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Analytical studies on stress concentration due to a 
rectangular small hole in thin plate under bending loads
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Abstract. In general means, the stress concentration problem of elastic plate with a rectangular hole
can be investigated by numerical methods, and only approximative results are derived. This paper deduces
an analytical study of the stress concentration due to a rectangular hole in an elastic plate under bending
loads. Base on classical elasticity theory and FEM applying the U-transformation technique, the uncoupled
governing equations with 3-DOF are established, and the analytical displacement solutions of the finite
element equations are derived in series form or double integral form. Therefore, the stress concentration
factor can then be discussed easily and conveniently. For the plate subjected to unidirectional bending
loads, the non-conforming plate bending element with four nodes and 12-DOF is taken as examples to
demonstrate the application of the proposed method. The inner force distribution is obtained. The
solutions are adequate for the condition when the hole is far away from the edges and the thin plate
subjected to any transverse loadings. 
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1. Introduction

The stress concentration problem in plate structure with a circular or elliptic hole can be analyzed

by simple mathematical means, and achieves in analytical solutions. For the problem with a

rectangular hole, it can be solved by some numerical methods. Savin (1958) investigated the stress

concentration of finite plate by the conformal mapping technique and complex variable method, by

which the right angle of the hole can be transformed to a round angle, the straight lines to curves.

Timoshenko (1951), Pilkey (1997), Young (2002) and Troyani et al. (2002) studied the stress

concentration problem of bending plates by elasticity theory, and exhaustive stress concentration

factor figures and tables were proposed. With the help of computers, the finite element method was

developed rapidly and shown its advantages in solving mechanics problems. By using FEM,

scientists can study the stress concentration problem of plate with any shape holes and under any

loadings (Zienkiewicz et al. 2000, Jain et al. 2008, Kubair et al. 2008). Toubal et al. (2005) and
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Younis (2006) studied experimentally for stress concentration around the holes in a plate.

But, by the above methods, only approximative results are derived. When the size of the hole

changes, the problem must be recalculated, and furthermore, when the hole is too small to the plate,

it must spend too much computation. This paper aims to deduce an analytical study of stress

concentration due to a rectangular hole in an elastic plate under bending loads.

The U-transformation method is an exact analytical method, which can be used to analyze the

structures with periodicity (Cai et al. 2002, Chen et al. 1998). Liu et al. combined the U-

transformation technique with the finite difference method and the finite element method,

respectively, to analyze the static and dynamic problem of rectangular plates and the simply

supported beams, and the exact error expressions and convergence rates of finite difference

solutions and finite element solutions are obtained (Yang et al. 2007, 2009). Recently, Yang et al.

applied the U-transformation method to investigate the stress concentration problem of a rectangular

hole in an infinite plate, and the analytical stress concentration factors under biaxial tension and

shearing loading are derived (Yang et al. 2008). The present paper extends the method to study the

stress concentration due to a rectangular hole in elastic plate under bending loads. For the plate

subjected to unidirectional bending loads, a 12-DOF plate bending element with four nodes is taken

as examples to demonstrate the application of the proposed method.

2. Bending plate with four edges free

Consider a thin plate with completely free boundary. The plate subjected to bending loads, and

with a small rectangular hole in the structure, as shown in Fig. 1. mx, my are the bending moments

per length the two ends subjected to respectively. The thickness of the plate is supposed to be an

unit length and the size of the small hole is much less than the distance from the hole to the edges

of the plate. 

The original loading condition can be replaced by the superposition of the two loading condition,

shown in Fig. 2(a) and Fig. 2(b). The exact solution of the system shown in Fig. 2(a) is clear, i.e. 

(1)

So the original problem is changed to seek the solution of the system shown in Fig. 2(b). This

solution can be applied to the bending moment concentration problem under other boundary and

loading conditions, so long as the hole is small enough and far from the edges. 

Mx mx  My my  Mxy 0=,=,=

Fig. 1 Bending thin plate with a small rectangular hole
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3. Governing equation

Consider the infinite plate with rectangular hole shown in Fig. 2(b). The plate is divided into

m × n equal elements and then the plate may be regarded as having cyclic periodicities in two

directions without influence on the result. The size of every element is the same as that of the hole,

i.e., , where 2a and 2b denote the lengths of the rectangular element in x and y direction

respectively, shown in Fig. 3.  denotes the number of element and  is the hole number.

Now, we can use the U-transformation method and FEM to analyze this cyclic periodic structure

(Cai et al. 2002).

The element displacement vector can be expressed as

,

(2)

in which  denote, respectively, the deflection and two angular rotations of node i.

In order to bring periodicity to the finite element equation, the interior disfigurement made by the

rectangular small hole may be replaced by an additional loading (Yang et al. 2008). It can be

expressed as

(3)

2a 2b×
j k,( ) j1 k1,( )

δ j k,( ) δ1

T
  δ2

T
  δ3

T
  δ4

T{ } j k,( )

T
= j 1 2 … m  k 1 2 … n, , ,=, , , ,=

δi wi  θxi  θyi{ }T, i 1 2 3 4, θxi, , , ∂w

∂y
-------⎝ ⎠
⎛ ⎞

i

= = = , θyi
∂w

∂x
-------⎝ ⎠
⎛ ⎞

i

–=

wi θxi θyi, ,

F j k,( )

0 K
e
δ j

1
k
1

,( ), j k,( ) j1 k1,( )=

0,               j k,( ) j1 k1,( )≠⎩
⎨
⎧

=

Fig. 2 Equivalent system

Fig. 3 Rectangular plate element
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in which  is the displacement vector of hole element  and is unknown, and Ke denotes

the stiffness matrix of the rectangular element.  is just a loading vector in form.

For expressing conveniently, the bending loads at the edges of the small hole are regarded as

applying at the suppositional hole element. The external loading vector shown in Fig. 2(b) may be

expressed as

(4)

where mx, my denote the bending moment per unit length in x, y direction respectively. Because of

the symmetry of the loading condition and the cyclic periodicity of the structure, the hole’s

displacements must satisfy the following symmetric condition

(5)

So the total potential energy for the considered system may be defined as

(6)

in which  is the potential energy of the element , and it may be defined as

(7)

The superior bar in Eq. (7) denotes complex conjugation.  denotes the loading vector for the

element  and including the external loading and the additional loading, i.e. 

(8)

The displacement vectors must satisfy the following continuity condition

(9)

and cyclic symmetric condition

(10)

Apply the double U-transformation (Yang et al. 2009) to Eq. (7), i.e., let

, (11)
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in which , and .  is the generalized displacement vector which

can be expressed as

, , (12)

Now, the total potential energy Eq. (7) may be rewritten as

(13)

in which

(14)

The continuity condition (9) becomes

(15)

where

(16)

is a transform matrix, and I3 is an unit matrix of order three.

Applying Eq. (15) to the potential energy Eq. (13), yields

(17)

in which

(18)

(19)

Substituting Eq. (17) into the variational equation , results in

, (20)

The vector  including the nodal displacement of the hole element, so Eq. (20) is still not

uncoupled. When one consider the specific element stiffness matrix and loading, the hole’s nodal

displacement vector  must be worked out firstly, and then other elements’ displacements can

be solved by Eqs. (11) and (20).
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4. Example

Consider now the 12-DOF non-conforming plate bending element with four nodes as shown in

Fig. 3, and the thin plate subjects to unidirectional bending loads, i.e., . Introducing the

stiffness matrix (East China 1978) and the transform matrix (16) into Eq. (18), and noting Eqs. (3),

(4) and (19), Eq. (20) becomes

(21)

in which

, ,

, (22)

The component of  may be derived from Eq. (22)
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(23)

In Eq. (23), when ,  denotes the rigid body displacement. So it can by

supposed that .

Substituting Eqs. (22) and (23) into the U-transformation (11) results in

(24)

5. Solutions

It can be proved that the right side of Eq. (24) is real number vector, so we can pick-up the real

part from every item of the series. Let , the displacement vector of node 1 in the

square hole may be expressed as

(25)

It can be proved that when m and n approach to infinity the series at the right-hand side of

Eq. (25) are convergent. 

For this example, the case when the hole is square and the plate subjected to unidirectional

bending loads is discussed, i.e. 

(26)

Substituting Eqs. (22), (23) into (25), and letting , the displacement  can be

obtained as

(27)

Applying solution (27) to Eq. (24), the nodal displacement for every element may be found.

After the displacements of the hole and other elements are found, we can calculate the internal
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(28)

in which , S1 denote the internal force vector and internal force matrix of node 1 (East China

1978) respectively, and .

Applying the results for nodal displacement to Eq. (27), the internal force at node 1 for every

element can be found. The internal force  and Mxy at node 1 of the first 5 elements on the

right side of the square hole are given in Table 1. 

Adding the results in Table 1 to the solutions (1), results in the internal force of the original

system shown in Fig. 1, which is given in Table 2.

Obviously, the maximum value of Mx occurs at node 1 of the element , which equals to

1.5705mx
. It can be worked out easily that the maximum moment is  and makes

an angle of 21.66o with x-axis. So the stress concentration factor is 1.5911. Moreover, Mx of the

element that at the right side of the hole is less than 1.0mx, and then increases along the direction

far from the hole, tends to 1.0mx. The difference between the moment Mx of the fifth element at the

right side of the square hole and the average moment is just 1%, which shows that the stress

concentration attenuates rapidly along the direction far from the hole. 

The finite element solution of the stress concentration factor on the above problem is 1.800.

Comparing the studies developed in this work with that simulated by finite element method, the

relative error is only 13%. 

6. Conclusions

This paper presents analytical studies on the stress concentration problem of the infinite plate due

to a rectangular hole under bending loads. The interior disfigurement made by the rectangular hole

may be replaced by an additional loading. After the finite element governing equation with cyclic

M1 j k,( ) S1δ j k,( )=

M1 j k,( )

M1 j k,( ) Mx  My  Mxy{ } j k,( )

T
=

Mx My,

j1 1+ k1,( )
Mmax 1.5911mx=

Table 1 Some internal force results of node 1

Mx 0.5705 -0.3167 -0.0623 -0.0250 -0.0132

My 0.1769 -0.0892 -0.0123 -0.0100 -0.0055

Mxy 0.1710 -0.1785 -0.0089 -0.0005 0.0001

Multiplier mx

j1 k1 1+,( ) j1 1+ k1 1+,( ) j1 2+ k1 1+,( ) j1 3+ k1 1+,( ) j1 4+ k1 1+,( )

Table 2 Internal force of the original structure at node 1

Mx 1.5705 0.6833 0.9377 0.9750 0.9868

My 0.1769 -0.0892 -0.0123 -0.0100 -0.0055

Mxy 0.1710 -0.1785 -0.0089 -0.0005 0.0001

Multiplier mx

j1 k1 1+,( ) j1 1+ k1 1+,( ) j1 2+ k1 1+,( ) j1 3+ k1 1+,( ) j1 4+ k1 1+,( )
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periodicity in two directions is established, the double U-transformation technique is applied to the

FEM equation and the analytical nodal displacement solutions are derived. With a 12-DOF plate

bending element with 4 nodes, the internal force of the elements near the square hole are obtained.

The results show that the stress concentration factor of the square hole under unidirectional bending

loads is approximately equal to 1.5911. 

In this paper, the hole is divided into only one element. Since the stress nearby the hole changes

acutely, it is not accurate enough. If the hole divided into four elements, more accurate results may

be obtained. But at the same time, it leads to solving a linear equations set with four unknowns, and

the analytical solution expressions will be prolix.

The proposed method and results can also be applied to analyze the bending problem of finite thin

plate with normal small rectangular hole, but the hole must be far away from the plate’s edges. At

first, a group of internal force at the mid-point of the hole place when the plate without any hole

should be worked out. Then applying another group of internal force with opposite directions to the

hole’s boundary, the solutions can be studied by the method provided in the present paper. Adding

the later solutions to the previous ones, results in the internal force of the original problem. For the

case a rectangular small hole near to the plate’s edges, the stress concentration is affected by the

edge and it would be investigated in the authors’ next paper.
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