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Abstract. In this paper, nonlinear partial differential equations of motion for a hybrid composite plate
subjected to initial stresses on elastic foundations are established to investigate its nonlinear vibration
behavior. Pasternak foundation and Winkler foundations are used to represent the plate-foundation
interaction. The initial stress is taken to be a combination of pure bending stress plus an extensional stress
in the example problems. The governing equations of motion are reduced to the time-dependent ordinary
differential equations by the Galerkin's method. Then, the Runge-Kutta method is used to evaluate the
nonlinear vibration frequency and frequency ratio of hybrid composite plates. The nonlinear vibration
behavior is affected by foundation stiffness, initial stress, vibration amplitude and the thickness ratio of
layer. The effects of various parameters on the nonlinear vibration of hybrid laminated plate are
investigated and discussed.
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1. Introduction

Composite laminated structures are being increasingly used in aeronautical and aerospace

constructions. The study of nonlinear vibration of plates has attracted many researchers’ attention

because it plays a key role in designing resonant-free structural components. A considerable amount

of work dealing with nonlinear vibration of composite plates is available in the published literature

and few of them (Sinfh 2000, Polit and Touratier 2000, Harras et al. 2002, Onkar and Yadav 2005,

Ye et al. 2005, Kazanci and Mecitoglu 2006, Singha and Daripa 2007, Lal et al. 2008, Amabili and

Farhadi 2009) are reported in the references. However, they merely investigated the vibration of

plates laminated with a single material. 

Fiber-reinforced polyester laminates have been successfully applied in many engineering

applications. Similarly, the hybrid composite plates laminated with various materials are widely used

in different fields. The vibration of hybrid laminated plates was studied by Barai and Durvasula

(1992) to investigate the effects of stacking sequence and ply-orientation. The vibration frequencies
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of hybrid laminate panels lie in between the values for laminates made of all plies of higher

strength and lower strength fibers, respectively. Xu et al. (1997) dealt with the vibration frequencies

of hybrid piezothermoelastic plates. The effects of variation in the plate thickness and the location

of the hybrid layers on the vibration frequencies and their sensitivity coefficients were presented.

An analytical solution of simply supported piezoelectric adaptive plates was presented by

Benjeddou et al. (2002). The vibration of laminated composite plates with embedded or surface-

bonded piezoelectric layers was analyzed by Topdar et al. (2007). An efficient plate theory was

applied to model the variation of displacements across the thickness to ensures inter-laminar shear

stress continuity and stress free condition at the plate top and bottom surfaces. The finite element

technique was used to approximate the in-plane variation of displacement parameters at the

reference plane and electric potential at the different interfaces. Dumir et al. (2009) developed a

modified plate theory for hybrid piezoelectric plates with geometric nonlinearity to obtain the

vibration response of laminated hybrid panels. The coupled nonlinear equations of motion and the

boundary conditions were derived by using the extended Hamilton’s principle. Ibrahim et al. (2009)

studied the vibration behavior of shape-memory alloy hybrid composite panels under the combined

effect of thermal and aerodynamic loads. The Newton-Raphson method was employed to calculate

the nonlinear deflections, while an eigenvalue problem was solved at each temperature step and

aerodynamic load to predict the vibration frequencies about the deflected equilibrium position. A lot

of references in the specialized monographs by Ossadzow and Touratier (2003), Huang and Shen

(2005), Kapuria and Achary (2005), Chen et al. (2006) fully attest this statement.

When a composite material is subjected to high temperature or corrosive, moisture surrounding,

its mechanical properties may degrade (Patel et al. 2002). To enhance the mechanical properties of

composites under such environment, it is possible to combine metal and fiber reinforced composites

to form a hybrid laminate material by covering the composite material with a layer of metallic

material. The nonlinear vibration analysis of hybrid plates laminated with aluminum and fiber

reinforced composite was presented by Lee and Kim (1996). The Lagrangian equation was used to

analyze the nonlinear vibration of laminated hybrid composite plates. The effects of stacking

sequences, aspect ratios, number of modes, number of layers and elastic properties on the vibration

were investigated and discussed. Harras et al. (2002) presented a theoretical model based on

Hamilton’s principle to study the nonlinear free vibration of a glare3 hybrid composite plate made

up of alternating layers of metal and fiber reinforced composites. Various types of residual stress in

structures might be induced after a manufacturing or an assembly process. Such a stress is

considered as the initial stress in a structure before an external force is applied to it. The author and

coworkers developed an approach for analyzing the linear (Chen et al. 2009, Chen et al. 2009) and

nonlinear vibration (Chen et al. 2005, Chen and Fung 2004) of initially stressed hybrid laminated

plates. 

In many structural engineering applications, plates placed on an elastic medium are frequently

encountered (Lal et al. 2007, Ayvaz and Oguzhan 2008, Darilmaz 2009). And the vibration of

plates under various initial stresses had attracted some researchers’ attention (Cheung et al. 1998,

Muthurajan et al. 2005, Garg 2007, Kapuria and Achary 2008, Lu and Li 2009). Thus, the study of

the nonlinear vibration analysis of laminated hybrid composite plates resting on elastic foundations

is of importance in the optimum design of hybrid composite structures. Due to the complexity of

nonlinear vibration, not much literature has been found on the study of the nonlinear vibration of

initially stressed hybrid composite plates resting on elastic foundations. In the present paper, the

nonlinear governing equations of an initially stressed hybrid composite plate resting on the elastic
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foundation are derived by the Hamilton’s energy principle. The elastic foundation is represented as a

Pasternak model that is characterized by two parameters, the vertical spring modulus of foundation

(k) and the shear modulus of foundation (gx, gy). The Winkler model is obtained by neglecting the

shear modulus of foundation in the Pasternak model. The initial stress is taken to be a combination

of a pure bending stress and an extensional stress. The Galerkin method is employed to yield

ordinary differential equations from the governing partial differential equations. The ordinary

differential equations are then solved by the Runge-Kutta method to study the effects of the

foundation stiffness, initial conditions and thickness ratio of layer on the behavior of nonlinear

vibration. Two types of simply supported hybrid plates staked with laminates of aluminum and

CFRP (or AFRP) layers subjected to an initial stress and rested on Winkler foundation and

Pasternak foundation are investigated. The effects of various parameters on the nonlinear vibration

frequency and frequency ratio are discussed.

2. Governing equations 

Following a similar technique described by Brunelle and Robertson (1976) and Chen et al.

(2001), Hamilton’s principle is used to derive the nonlinear governing equations of the hybrid plate.

For an initially stressed plate which is in static equilibrium and subjected to a time-varying

incremental deformation, the Hamilton’s energy principle can be expressed as

(1)

where 

Here , and  are the strain energy, strain energy of the foundation, kinetic energy,

work due to external and internal forces, respectively.  and  are the stress and strain referred

to the material coordinates (Brunelle and Robertson 1976); fe is the density of reaction force of

foundation; vi is the displacement referred to the spatial frame; Xi is the body force per unit initial

volume and pi is is the surface force per unit initial surface area. Assume that the stresses and

applied forces are constants. Then by introducing the integral forms of Us, Uf, Kt, We and Wi into

Eq. (1), carrying out the variation, integrating the kinetic energy term by parts with respect to time

and using the assumption that δνi vanishes at time t0 and t1, Eq. (1) becomes
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(2)

In this study, the rectangular plate is considered so the equations and boundary conditions would

be rephrased in x, y coordinates. The constitutive relations for a kth lamina with respect to the

laminate coordinate axes may be written in the following form 

(3)

where Cij are the stiffness coefficients. The incremental displacements are assumed to be the

following forms 

(4)

In this study, von Karman’s assumptions are used. Only those nonlinear terms that depend on

 are to be retained in the strain-displacement relations. All other nonlinear terms are to be

neglected. Hence, kinematic relations can be expressed as

(5)

The Winkler and Pasternak foundation models are used to describe the plate-foundation

interaction in this study. Their respective load-displacement relationships are expressed as follows

(6)

where fe is the force per unit area, k is the modulus of subgrade reaction (elastic foundation

stiffness) and gx, gy are the shear module of the subgrade (shear layer foundation stiffness) in x, y

coordinates, as shown in Fig. 1. When the elastic foundation is represented by a Pasternak model, it

can be characterized by two module, the vertical spring modulus of foundation (k) and the shear

modulus of foundation (gx, gy), respectively. By neglecting the shear modulus of foundation, the

elastic foundation is considered as Winkler model. If foundation is homogeneous and isotropic, one

can let gx = gy = g. Basically, the one-parameter model of Winkler foundation can be considered as

a system of closely spaced linear springs. The two-parameter model of Pasternak foundation can be

thought as a system of closely spaced linear springs coupled with a shear force proportional to the

slope of the foundation surface.
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Substitute Eqs. (3)-(6) into Eq. (2) and perform all necessary partial integrations and group the

terms together by the displacement variation to yield the nonlinear governing equations of motion as

(7)

(8)

 

 

 

Fig. 1 Pasternak elastic foundation
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(9)

where 

(10)

Here Aij, Bij and Dij are the laminate stiffness coefficients; Nij, Mij and  are initial stress

resultants; fx, fy, fz are the lateral loading and body force terms. Meanwhile, all the integrations are

performed through the thickness of the plate from −h/2 to h/2.

3. Numerical examples

In the present study, the case to be concerned is simply-supported rectangular hybrid laminated

plates of length a, width b and uniform thickness h (Fig. 2) subjected to the spatially uniform initial

stress system and resting on an elastic foundation. Lateral loads and body forces are taken to be

zero. The state of initial stresses, as shown in Fig. 2, is 

(11)

which comprises an extensional normal stress  and a bending stress .  and  are

constants and other initial stresses are assumed to be zero. 

For the cross-ply FRP, core of hybrid laminated plates, the stiffness coefficients C16 and C26 will

be equal to zero in Eq. (3). The displacement fields with one-term fundamental mode shape

satisfying the simply-supported boundary conditions along the x-constant and y-constant edges can

be given as 
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 (12)

The details of boundary conditions are listed in previous study (Chen et al. 2001). Substituting the

assumed displacement fields into the nonlinear partial differential Eqs. (7)-(9) and applying the

Galerkin method, one can obtain the following nonlinear ordinary differential equations with time as

the independent variable

(13)

(14)

(15)

Here the coefficients Li and Ni represent the linear and nonlinear terms in the strain-displacement

equation, respectively. The coefficients of above equations are given as 
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Fig. 2 The rectangular plate and the applied stress field
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The initial in-plane compressive (tensile) stress σn is included in the buckling parameter Kf. If Kf

is positive, then the initial stress is tensile. β is the ratio of bending stress to normal stress,

. K and G are the non-dimensional foundation stiffness of k and g, respectively. τ is the

non-dimensional time. The ordinary differential equations are solved by using a fourth order Runge-

Kutta method with a non-dimensional time step of 0.001. Herein, the dimensionless nonlinear

period for one full cycle of nonlinear vibration is measured and denoted as τnl, and the

dimensionless nonlinear frequency is computed as . By neglecting the nonlinear terms in

Eqs. (13)-(15), the dimensionless linear period τl and frequency ωl can be calculated.

4. Results and discussions 

In the present study, the nonlinear vibration of hybrid laminated plates under an arbitrary state of

initial stress and on elastic foundations is investigated. The parameters, the nonlinear frequency

( ) and ratio of nonlinear frequency to linear frequency ( ), are used to describe the

behavior of nonlinear vibration which depends on the material properties, initial stresses and

foundation stiffness. The nonlinear vibration behavior of hybrid laminated plate has been analyzed

by using the procedure described in the previous section. This level of modeling has been used in

 

β σm/σn=

ωnl 1/τnl=

ωnl ωnl/ω l
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previous studies (Chien and Chen 2006, Chen 2007, Chen et al. 2007) for predicting linear and

nonlinear vibration of laminated plates and has been proved to be accurate. Moreover, the nonlinear

vibration of an orthotropic beam resting on Winkler foundation can be analyzed by simplifying the

present plate model. The results of non-dimensional frequency ratio ( ) versus non-

dimensional vibration amplitude (w/ρ) obtained by the present model and Patel et al. (1999) are

shown in Fig. 3. ρ is the radius of gyration of beam cross-section. It can be seen that present results

are very close to Patel’s at both low and high foundation stiffness.

There are so many parameters will affect the nonlinear vibration behavior of the hybrid composite

plate that it would be difficult to present results for all cases. Hence, only a few typical hybrid

composite rectangular plates will be selected for discussions. We consider the simply-supported

hybrid composite plates consisting of fiber reinforced polymer (GFRP or CFRP) and aluminum

(Al), which is similar to a sandwich structure of laminates with two Al surfaces and a FRP core.

The lay-up of middle layer laminates is the cross-ply FRP. The total thickness of hybrid Al/FRP/Al

ωnl/ω l

Fig. 3 Comparison of frequency ratios of a beam resting on Winkler foundation with K1 = 10 (solid lines) and

K1 = 100 (dash lines) (▲: Patel’s results (1999), ●: present results)

Table 1 Material properties of ingredients of laminated hybrid composite plates

Ex (GPa) Ey (GPa) Gxy (GPa) υxy

Aluminum (Al) 72.0 72.0 28.0 0.33

Carbon fiber reinforced polymer (CFRP) 181.0 10.3 7.17 0.28

Glass fiber reinforced polymer (GFRP) 38.6 8.27 4.14 0.26
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plate is h and the thickness of individual layer for Al, GFRP (CFRP) and Al is h1, h2 and h3,

respectively. The layer thickness ratio γ = h2/h1 = h2/h3 (γ = tFRP/tAl) so the increase of the geometric

parameter indicates the increase of the core layer thickness of the hybrid plate. Hence, the hybrid

plate is a pure Al plate as γ = 0; it is a laminated CFRP (or GFRP) plate when γ is infinite. Table 1

lists the material properties of the ingredients of laminated hybrid composite plates investigated in

this study. The effects of various variables on nonlinear vibration frequency and frequency ratio of

hybrid laminated plates are discussed as follows. 

The effects of elastic foundation stiffness K on the nonlinear vibration of hybrid laminated plates

resting on Winkler foundations are shown in Table 2. It can be observed that the vibration

frequency increases with the increasing elastic foundation stiffness and vibration amplitude. In

virtue of the difference of modulus ratio, the Al/CFRP/Al plate will access an obvious increment of

frequency than Al/GFRP/Al plate at larger vibration amplitude. As can be seen, the frequency ratio

increases with the increase of the vibration amplitude but decreases with the increasing elastic

foundation stiffness. With higher elastic foundation stiffness, the plate becomes much stiffer and its

nonlinear vibration frequency is increased and plate frequency ratio is reduced sharply. It can also

be found that the frequency ratios of the Al/CFRP/Al plate with high modulus ratio (Ex/Ey) are

larger than those of the Al/GFRP/Al plate with low modulus ratio. At very high elastic foundation

stiffness (K 100) the frequency ratios of Al/GFRP/Al plate will not vary with the vibration

amplitude. Therefore, the larger the frequency ratio is, the more significant the contribution to the

≅

Table 2 Comparison of nonlinear vibration of hybrid laminated plates on Winkler foundations with various

foundation stiffness (a/b = 1, a/h = 20, γ = 10, G = 0, Kf = 0, β = 0)

K
W

0.2 0.4 0.6 0.8 1.0

Al/CFRP/Al

0
ωnl 0.993 1.140 1.348 1.594 1.873

ωnl/ωl 1.059 1.216 1.437 1.700 1.998

1
ωnl 1.153 1.282 1.471 1.705 1.961

ωnl/ωl 1.044 1.160 1.332 1.543 1.776

5
ωnl 1.641 1.737 1.885 2.072 2.292

ωnl/ωl 1.021 1.080 1.173 1.289 1.426

10
ωnl 2.097 2.175 2.295 2.455 2.645

ωnl/ωl 1.013 1.050 1.108 1.186 1.277

Al/GFRP/Al

0
ωnl 0.873 0.935 1.029 1.147 1.284

ωnl/ωl 1.025 1.098 1.209 1.348 1.509

1
ωnl 1.051 1.103 1.184 1.290 1.414

ωnl/ωl 1.018 1.068 1.147 1.249 1.369

5
ωnl 1.572 1.608 1.666 1.743 1.839

ωnl/ωl 1.008 1.031 1.068 1.117 1.179

10
ωnl 2.045 2.073 2.118 2.181 2.261

ωnl/ωl 1.005 1.018 1.041 1.072 1.110
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vibration is from the nonlinear terms Ni of the governing Eqs. (13)-(15). In the other words, the

larger the frequency ratio is the greater the difference between the nonlinear frequency and the

linear frequency is. As the frequency ratio approaches unity, the value of nonlinear frequency is

close to the linear frequency and the effect of nonlinear terms in the vibration is fairly small and

thus negligible. 

Table 3 presents the effects of the shear layer foundation stiffness G on the nonlinear vibration of

hybrid plates resting on Pasternak foundations. As can be observed, the vibration frequency and

frequency ratio are affected by the shear layer foundation stiffness of Pasternak foundation in a

similar way as the elastic foundation stiffness of Winkler foundation does. When the shear layer

foundation stiffness is increased, the plate frequency ratio is decreased and vibration frequency is

increased, but the variation decreases for the plate with low modulus ratio and resting on the

foundation with higher shear layer foundation stiffness. It can also be seen that the plate with higher

modulus ratio (Al/CFRP/Al), null shear layer foundation stiffness and largest vibration amplitude

possesses the largest plate frequency ratio.

Figs. 4 and 5 depict the effect of layer thickness ratio γ on the nonlinear vibration frequency of

various hybrid composite plates resting on Winkler and Pasternak foundations, respectively. As seen

in Figs. 4 and 5, the nonlinear vibration frequency of the hybrid plate with a stiff core of layer is

increased as γ is increased but that of the hybrid plate with a soft one has the opposite tendency.

The vibration frequency for all hybrid plates is always increased with the increasing foundation

Table 3 Comparison of nonlinear vibration of hybrid laminated plates on Pasternak foundations with various
foundation stiffness (a/b = 1, a/h = 20, γ = 10, K = 1, Kf = 0, β = 0)

G
W

0.2 0.4 0.6 0.8 1.0

Al/CFRP/Al

0
ωnl 1.153 1.282 1.471 1.705 1.961

ωnl/ωl 1.044 1.160 1.332 1.543 1.776

1
ωnl 1.418 1.527 1.692 1.899 2.138

ωnl/ωl 1.027 1.106 1.226 1.376 1.549

5
ωnl 2.179 2.252 2.368 2.524 2.712

ωnl/ωl 1.012 1.046 1.100 1.172 1.260

10
ωnl 2.855 2.913 3.006 3.132 3.293

ωnl/ωl 1.007 1.027 1.060 1.104 1.161

Al/GFRP/Al

0
ωnl 1.051 1.103 1.184 1.290 1.414

ωnl/ωl 1.018 1.068 1.147 1.249 1.369

1
ωnl 1.337 1.379 1.446 1.533 1.641

ωnl/ωl 1.011 1.042 1.093 1.159 1.240

5
ωnl 2.127 2.154 2.199 2.260 2.335

ωnl/ωl 1.004 1.017 1.038 1.067 1.102

10
ωnl 2.819 2.840 2.874 2.922 2.981

ωnl/ωl 1.002 1.010 1.022 1.039 1.060
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stiffness. Hence, the Al/CFRP/Al plate having a largest γ and resting on the foundation with the

highest stiffness will yield a highest vibration frequency; the Al/GFRP/Al plate with a largest γ and

on a softest foundation will possess a lowest vibration frequency. The results reveal that the γ will

weaken the effect of the foundation stiffness for plates with lower modulus ratio (Ex/Ey) of GFRP

core. In other words, the increase of thickness of core layer has more conspicuous effects on

vibration frequency and frequency ratio. 

Fig. 6 shows the influence of γ and foundation stiffness K on the frequency ratio of hybrid

laminated plate resting on the Winkler foundation. Apparently, with the increase of elastic

foundation stiffness K, the vibration ratio of hybrid Al/CFRP/Al plate drops significantly. While the

layers of GFRP in the middle of hybrid plates increase, there is slight decrease of frequency ratio. It

can be found that the increase of the layer thickness of core CFRP of the hybrid plates, namely, the

increase of layer thickness ratio, increases its frequency ratio but, the increase of that of core GFRP

has a contrary tendency. Therefore, the frequency ratio will be the maximum for the pure CFRP

plate, but will be the minimum for the pure GFRP plate. Thus, for a hybrid plate with the higher

modulus ratio (CFRP) and larger thickness ratio resting on elastic foundation of lower foundation

stiffness, a higher frequency ratio can be seen and the effect of nonlinear terms is notable. The

Fig. 4 Nonlinear frequencies of hybrid laminated
plates with various layer thickness ratios on

Winkler foundations. (☆ pure Al, Al/CFRP/Al
(solid lines), Al/GFRP/Al (dash lines), △ γ = 1,
□ γ = 10, ○ γ = = ∞, a/b = 1, a/h = 20)

Fig. 5 Nonlinear frequencies of hybrid laminated
plates with various layer thickness ratios on

Pasternak foundations. (☆ pure Al, Al/CFRP/
Al (solid lines), Al/GFRP/Al (dash lines), △
γ = 1, □ γ = 10,○ γ = ∞, K = 1, a/b = 1,
a/h = 20)
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effect of γ and G on nonlinear vibration of hybrid laminate plates is given in Fig. 7. Likewise, the

results show that frequency ratio is decreased with the increase of G but might be increased or

decreased with the increasing γ depending on the core material used. The pure laminated CFRP

plate on lowest foundation stiffness with largest layer thickness ratio γ has a larger frequency ratio

and the GFRP plate resting on highest foundation stiffness with largest layer thickness ratio has a

lowest frequency ratio. 

The effects of an initial in-plane compressive/tensile stress on nonlinear frequency of hybrid plates

resting on the Winkler foundations are presented in Fig. 8. It can be seen that the vibration

frequency of hybrid plates with an initial tensile stress is larger than that of plates without an initial

stress. The initial in-plane tensile stress enlarges the nonlinear vibration frequency of hybrid plates

while the compressive stress gives a reverse result. The vibration frequency of Al/CFRP/Al plates is

still larger that of Al/GFRP/Al plates since the core layer CFRP has a higher elastic modulus than

GFRP. Fig. 9 shows the influence of initial stress and shear layer foundation stiffness on the

nonlinear vibration frequency of hybrid plates resting on Pasternak foundation. The results reveal

that the variation of vibration frequency has a similar trend as that in Fig. 8. As can be observed,

the vibration frequency is increased with the increasing initial stress, foundation stiffness and elastic

modulus of core layer. Thus, an initially tensile stressed Al/CFRP/Al plate with the highest

foundation stiffness has the largest frequency. The initial stress still has a similar influence on

Fig. 6 Frequency ratios of hybrid laminated plates
with various layer thickness ratios on Winkler

foundations. (☆ pure Al, Al/CFRP/Al (solid
lines), Al/GFRP/Al (dash lines), △ γ = 1, □
γ = 10, ○ γ = ∞, a/b = 1, a/h = 20)

Fig. 7 Frequency ratios of hybrid laminated plates
with various layer thickness ratios on Pasternak

foundations. (☆ pure Al, Al/CFRP/Al (solid
lines), Al/GFRP/Al (dash lines), △ γ = 1, □

γ = 10, ○ γ = ∞, K = 1, a/b = 1, a/h = 20)
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vibration frequency for hybrid plates on Winkler foundations and Pasternak foundations,

respectively. 

The effects of initial stress on frequency ratio are shown in Figs. 10-11 for hybrid plates on two

types of elastic foundations. It can be seen that the initial stresses have the opposite influence on the

frequency ratio. The compressive stress (Kf > 0) develops a hardening effect on the frequency ratio

but the tensile stress has a softening effect. The high modulus ratio and low elastic foundation

stiffness K and shear layer foundation stiffness G have an intensifying effect on the frequency ratio

of the hybrid plates so they having a high modulus ratio resting on a softer foundation and

subjected to a compressive initial stress will produce a high frequency ratio. 

Table 4 present the effects of initial bending stress on frequency ratio of hybrid laminated plates

resting on Winkler foundation and Pasternak foundation, respectively. The frequency ratio of Al/

CFRP/Al plates is increased when the bending stress is increased for all the foundation conditions.

However, the influence of the bending stress becomes insignificant as the foundation stiffness is

slightly increased. The reason is that the foundation stiffness makes the plate much stiffer and

diminishes the effect of bending stress. As can be observed, the initial bending stress has an

unapparent effect on the frequency ratio for the Al/GFRP/Al plates regardless of foundation

conditions. Thus, the increase of bending stress has much less influence on the frequency ratio of

the Al/GFRP/Al plates under initial stress.

Fig. 8 Nonlinear frequencies of hybrid laminated
plates with an initial stress on Winkler
foundations. (Al/CFRP/Al (solid lines), Al/

GFRP/Al (dash lines), △ Kf = 2, □ Kf = 0, ○
Kf = −2, γ = 10, a/b = 1, a/h = 20)

Fig. 9 Nonlinear frequencies of hybrid laminated
plates with an initial stress on Pasternak
foundations. (Al/CFRP/Al (solid lines), Al/

GFRP/Al (dash lines), △ Kf = 2, □ Kf = 0, ○
Kf = −2, γ = 10, K = 1, a/b = 1, a/h = 20)
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Fig. 10 Frequency ratios of hybrid laminated plates
with an initial stress on Winkler foundations.
(Al/CFRP/Al (solid lines), Al/GFRP/Al (dash

lines), △ Kf = 2, □ Kf = 0, ○ Kf = −2, γ =
10, a/b = 1, a/h = 20)

Fig. 11 Frequency ratios of hybrid laminated plates
with an initial stress on Pasternak foundations.
(Al/CFRP/Al (solid lines), Al/GFRP/Al (dash

lines), △ Kf = 2, □ Kf = 0, ○ Kf = −2, γ =
10, K = 1, a/b = 1, a/h = 20) 

Table 4 Comparison of nonlinear vibration of hybrid laminated plates with various bending ratios resting on
elastic foundations. (a/b = 1, a/h = 20, γ = 100, W = 1, Kf = −2)

K G
β

0 10 20 30 40 50

Al/CFRP/Al

0 0 7.545 7.554 7.576 7.637 7.698 7.798

0.5 0 3.632 3.634 3.638 3.644 3.653 3.663

0.5 0.5 2.412 2.413 2.414 2.415 2.417 2.420

0.5 1 1.994 1.995 1.996 1.997 1.998 1.999

1 1 1.876 1.876 1.877 1.877 1.878 1.879

Al/GFRP/Al

0 0 1.585 1.587 1.588 1.587 1.585 1.582

0.5 0 1.354 1.355 1.355 1.354 1.353 1.350

0.5 0.5 1.205 1.205 1.205 1.205 1.204 1.202

0.5 1 1.147 1.147 1.147 1.146 1.146 1.145

1 1 1.126 1.127 1.126 1.126 1.125 1.124
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5. Conclusions 

Nonlinear vibration behaviors of initially stressed hybrid composite plate resting on elastic

foundations have been investigated and discussed. The preliminary results are summarized as

follows:

1. Nonlinear vibration frequencies and frequency ratios of various hybrid laminate plates have

been influenced by the vibration amplitude, elastic foundation stiffness, shear layer foundation

stiffness, layer thickness ratio, initial stress and modulus ratio.

2. The nonlinear vibration frequency increases with the vibration amplitude, elastic foundation

stiffness, shear layer foundation stiffness and initial tensile stress. The frequency ratio increases with

large vibration amplitude, initial compressive stress, decreasing elastic foundation stiffness and shear

layer foundation stiffness.

3. The vibration frequency and frequency ratio of hybrid AL/CFRP/Al plates are larger than those

of corresponding hybrid AL/GFRP/Al plates at various conditions.

4. The vibration frequency and frequency ratio increase with the increasing layer thickness ratio

for AL/CFRP/Al plates. However, they increase with the decreasing layer thickness ratio for AL/

GFRP/Al plates.
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