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Abstract. Two or more distinct materials are combined into a single functionally graded material
(FGM) where the microstructural composition and properties change gradually. Thermal post-buckling
behavior of uniform slender FGM beams is investigated independently using the classical Rayleigh-Ritz
(RR) formulation and the versatile Finite Element Analysis (FEA) formulation developed in this paper.
The von-Karman strain-displacement relations are used to account for moderately large deflections of
FGM beams. Bending-extension coupling arising due to heterogeneity of material through the thickness is
included. Simply supported and clamped beams with axially immovable ends are considered in the present
study. Post-buckling load versus deflection curves and buckled mode shapes obtained from both the RR
and FEA formulations for different volume fraction exponents show an excellent agreement with the
available literature results for simply supported ends. Response of the FGM beam with clamped ends is
studied for the first time and the results from both the RR and FEA formulations show a very good
agreement. Though the response of the FGM beam could have been studied more accurately by FEA
formulation alone, the authors aim to apply the RR formulation is to find an approximate closed form
post-buckling solutions for the FGM beams. Further, the use of the RR formulation clearly demonstrates
the effect of bending-extension coupling on the post-buckling response of the FGM beams. 

Keywords: Rayleigh-Ritz; finite element analysis; post-buckling; functionally graded materials; load-
deflection curves; geometric non-linearity; closed form solution.

1. Introduction

In FGM, two or more distinct materials are combined. The microstructural composition and

properties of the constituent materials change gradually through the thickness. The continuous

change in microstructural composition of FGM’s is determined by a particular distribution of the

distinct materials. The choice of constituent materials in FGMs is governed by the functional

requirements at the two surfaces of the structure. 

*Corresponding author, Scientist, E-mail: sanjayanandkhalane@gmail.com
aScientist
bINAE Distinguished Professor and Director

DOI: http://dx.doi.org/10.12989/sem.2010.36.5.545



546 K. Sanjay Anandrao, R.K. Gupta, P. Ramchandran and G. Venkateswara Rao

The metal-ceramic FGM components can be widely used in aerospace, nuclear and other specific

engineering applications where the structures are subjected to severe thermal loads. Structural

members such as uniform beams are the basic components of these structures. It is well known that

a linear bifurcation buckling analysis gives a critical value of the thermal loading for a particular

isotropic homogenous beam with the prescribed boundary conditions. However, beams (or other

structural members) are capable of carrying considerable additional load before the collapse load is

reached. Theoretical analysis of post-buckling behavior of beams is non-linear (geometric) and is

due to the additional axial strains and stresses caused by the transverse displacements. It is essential

to have an in-depth understanding of the post-buckling behavior of the structural members to

effectively utilize the additional load carrying capability if the large deflections do not interfere with

the functional requirement of the structure.

Buckling aspects of the structures such as isotropic homogenous beams, plates and shells are

exhaustively reported by Timoshenko and Gere (1970). Julien et al. (2008) carried out the thermal

post-buckling analysis of the FGM beams through an analytical model to determine the deflection

of a simply supported beam with axially immovable ends for temperatures ranging from pre-

buckling to post-buckling temperatures. Han et al. (2008) carried out the buckling analysis of the

FGM plates and shells using a four noded quasi-conforming shell finite element. Thermal buckling

and nonlinear flutter behavior of the FGM panels has been reported by Ibrahim et al. (2007). An

elasticity solution for the FGM beams is proposed by Sankar (2001), wherein the Young’s modulus

of the beam is assumed to vary exponentially through the thickness, using a simple Euler-Bernoulli

type beam theory. Zhong and Yu (2007) derived an analytical solution of a cantilever FGM beam

by presenting a general solution in terms of Airy’s stress function. Li (2008) presented a new

unified approach for analyzing static and dynamic behavior of the FGM beams considering the

rotary inertia and shear deformation and the material properties as arbitrary functions along the

thickness. Deschilder et al. (2006) carried out non-linear static analysis of a FGM beam.

Kitipornchai et al. (2009) studied nonlinear vibration of edge cracked functionally graded

Timoshenko beams. They used polynomial admissible functions and employed Ritz method to

derive the governing eigenvalue equation which is solved by direct iterative method. Lee and Kim

(2007) carried out study on thermal stability boundary of FG panel under aerodynamic load.

Prakash et al. (2006) investigated axisymmetric free flexural vibrations and thermal stability

behaviors of functionally graded caps using a three noded axisymmetric curve shell element based

on field consistency approach. Jabbari et al. (2008) presented an analytical method to obtain the

transient thermal and mechanical stresses in a functionally graded hollow cylinder subjected to two

dimensional asymmetric loads. They solved the Navier’s equations using a direct method of series

expansion.

Thermal post-buckling analysis of slender homogenous isotropic columns (beams) using Galerkin

finite element formulation is reported by Rao et al. (1997). Rao and Raju (1984, 2002) also studied

thermal post-buckling of homogenous columns using the Rayleigh-Ritz method. In these studies, the

linear critical thermal load and the corresponding non-linear thermal load parameters have been

reported for simply supported, clamped, and simply supported-clamped columns. Rao et al. (2002,

2003) also presented a simple intuitive method to study thermal post-buckling behavior of uniform

columns. Raju et al. (2005) used multi-term polynomial admissible functions to study the large

amplitude free vibrations of clamped-clamped and pinned-clamped beams using the conservation of

total energy principle.

Thermal post-buckling of the FGM beams has been studied earlier using the governing differential
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equations, wherein, the results for the simply supported end conditions are only reported. It is to be

noted here that the effect of the bending-extension coupling for the different boundary conditions of

the FGM beams is also not available in the literature. Finite element analysis, although more

versatile and accurate, being a numerical method, does not give an elegant closed form solution for

the post-buckling behavior of the FGM beams with different boundary conditions and the beam

parameters. In this paper, in addition to the versatile finite element analysis, the authors have

applied the classical Rayleigh-Ritz method not only to obtain approximate closed form expressions

to predict the thermal post-buckling behavior of the FGM beams with axially immovable ends but

also to study the effect of the bending - extension coupling. The aim of the present study is to

obtain approximate solutions to the thermal post-buckling behavior of the FGM beams, hither to not

attempted, using the classical Rayleigh-Ritz method with one-term approximations for axial and

transverse deflections that are exact for the isotropic and homogenous beams. Based on the present

results, the effect of the bending - extension coupling for both the boundary conditions considered is

also clearly demonstrated.

The variation of material properties of the FGM beams is heterogeneous through the thickness.

This asymmetry with respect to the beam axis results in the coupling of bending and extensional

deformation modes and is included in this study through a coupling matrix. The inclusion of the

coupling matrix distinguishes the stability analysis of FGM beams from the conventional

homogenous material beams which do not have bending-extension coupling. In the present study the

Euler-Bernoulli beam theory is considered for both the RR and FEA formulations. In the finite

element formulation, a beam element with two nodes having three degrees of freedom at each node

is considered. The governing algebraic non-linear equations are obtained using the principle of

virtual work. The Newton-Raphson iterative procedure is used to solve these algebraic non-linear

equations. The results obtained from both these formulations are compared with those available in

the literature for the simply supported beam. The results for the clamped beam are not readily

available in the literature and are reported for the first time using both the formulations developed

in this paper. The strain-displacement relations based on von-Karman type non-linearity are used to

account for the large deflections. Simple one-term admissible functions for the axial and transverse

deflections are assumed that satisfy the kinematic boundary conditions at the two ends of the

homogenous beam (Timoshenko and Gere 1970, Rao and Raju 2002, 2003). The Young’s modulus

and the coefficient of thermal expansion are assumed to vary according to a power law distribution

(Ibrahim 2007, Prakash and Ganapathi 2006, Lee and Kim 2007) across the thickness of the beam.

The simply supported and clamped beams with axially immovable ends are analyzed and the

numerical results are provided to show the effect of the volume fraction exponent on the post-

buckling behavior and buckled mode shapes.

2. Functionally Graded Material beam

A FGM beam with ceramic on top face and metal on bottom face is considered in this study as

shown in Fig. 1. The variation of properties E and α is governed by a power law distribution, as

given in Eq. (1), with the co-ordinate z varying between –h/2 to h/2. The volume fraction exponent

n can take any value between 0 to ∞, with n = 0 and n = ∞ corresponding to the two extremes of

completely homogenous ceramic and aluminum beams respectively. 
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 (1)

Fig. 2 shows the typical variation of Young’s Modulus E for the FGM beam across the thickness

for different values of n. 

3. Formulation 

In this section, equations for the extensional, bending and bending-extension coupling stiffness for

the FGM beam are established. The expression for equivalent mechanical load developed in the

beam due to temperature rise t from the initial stress free temperature is derived. In the present

formulation, a slender FGM beam is considered so that the effect of Poisson ratio and transverse

shear on the deformation of the beam can be neglected. 

E z( ) EcVc Em 1 Vc–( )+=

α z( ) αcVc αm 1 Vc–( )+=

Vc 0.5
z

h
---+⎝ ⎠

⎛ ⎞
n

=

Fig. 1 FGM beam with ceramic and metal as constituents

Fig. 2 Variation of Young’s modulus across thickness of FGM beam
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3.1 Non-linear strain-displacement relation

The strain-displacement relations considering von Kármán type geometric non-linearity are given

by

 (2)

3.2 Stress-strain equation

 (3)

3.3 Stress and moment resultant-displacement relations

The stress and moment resultants in the axial direction ‘x’ can be expressed as 

 (4)

where Axx, Bxx and Dxx are extensional stiffness, bending-extension coupling stiffness and bending

stiffness respectively given by

 (5)

The homogenization integration of material properties in z-direction to establish stiffness is the

standard procedure well reported in the literature for FGM beams and is similar to the classical

lamination theory. The equivalent mechanical load P developed in the beam due to temperature rise

t from initial stress free temperature, for unit width of beam is given by

 (6)

where both E and α are assumed to be independent of temperature. 
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3.4 Rayleigh-Ritz technique

In the present study, accurate kinematically admissible one term trigonometric functions for the

displacement variables, based on the available literature (Timoshenko 1970, Rao et al. 2002, 2003)

for the homogenous beams are used, to get an approximate solution for the FGM beams.

Trigonometric functions are often convenient to use as the orthogonality properties of these series

simplify the solution process. In the case of FGM beams, the values of volume fraction exponent

n = 0 and n tends to infinity represent homogenous beam and the one term trigonometric functions

used in the present work are exact mode shapes of buckling for the homogeneous beams. 

The total potential energy PE of a beam while in equilibrium in a displaced buckling mode is

given by Turvey and Lih (1995)

 (7)

where

 (8)

In the Rayleigh-Ritz method, the total potential energy PE is minimized with respect to the

undetermined coefficients of the assumed admissible functions for w and u.

3.4.1 Simply supported beam
For a simply supported homogenous beam with axially immovable ends, exact transverse

deflection w satisfying the kinematic and natural boundary conditions, namely 

w = 0 at x = 0, L and M = 0 at x = 0, L

is given by 

 (9)

where a is the undetermined coefficient and also represents the central transverse deflection. The

admissible function for the axial displacement u of the homogenous beam, satisfying the conditions,

namely
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 (10)

where b is another undetermined coefficient.

The total potential energy PE from Eq. (7) can be expressed as 

 (11)

Minimizing the total potential energy PE with respect to the undetermined coefficients a and b of

the assumed admissible functions, the coefficient a of the transverse deflection of the simply

supported beam is obtained as 

 (12)

The above equation gives the relation between temperature rise t (governing the equivalent

mechanical load P) and central lateral deflection a of beam. Eq. (12) can also be expressed in a

more convenient form as 

 (13)

For a beam of homogenous material through the thickness such as completely metal or ceramic,

the bending - extension coupling Bxx will vanish. Axx and Dxx can be expressed as EA and EI

respectively and the thermal post-buckling load can be expressed as

 (14)

Further, substituting a = 0 in Eq. (14) gives critical Euler buckling load  for simply

supported homogenous and isotropic beam. The non-linear thermal post-buckling load PNL from

Eq. (14) can be normalized with respect to the Euler buckling load PL and this ratio is

 (15)

This is a well known expression for the thermal post-buckling of the simply supported

homogenous beam (Rao and Raju 2002, 2003). Comparing Eq. (13) and Eq. (14) for the thermal

post-buckling of the FGM beam and homogenous beam, it can be concluded that, the bending-

extension coupling ‘Bxx’ will influence the response of the FGM beam from that of the homogenous

beam.
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3.4.2 Clamped beam

For a beam with the clamped ends, the transverse deflection w, satisfying the boundary conditions,

namely

is

 (16)

where a is the undetermined coefficient and also represents the central transverse deflection. The

admissible function for the axial displacement u satisfying the conditions, namely

is

 (17)

The total potential energy PE for the clamped beam, from Eq. (7) can be expressed as 

 (18)

Minimizing the total potential energy PE with respect to a and b and equating it to zero gives

 (19)

Comparing Eq. (19) with that of the simply supported FGM beam (Eq. (12)) reveals that for the

clamped FGM beam, there is no effect of bending-extension coupling (Bxx) on the lateral deflection

of the beam. Eq. (19) can also be expressed in a more convenient form as 

 (20)

Eq. (20) gives the thermal post buckling load of the FGM beam and is the same as that of the

homogenous beam (completely metal or ceramic beam) as given below.
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Further, substituting a = 0 in Eq. (21) gives Euler buckling load  for the clamped

homogenous beam. The thermal post-buckling load PNL from Eq. (21) can be normalized by PL and

this ratio can be expressed as Rao and Raju (1984, 2002)

 (22)

3.5 Finite element formulation 

Fig. 3 shows the finite element model of an Euler-Bernoulli beam.

3.5.1 Displacement/nodal-displacement relation

The degrees of freedom vector for the beam are written as 

 (23)

3.5.2 Governing differential equations

The differential equations governing the bending of straight beams are

 (24)

3.5.3 Weak form

By using the principle of virtual work, a system of equations is obtained from the finite element

method to study thermal postbuckling behavior of FGM beam. The weak forms of governing

differential equations are obtained as
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Fig. 3 Finite element model of an Euler Bernoulli beam
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 (25)

Substituting the expressions for u and w in the weak form and rearranging, the finite element

system of equations can be expressed for an element as

 (26)

where uj = [u1 u2]
T and dj = [w1 θ1 w2 θ2]

T and U = [u1 u2 d1 d2 d3 d4]
T.

3.5.4 Newton-raphson solution

The assembled non-linear finite element system of equations is of the form

 (27)

The residual is
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The load step is given in terms of the temperature increment t from the initial stress free

temperature. Using the Newton-Raphson algorithm, for the rth iteration 
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4. Numerical results

In the present study, a FGM beam having ceramic on the top face and metal on the bottom face is

considered with the materials properties as shown in Table 1. 

4.1 Simply supported beam

Fig. 4 and Fig. 5 shows the post-buckling load-deflection curves for homogenous as well as FGM

beams with different volume fraction exponent n. An excellent agreement could be found between

the results of present study (Rayleigh Ritz and FEA) with published literature (Julien et al. 2008).

Completely ceramic beam is simulated in the finite element formulation by reducing the value of

the volume fraction exponent near to zero (0.001). Completely aluminum beam is simulated by

choosing a higher value (100) of the volume fraction exponent. For the homogenous beams such as

the pure metallic or the pure ceramic beams, the slope of the load-deflection diagram has a

discontinuity when the buckling temperature is reached. From the Rayleigh-Ritz formulation, for the

case of the FGM beams, the exact point corresponding to the buckling temperature can not be

predicted as the bending-extension coupling terms in Eq. (12) are non-zero. The beam will start

deforming laterally for even a small temperature increment t. The central transverse deflection a

from Eq. (12) is a real number only above certain temperature increment t. Below this temperature

increment, the term  from Eq. (12) becomes negative. The97π
2
Bxx

2
9π

2
PL

2
Axx 9π

4
DxxAxx–+( )

Table 1 Material properties of ceramic and metal

Property Ceramic Aluminium

E (GPa) 151 70

α (/K) 10e-06 23e-06

Fig. 4 Post-buckling load vs. deflection curves for
homogenous beams, L/h = 60 (Simply supported
ends)

Fig. 5 Post-buckling load vs. deflection curves for
FGM beams, L/h = 60 (Simply supported
ends)
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square root of this term makes the central transverse deflection ‘a’ complex. Equating this term to

zero gives

 (32)

The equivalent mechanical load P (corresponding to a temperature increment t) can be obtained

only when the right hand side of Eq. (32) is greater than or equal to zero. The post-buckling load

deflection curve for the simply supported beam obtained from the Rayleigh-Ritz analysis, thus, does

not originate from the x-axis for the FGM beams. However, for the homogenous beam, the above

equation reduces to Euler buckling load  with a clear bifurcation point on the x-axis

in the load-deflection curve (Fig. 4).

It may be observed from Fig. 5 that, for the FGM beam with simply supported boundary

conditions, there is no sudden transverse deflection i.e., buckling phenomenon. This is because any

small temperature raise t from the initial stress free temperature results in a transverse deflection of

the beam. This makes all simply supported FGM beams lose their distinct buckling temperature.

However, for the simply supported homogenous beams (Fig. 4) such as the completely ceramic or

the completely aluminum beams, the buckling temperature can be clearly identified from the

bifurcation point on the x-axis. 

Figs. 6 and 7 show the comparisons of the buckled mode shapes obtained from the Rayleigh-Ritz

and the finite element formulation with the available literature (Julien et al. 2008) for the simply

supported ceramic and the FGM beams at a temperature increment of 45.69oC and 31.54oC

respectively. For the ceramic beam, an exact match can be seen between the buckled mode shape

obtained from the Rayleigh-Ritz and finite element formulation with the available literature. For the

results obtained from the Rayleigh-Ritz formulation of the FGM beam (n = 0.5), however, a 2.7%

of difference is observed in the central deflection a as compared to the results obtained from the

97π
2
Bxx

2
9π

2
PL

2
Axx 9π

4
DxxAxx–+( ) 0=

P
π
2

L
2

-----Dxx

97Bxx

2

9L
2
Axx

----------------–=

PL π
2
EI/L2=

Fig. 6 Buckled mode shape for Ceramic beam, n =
0, L/h = 60 (Simply supported ends)

Fig. 7 Buckled mode shape for FGM beam, n = 0.5,
L/h = 60 (Simply supported ends)
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finite element formulation and the available literature. The difference can be reduced by increasing

the number of terms in the assumed displacement fields. 

The present Rayleigh-Ritz formulation is also validated by comparing the ratio of the non-linear

to critical thermal loads (Eq. (15)) for the homogenous cases (n = 0 corresponding to pure ceramic

and n = 100 corresponding to pure aluminum). Table 2 shows the ratio of  for different

values of  for n = 0 and 100 respectively. The values of  for n = 0 and n = 100 match

exactly with the available literature values (Rao and Raju 1984, 2003) for the homogeneous beam.

4.2 Clamped beam

Fig. 8 shows the post buckling load-deflection curves of the homogenous as well as the FGM

beams for different values of the volume fraction exponent n obtained using Rayleigh-Ritz and

finite element formulations. In the case of the clamped beam, Eq. (19) relating the post buckling

thermal load and the deflection does not contain the bending-extension coupling term Bxx. The term

 becomes negative only below critical load obtained by equating this term to zero.

This critical load is the Euler buckling load . The absence of Bxx term in Eq. (19)

makes it possible to capture the exact bifurcation point for the clamped FGM beams for all volume

fraction exponents n. The clamped FGM beam shows load-deflection curves with a distinct

bifurcation point on the x-axis similar to the homogeneous beam. Fig. 9 shows typical buckled

mode shapes of clamped FGM (n = 0.5) beams obtained using the present formulations at λ = 12,
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Dxx– PL
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PL 4π
2
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Table 2 PNL/PL for homogenous simply supported beam

 0.0 0.2 0.4 0.6 0.8 1.0

RR
(n = 0 and 100)

1.0000 1.0100 1.0400 1.0900 1.1600 1.2500

Rao and Raju
 (1984, 2003)

1.0000 1.0100 1.0400 1.0900 1.1600 1.2500

a

r
---

PNL

PL

--------

Fig. 8 Post-buckling load vs. deflection curves for
FGM beams, L/h = 60 (Clamped ends)

Fig. 9 Buckled mode shape for FGM beam at λ =
12, n = 0.5, L/h = 60 (Clamped ends)
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where λ is normalized temperature given by λ = t (L/h)2αm. An excellent agreement can be found

between these two results. 

Table 3 shows the ratio of  for different values of  for the homogenous cases (n = 0

and n = 100). The values of  for n = 0 (pure ceramic) and n=100 (pure aluminium) match

exactly with those available in the literature for the homogeneous beam (Rao and Raju 1984, 2003).

5. Conclusions

Thermal post-buckling analysis of uniform slender functionally graded material beams with

axially immovable ends is studied using the classical Rayleigh-Ritz and finite element formulations

developed separately in this paper. Finite element analysis, although more versatile and accurate,

being a numerical method, does not give elegant closed form solution for post-buckling of FGM

beams with different boundary conditions and beam parameters. As such, the authors have chosen

the Rayleigh-Ritz method to obtain approximate closed form expressions for the thermal post-

buckling study of the FGM beams with axially immovable ends and show the effect of bending-

extension coupling on structural response. The top face of the FGM beam is taken as ceramic rich

and the bottom face is metal rich. The region between these two faces consists of a smooth

variation of properties assumed in the form of a power law distribution. Both the simply supported

and clamped boundary conditions are considered in the present study. Geometric non-linearity based

on von-Karman type large deflection theory is considered in the analysis. Bending-extension

coupling arising due to heterogeneity of the material through the thickness is included. The finite

element non-linear equations are obtained using the principle of virtual work. Newton-Raphson

iterative procedure is used to solve the non-linear equations. Load-deflection curves are obtained

from both the Rayleigh-Ritz and the finite element formulations. Numerical results are presented to

show the effect of volume fraction exponent on the post-buckling load versus the transverse

deflection curves. The load-deflection curves for the simply supported beams obtained from the RR

and FEA formulations showed an excellent agreement with the available literature results. The

results with clamped ends are not available in the literature and are reported for the first time using

both the formulations developed in this paper. It is observed that the simply supported FGM beams

do not have a distinct critical buckling temperature. Clamped FGM beams, however, show that the

load-deflection curve has a distinct bifurcation point similar to the homogeneous beams. 

The usefulness and simplicity of application of the approximate method, such as the Rayleigh-Ritz

method, with the well established exact one-term admissible functions for the axial and lateral

deflections of the homogenous beams, for approximate closed form thermal post-buckling solution

of the FGM beams with simply supported and clamped boundary conditions, is well established in

PNL/PL a/r

PNL/PL

Table 3 PNL/PL for homogenous clamped beam

0.0 0.2 0.4 0.6 0.8 1.0

RR
(n = 0 and 100000)

1.0000 1.0025 1.0100 1.0225 1.0400 1.0625

Rao and Raju (1984, 
2003)

1.0000 1.0025 1.0100 1.0225 1.0400 1.0625

a
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this study. The effect of bending-extension coupling on structural response for both boundary

conditions is clearly demonstrated. To this extent, the aim of this study is satisfied as is obvious

from the results. 
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Notations

a : central lateral deflection of beam
A : cross-sectional area of beam
Axx : extensional stiffness
b : coefficient associated with axial deflection
Bxx : extension-bending coupling stiffness
Dxx : bending stiffness
E : effective modulus of elasticity of FGM beam
Em, Ec : modulus of elasticity of metal, ceramic
f(x) : generalized axial load
Fi : element load vector
h : height of beam
Hi : Hermite shape functions
I : area moment of inertia
K : element stiffness matrix
L : length of beam
Mxx : moment resultant
MT : thermal bending moment
n : volume fraction exponent
Nxx : stress resultant
NT, P : in-plane thermal load
Ni : Lagrange shape functions
PE : total potential energy
q(x) : generalized transverse load
Qi : generalized forces
r : radius of gyration
R : residual
t : temperature rise from the initial stress free condition
T : tangent stiffness matrix
u : deformation along x-axis
V : transverse shear
Vm, Vc : volume fraction of metal, ceramic
VS : strain energy due to stretching
VB : strain energy due to bending
VBS : strain energy due to bending-stretching coupling
VL : potential due to in-plane thermal load P
w : deformation along z axis
q : slope
x, xa, xb : coordinate along length of beam
z : coordinate along thickness of beam
α : coefficient of thermal expansion of FGM 
αc, αm : coefficient of thermal expansion of ceramic, metal
ε
0
xx : mid-plane strain

κxx : mid-plane curvature
ν : Poisson’s ratio
δu0 : virtual displacement along x axis
δw0 : virtual displacement along z axis
δθ : virtual rotation
σxx : axial stress




