107.390 20.100 1.305 24.478 0.435 0.139 2.600

Sample Variance 329709.521 11532.510 404.023 1.704 599.188 0.190 0.019 6.761

Kurtosis 10.992 3.261 1.534 7.761 -0.547 -0.064 0.198 3.825

Skewness 3.202 1.853 1.352 2.031 0.504 0.592 -0.038 1.919

Range 3517.870 490.000 90.900 9.500 108.333 1.780 0.500 13.610

Minimum 120 80 20.6 1 25 0.22 0.5 1.44

Maximum 3637.87 570 111.5 10.5 133.333 2 1 15.05

Confidence Level (95.0%) 77.555 14.505 2.715 0.176 3.306 0.059 0.019 0.351
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Fig. 7 Histograms of the parameters used in the model development
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3.2 Model development using LGP

The available database was used for developing the LGP prediction models relating vu to a/d, fc' ,

F, ρ, e, ω, e, νb, ft', and fspfc. Various parameters involved in the LGP algorithm are shown in Table 5.

The parameter selection will affect the model generalization capability of LGP. The number of

programs in the population that LGP will evolve is set by the population size. A run will take

longer with a larger population size. The maximum number of tournaments sets the outer limit of

the tournaments that will occur before the program terminates the run. The proper number of

population and tournaments depends on the number of possible solutions and complexity of the

problem. Mutation and crossover rates are the probabilities that an offspring will be subjected to

mutation and crossover, respectively. The lengths of the evolved programs in runs were controlled

by initial and maximum program size parameters. The initial program size parameter sets the size of

the programs in the first population at the start of each run. The maximum program size parameter

sets the maximum length of the other programs evolved during each run. 

Several runs were conducted to come up with a parameterization of LGP that provided enough

robustness and generalization to solve the problem. The LGP parameters were changed for different

runs. Three levels were set for the population size and two levels were considered for the crossover

rate. The success of the LGP algorithm usually increases with increasing the initial and maximum

program size parameters. In this case, the complexity of the evolved functions increase and the

speed of the algorithm decreases. These parameters are measured in bytes. The initial and maximum

program sizes were respectively set to optimal values of 80 and 256 bytes as tradeoffs between the

running time and the complexity of the evolved solutions. One level was considered for the other

parameters based on some previously suggested values (Baykasoglu et al. 2008, Gandomi et al.

2010b, Alavi and Gandomi 2011) and also after making several preliminary runs and observing the

performance behavior. The number of demes presented in Table 5 is related to the way that the

population of programs is divided. Note that demes are semi-isolated subpopulations that evolution

proceeds faster in them in comparison to a single population of equal size (Brameier and Banzhaf

Table 5 Parameter settings for the LGP algorithm

Parameter Settings

Population size 500, 1500, 3000

Maximum number of tournaments 9000000

Crossover rate (%) 50, 95

Homologous crossover (%) 95

Mutation rate (%) 90

Block mutation rate (%) 30

Instruction mutation rate (%) 30

Data mutation rate (%) 40

Maximum program size 256

Initial program size 80

Function set +, −, ×, /, , sin, cos

Number of demes 20

Fitness function Squared error



14 A.H. Gandomi, A.H. Alavi and G.J. Yun

2007). In this study, four basic arithmetic operators (+, −, ×, /) and basic mathematical functions

( , sin, cos) were utilized to get the optimum LGP models. There are 3 × 2 = 6 different

combinations of the parameters. All of these combinations were tested and 10 replications for each

combination were carried out. This makes 60 runs for each of the combinations of the predictor

variables shown in Table 3. Therefore, the overall number of runs was equal to 60 × 16 (number of

the input combinations) = 960. A fairly large number of tournaments were tested on each run to

find models with minimum error. For each case, the program was run until there was no longer

significant improvement in the performance of the models or the runs terminated automatically.

Each run was observed while in progress for overfitting. In checking for overfitting, situations were

checked in which the fitness of the samples for the training of LGP was negatively correlated with

the fitness on the validation data sets. To evaluate the fitness of the evolved program, the average of

the squared raw errors was used. For the runs showing signs of overfitting, the LGP parameters

were progressively changed so as to reduce the computational power available to the LGP algorithm

until observed overfitting was minimized. The resulting run was then accepted as the production

run. The programs with the best performance on both of the training and validation data sets were

finally selected as the outcomes of each run. For the LGP-based analysis, the Discipulus software

(Conrads et al. 2004) was used which works on the basis of the AIMGP platform.

3.3 LGP-based formulation for shear strength of SFRCB

An extensive trial study was performed to select the most relevant input parameters for the LGP

models. Several LGP models were developed using different combinations of the input parameters.

The best model was chosen on the basis of a multi-objective strategy as follows: 

i. The simplicity of the model, although this was not a predominant factor. 

ii. Providing the best fitness value on the training (learning and validation) set of data. 

iii. Providing the best fitness value on a test set of unseen data. 

The first objective can be controlled by the user through the parameter settings (e.g., program size

for LGP). For the other objectives, the following objective function (OBJ) was constructed as a

measure of how well the model predicted output agrees with the experimentally measured output.

The selection of the best LGP model was deduced by the minimization of the following function

(Gandomi et al. 2010c)

 (14)

where No.Train, No.Test, and No.All are respectively the number of training, testing and whole number

of data; Correlation coefficient (R) and mean absolute error (MAE) are given in the form of

formulas as follows

(15)

 (16)

in which hi and ti are respectively actual and calculated outputs for the ith output,  is the average

of the actual outputs, and n is the number of sample. The R value alone is not an appropriate
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indicator of prediction accuracy of a model as by shifting the output values of a model equally, R

will not change significantly. The constructed objective function takes into account the changes of R

and MAE together. Higher R values and lower MAE values result in lowering OBJ and,

consequently, indicate a more precise model. In addition, the above function considers the effects of

different data divisions for the training and testing sets.

Table 6 summarizes the optimal developed LGP models with their selected input parameters and

the corresponding OBJ values. As can be seen in this table, the best LGP model for predicting the

shear strength of SFRCB was built using a/d, fc' , ρ, and vb (Model Type 6). These four parameters

seem to be sufficient representatives of the geometrical parameters and mechanical properties of

SFRCB. The best LGP single program (Model 6) obtained at the end of training in C++ is given in

Appendix A. This program can be run in C++ environment. The resulting code may be linked to

the optimizer and compiled or it may be called from the optimization routines (Deschaine 2000). To

facilitate the use of the derived model, it was converted into a functional representation by

successive replacements of variables starting with the last effective instruction (Oltean and Grossan

2003). The optimal LGP-based formulation of the shear strength of SFRCB, vu is as follows

(17)

The population size, crossover rate and maximum number of tournaments for the optimal run

were respectively equal to 500, 95% and 3460800. This run took 7 min and 13 s on a Pentium 4

personal computer with 3.00 GHz of processor speed and 1 Gb of memory. The number of the

computer programs evolved and evaluated by the LGP algorithm during the conducted run was

equal to 4312860. A comparison of the experimental and predicted shear strength using the LGP

model is shown in Fig. 8. 

vu MPa( ) 2d

a
------ ρfc′ vb+( ) d

2a
------

ρ

288ρ 11–( )4
------------------------------ 2+ +=

Fig. 8 Experimental versus predicted shear strength using the LGP model (a) training data, (b) testing data 

Table 6 Summary of the LGP optimal solutions developed with various input parameters

Combin-

ation #
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

OBJ 0.980 0.903 1.001 0.986 0.932 0.884 0.930 0.889 1.021 0.971 0.939 0.911 0.996 0.994 0.943 0.941

Rank 11 3 15 12 6 1 5 2 16 10 7 4 14 13 9 8
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4. Performance analysis, model validity, and comparative study

A precise formula for the shear strength of SFRCB was obtained by means of LGP. Performance

statistics of the LGP model and available codes on the entire database are summarized in Table 7.

Based on a logical hypothesis (Smith 1986), if a model gives R > 0.8, and the error value (e.g.,

MAE) is at the minimum, there is a strong correlation between the predicted and measured values.

The model can therefore be judged as very good. It can be observed from Table 6 and Fig. 8 that

the LGP model with high R and low MAE, and therefore low OBJ, values predicts the target values

to an acceptable degree of accuracy. Meanwhile, it is noteworthy that the MAE values are not only

low but also as similar as possible for the training and validation sets, which suggests that the

proposed model has both predictive ability (low values) and generalization performance (similar

values) (Pan et al. 2009). 

It is known that the models derived using the ANNs, GP, or other soft computing tools, in most

cases, have a predictive capability within the data range used for their development. This is because

of the nature of these techniques which distinguishes them from the other conventional techniques.

Thus, the amount of data used for the modeling process is an important issue, as it bears heavily on

the reliability of the final models. To cope with this limitation, Frank and Todeschini (1994) argue

that the minimum ratio of the number of objects over the number of selected variables for model

acceptability is 3, but often a safer value of 5 is more reasonable. In the present study, this ratio is

Table 7 Statistical parameters of the LGP model for external validation

Item Formula Condition LGP

1 Eq. (15) R > 0.8 0.944

2 0.85 < K < 1.15 0.890

3 0.85 < K' < 1.15 1.087

4 m < 0.1 -0.076

5 n < 0.1 -0.092

6 Rm > 0.5 0.659

where
, 
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much higher and is at least equal to 213/5 = 42.6. Furthermore, new criteria recommended by

Golbraikh and Tropsha (2002) were checked for external verification of the LGP model on the

testing data sets. It is suggested that at least one slope of regression lines (k or k') through the origin

should be close to 1. Also, the performance indexes of m and n should be lower than 0.1. Recently,

Roy and Roy (2008) introduced a confirm indicator of the external predictability of models (Rm).

For Rm > 0.5, the condition is satisfied. Either the squared correlation coefficient (through the origin)

between predicted and experimental values (Ro2), or the coefficient between experimental and

predicted values (Ro'2) should be close to 1. The considered validation criteria and the relevant

results obtained by the models are presented in Table 7. As it is seen, the derived model satisfies the

required conditions. The validation phase ensures the proposed model is strongly valid, has the

prediction power and is not a chance correlation.

Besides, comparisons of the shear strength predictions made by the LGP model and various

empirical models found in the literature (Swamy et al. 1993, Sharma 1986, Narayanan et al. 1987,

Ashour et al. 1992, Kwak et al. 2002, Zsutty 1971, Li et al. 1992, Khuntia et al. 1999, Shin et al.

1994, Mansur et al. 1986) for the entire database are presented in Table 8. Fig. 9 visualizes the

histogram plots of the ratio of the experimental to predicted shear strength values. The considered

performance measures were the errors in the predictions (R and MAE), as well as the values of

standard deviation (SD), coefficient of variation (COV) and mean (Mean) of the ratio of the

observed to predicted values. As it is seen, the results provided by the proposed model (R = 0.932,

MAE = 0.783, SD = 0.208, COV = 0.235) are significant improvement over the other existing

models. Considering the Mean values, the best results are obtained by Eq. (6) proposed by Kwak et

al. (2002).

In addition to its reasonable accuracy, the LGP model is remarkably simple and can be used for

design practice via hand calculations. In the conventional statistical analyses, a linear relationship is

often assumed between the outcome and the predictor variables, which is not always true. In most

cases, the best models developed using the commonly used statistical approaches are obtained after

controlling just some equations established in advance. Thus, such models cannot efficiently

Table 8 Overall performances of the shear strength prediction models

Vu, Exp.vs Vu, Pre. Vu, Exp. / Vu, Pre.

Model R MAE SD COV

Swamy et al. (1993), Eq. (1) 0.756 1.669 0.802 0.476

Sharma (1986), Eq. (2) 0.686 1.369 0.664 0.504

Narayanan and Darwish (1987), Eq. (3) 0.725 1.482 0.365 0.310

Ashour et al. (1992), Eq. (4) 0.789 1.377 0.419 0.341

Ashour et al. (1992), Eq. (5) 0.820 1.078 0.384 0.354

Kwak et al. (2002), Eq. (6) 0.823 0.935 0.316 0.309

Kwak et al. (2002), Eq. (7) 0.812 1.082 0.313 0.303

Li et al. (1992), Eq. (8) 0.684 1.333 0.635 0.508

Khuntia et al. (1999), Eq. (9) 0.795 1.708 0.741 0.425

Shin et al. (1994), Eq. (10) 0.782 1.064 0.304 0.273

Mansur et al. (1986), Eq. (11) 0.524 1.746 0.963 0.550

LGP (This work), Eq. (17) 0.932 0.783 0.208 0.235
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Fig. 9 Histogram of the experimental/predicted shear strength values using different models 
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consider the interactions between the dependent and independent variables. On the other hand, LGP

introduces completely new characteristics and traits. One of the major advantages of the LGP

approach over the traditional analyses is its ability to derive explicit relationships for the shear

strength without assuming prior forms of the existing relationships. The best solutions (equations)

evolved by this technique are determined after controlling numerous preliminary models, even

billions of linear and nonlinear models. For instance, the proposed model for the estimation of the

shear strength of SFRCB was selected among a total of 1260346068 programs evolved and

evaluated by the LGP method during the 960 conducted runs. The results indicate that the optimal

LGP model has efficiently captured the interactions between the input and output variables. It

should be noted that the obtained equation is in its final form and no other simplifications can be

applied to it. As more data become available, including those for other types of SFRC beams, the

proposed model can be improved to make more accurate predictions for a wider range. The user

physical insight and the shape of the classical models can be regarded in making propositions on

the elements in the evolved functions and on their structures. 

However, one of the main goals of introducing expert systems, such as the GP-based approaches,

into the design processes is better handling of the information in the pre-design phase. The initial

steps of design are based on imprecise and incomplete information about the features and properties

of targeted output or process (Kraslawski et al. 1999). Nevertheless, it is idealistic to have some

initial estimates of the outcome before performing any extensive laboratory or field work. The LGP

approach employed in this research is based on the data alone to determine the structure and

parameters of the model. Thus, the derived models are considered to be mostly valid for use in

preliminary design stages. For more reliability, the results of the LGP-based analyses are suggested

to be verified by those obtained using deterministic methods. 

5. Sensitivity and parametric analyses

Sensitivity analysis is of utmost concern for selecting the important input variables. The

contribution of each input parameter in the best LGP model (Model 6) was evaluated through a

sensitivity analysis. In order to evaluate the importance of the input parameters, their frequency

values (Francone 2001) were obtained. A frequency value equal to 100% for an input indicates that

this input variable has been appeared in 100% of the best thirty programs evolved by LGP. This is a

common approach in the GP-based analyses (e.g., Gandomi et al. 2010c). The frequency values of

the predictor variables are presented in Fig. 10. According to this figure, the shear strength is less

sensitive to ρ than the other variables. In addition to frequencies, Fig. 10 presents the average

impact of removing all instances of each input from the best thirty programs of the project. A value

of 100% represents the largest impact value possible. The greater the value, the more impact

removal had. As it is seen, the shear strength is more influenced by a/d and fc'  considering their

higher removal impacts in comparison with ρ and νb.

For further verification of the LGP-based prediction model, a parametric analysis was performed

in this study. The parametric analysis investigates the response of the predicted shear strength from

the LGP model to a set of hypothetical input data generated over the ranges of the minimum and

maximum data used for the model training. The methodology is based on the change of only one

input variable at a time while the other variables are kept constant at the average values of their

entire data sets. A set of synthetic data for the single varied parameter is generated by increasing the
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value of this in increments. These inputs are presented to the prediction equation and the shear

strength is calculated. This procedure is repeated using another variable until the model response is

tested for all input variables. The robustness of the design equations is determined by examining

how well the predicted values agree with the underlying physical behavior of the investigated

system (Kuo et al. 2009). Fig. 11 presents the tendency of the shear strength predictions to the

variations of the design parameters, a/d, fc' , ρ, and νb. As it is seen, the shear strength continuously

decreases with increasing a/d andincreases due to increasing fc' , ρ, and νb. The parametric analysis

results are soundly expected cases from structural engineering viewpoint (Kwak et al. 2002, Ashour

et al. 1992, Imam et al. 1994, Narayanan and Darwish 1987, Noghabai 2000).

6. Conclusions 

A constitutive model was developed to assess the shear resistance of SFRC beams without

stirrups using the LGP paradigm. The following conclusions can be derived from the results

Fig. 10 Contributions of the predictor variables in the LGP model 

Fig. 11 Shear strength parametric analysis in the LGP model 
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presented in this research:

• The LGP-based model accurately predicts the shear strength of SFRCB. The validity of the

model was tested for a part of test results beyond the training data domain. Furthermore, the LGP

prediction model efficiently satisfies the conditions of different criteria considered for its external

validation. The validation phases confirm the efficiency of the model for its general application to

the shear strength estimation of SFRCB. 

• The proposed model simultaneously takes into account the role of several important factors

representing the behavior of the shear strength. The final explanatory variables (a/d, fc' , ρ, νb)

were selected after developing different models with different combinations of the input

parameters.

• The model can be used for practical pre-planning and design purposes since it was derived from

tests on beams with a wide range of geometrical and mechanical properties, including HSC and

NSC beams.

• The proposed model produces considerably better outcomes than several prediction equations

found in the literature. 

• An observation from the results of the sensitivity analysis is that the shear strength is more

affected by a/d and fc'  than ρ and νb.

• A general criticism about the GP-based models is that they are only randomly formed functions

which are not based on physical processes. This ambiguity was illuminated by the parametric

analysis. Based on the obtained results, the derived model is a meaningful combination of the

predictor variables as it efficaciously incorporates the underlying physical relations governing the

system. 

• The models derived using LGP are substantially different from the conventional models

developed based on first principles (e.g., elasticity and plasticity theories). A distinctive feature of

the LGP-based models is that they are based on experimental data rather than on assumptions

made in developing the conventional models. 
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Appendix A.

The following optimum LGP programme can be run in the Discipulus interactive evaluator mode or can be
compiled in C++ environment. (Note: v[0], v[1], v[2], and v[3] respectively represent ρ, fc', a/d, and νb.)

float Discipulus C Function(float v[0], v[1], v[2], l5: f[0]+=v[1];

 v[3]) l6: f[0]+=f[0];

{ l7: f[0]*=f[0];

double f[8]; l8: f[0]*=v[0];

doubletmp = 0; l9: f[0]+=f[1];

f[1]=f[2]=f[3]=f[4]=f[5]=f[6]=f[7]=0; l10: f[0]+=f[0];

f[0]=v[0]; f[0]+=f[0];

l0: f[0]-=f[0]; l11: l12: f[0]-=-3;

l1: f[0]-=-3; l13: f[0]*=f[1];

l2: f[0]-=v[1]; f[1]-=f[0];

l3: f[1]-=f[0]; l14: f[1]-=f[0];

l4: f[1]-=f[0]; f[0]/=f[0];

f[1]/=f[0]; l15: f[0]+=f[0];

f[0]/=f[1]; l20: f[0]+=v[2];

l16: f[0]/=f[1]; l21: f[0]+=f[0];

f[0]*=f[0]; l22: f[0]/=v[2];

l17: f[0]+=v[1]; l23:

l18: f[0]*=v[0]; l24:

l19: f[0]+=v[3]; return f[0];}




