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Abstract. Fiber reinforced polymer (FRP) bars have been widely used as reinforcement for concrete
structures. However, under elevated temperatures, the difference between the transverse coefficients of
thermal expansion of FRP rebars and concrete may cause the splitting cracks of the concrete cover. As a
result, the bonding of FRP-reinforced concrete may not sustain its function to transfer load between the
FRP rebar and the surrounding concrete. The current study investigates the cracking resistance of FRP
reinforced concrete against the thermal expansion based on a mechanical model that accounts for the
tensile softening behavior of concrete. To evaluate the efficacy of the proposed model, the critical
temperature increments at which the splitting failure of the concrete cover occurs and the internal crack
radii estimated are compared with the results obtained from the previous studies. Simplified equations for
estimating the critical temperature increments and the minimum concrete cover required to prevent
concrete splitting failure for a designated temperature increment are also derived for design purpose.
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1. Introduction

The composite materials of fiber reinforced polymer (FRP), i.e., fibers (organic or inorganic) and

a polymeric resin cause an anisotropic behavior for both mechanical and thermal properties. The

longitudinal mechanical properties of FRP bars depend upon the type of fibers while the transverse

mechanical properties are determined by the polymeric resin. For the thermal properties, the

transverse coefficient of thermal expansion of FRP bars is higher than that of concrete up to eight

times whereas the longitudinal coefficient of thermal expansion is approximately zero for Carbon or

Aramid-based FRP. For Glass FRP, the longitudinal coefficient of thermal expansion is within the

same range as concrete (Abdalla 2006, ACI 2006). Many previous experimental studies (Aiello et al.

2001, Masmoudi et al. 2005) have shown that due to the different transverse coefficients of thermal

expansion of concrete and FRP rebars, the concrete cover of FRP reinforced concrete may split at a

certain level of temperature increase, the so-called critical temperature increment. The splitting

cracks of the concrete cover affect the bond between the FRP rebars and concrete (Sakai et al.

1999, Wang and Liu 2003) which could in turn influence the structural response. 
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The previous investigations on the effects of thermal loads on FRP reinforced concrete have

focused on the critical temperature increment that causes internal splitting cracks and the sufficient

concrete cover to prevent the splitting failure. Various finite element models (Gentry and Husain

1999, Abdalla 2006) and a mesoscopic thermoelastic damage (MTED) model (Wong et al. 2006)

have also been proposed to predict the internal damage or the splitting failure patterns of the

concrete cover of FRP reinforced elements. These models require proficient skills to solve the

problem which may not be convenient for normal use or design. Aiello et al. (2001) proposed an

analytical model based on the elastic theory of thick-wall cylinders to determine the critical

temperature increment corresponding to the initiation of cracking and the sufficient thickness of the

concrete cover to prevent the splitting failure of FRP reinforced concrete elements due to the

differential thermal expansion of concrete and FRP rebars.

The analysis of the thermal effects can be performed by considering the concrete as a thick-walled

cylinder surrounding the FRP rebar in which the differential thermal expansion is regarded as the

radial pressure imposed upon the concrete at the FRP bar-concrete interface. The thermal pressure is

equilibrated by the pressure resistance of the concrete cover through the induced tensile stresses in

the surrounding concrete. When the maximum tensile stress exceeds the tensile strength of the

concrete cover, cracking is initiated. After cracking, the pressure can still be transferred through the

inner cracked concrete core to the outer sound concrete cover which remains elastic (Sakai et al.

1999, Aiello et al. 2001, Wang and Liu 2003). The partially cracked concrete cover can sustain the

pressure resistance against the induced tensile stresses by considering the softening behavior of the

concrete after cracking (Wang and Liu 2003). Based on our preliminary studies, the pressure

resistance computed by taking into account the tensile softening behavior of the concrete better

agrees with the experimental results (Tepfers 1979, Tepfers and De Lorenzis 2003) for normal-

temperature cases. However, previous research works (Tepfers 1979, Sakai et al. 1999, Aiello et al.

2001) have neglected the softening behavior in computing the pressure resistance of FRP reinforced

concrete under thermal loads.

In this paper an analytical model is presented to investigate the effects of tensile softening on the

pressure resistance of FRP reinforced concrete under thermal loads. The analysis is performed by

adopting the tensile softening model proposed by Wang and Liu (2003) to compute the critical

temperature increment and the minimum concrete cover required to prevent the splitting failure. In

addition, the internal crack radii of the concrete cover at temperatures lower than the critical

temperature increment are also investigated. The results are compared with previous solutions and

experimental results (Aiello 1999, Aiello et al. 2001, Masmoudi et al. 2005, Wong et al. 2006,

Zaidi and Masmoudi 2008) to determine the extent of softening effects upon the pressure resistance

of FRP reinforced concrete.

2. Analytical model

Based on the same methodology as proposed in the literature (Aiello et al. 2001, Masmoudi et al.

2005), the analytical investigation is carried out considering a cylindrical FRP bar embedded in a

concrete cylinder as illustrated in Fig. 1(a) in which the rebar of radius  is embedded in the

concrete with outer radius, ru, the concrete cover dimension measured from the center of the rebar

to the nearest surface of concrete. The cracking resistance of concrete can be determined by

considering a radial pressure, p, acting at the surface of the rebar-concrete interface (Fig. 1(b)). Note

r0 d/2=



Effects of tensile softening on the cracking resistance of FRP reinforced concrete 449

that the theoretical model presented herein is analyzed based on the following assumptions: 1) effect

of transverse reinforcement is neglected in order to evaluate only the pressure resistance of the

concrete cover (Tepfers 1979, Sakai et al. 1999, Aiello et al. 2001, Wang and Liu 2003), 2) FRP

bars present a linear elastic behavior (Aiello et al. 2001); and 3) cracked concrete presents a tensile

softening behavior (Wang and Liu 2003) whereas uncracked concrete sustains its linear elastic

behavior.

2.1 Cracking resistance of the concrete cover at normal temperature

For normal-temperature conditions, the model in Fig. 1 can be analyzed as having no temperature

increment ( ). Prior to the formation of the splitting cracks, the behavior of the concrete

cover remains in its elastic stage. The radial pressure p at the internal surface of the cylindrical

concrete hole induces the radial compression  and the circumferential tension  as

shown in Fig. 1(b). At a certain radial distance r from the centerline of the rebar,  and 

can be determined by using the theory of elasticity as follows

 (1)

  (2)

The stresses obtained from the above equations can be used only before the tensile stress in the

circumferential direction  exceeds the tensile strength of the concrete cover ftc (see Fig. 2(a)).

At which point, the radial pressure in the elastic stage, pce, at the interface between the FRP rebar

and the surrounding concrete ( ) can be obtained by substituting  in Eq. (2) with the

tensile strength of concrete ftc 

(3)

Once the circumferential tension at the FRP rebar-concrete interface, , exceeds the tensile
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Fig. 1 Modeling of the cracking resistance of FRP reinforced concrete
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cylinder can be divided into two zones (see Fig. 2(b)). The concrete within the outer zone does not

crack and sustains its elastic behavior whereas the concrete is considered cracked throughout the

inner zone. The boundary of the inner zone can be specified by the distance at which the splitting

cracks propagate to, the so-called inner crack radius rl. Based on the softening model of Wang and

Liu (2003), the relationship between the tensile stress  and the tensile strain  of

cracked concrete can be regarded as a process of softening once the tensile strain of concrete 

exceeds the elastic limit ε0 as illustrated in Fig. 3 (Pantazopoulou and Papoulia 2001) in which Ec is

the initial elastic modulus of concrete. Consequently, the radial pressure of concrete in the partially

cracked elastic stage, pcp, can be computed as the sum of the resisting pressure of concrete in the

outer zone pco and the resisting pressure of concrete in the inner zone pci by using the following

pressure equilibrium equation. 

(4)

or  (5)

whereas the resisting pressure of concrete in the outer zone pco which is in the elastic stage can be

obtained by substituting the term r0 in Eq. (3) with ri

(6)

The resisting pressure of concrete in the inner zone pci which is in the cracked stage can be
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Fig. 2 (a) distribution of tensile ring stresses in the elastic stage, (b) distribution of tensile ring stresses in the
partially cracked elastic stage (Tepfers 1982)

Fig. 3 Stress-strain relationship for concrete in tension (Pantazopoulou 2001)
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computed by integrating the circumferential stress  over the cracked inner part 

(7)

Based on Wang and Liu (2003), the circumferential tension  in the cracked concrete zone

can be computed by neglecting the Poisson’s effect and assuming that the radial displacement

 associated with the tensile strain  is constant throughout the cracked part and equal to

the radial displacement at the inner radius, :

(8)

or (9) 

The tensile strain of the cracked concrete in Eq. (9) can be converted to the tensile stress using

the stress-strain relationship of Fig. 3 in which the integral in Eq. (7) can be solved (Wang and Liu

2003):

for (10-1)

for (10-2)

where

with 

The radial pressure of concrete in the partially cracked elastic stage pcp can be obtained by

substituting Eqs. (7), (10-1) and (10-2) into Eq. (5). The maximum value of the radial pressure

pcp, max can be computed by differentiating pcp in Eq. (5) with respect to ri and set to zero:
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The above equation can be solved numerically for ri which is referred to as the maximum crack

radius,  and the corresponding  is taken as the cracking resistance of the concrete.

2.2 Cracking resistance of the concrete cover at elevated temperatures 

At elevated temperatures, the FRP reinforced concrete model in Fig. 1 can be considered to be

subjected to a temperature increment ∆T. The differential thermal expansion of the FRP rebar and

the surrounding concrete causes additional radial pressure against the internal surface of the

concrete cylinder. When the temperature increment ∆T is low, the behavior of concrete can be

considered to be in the elastic stage as long as the induced circumferential strain of concrete at the

rebar-concrete interface , is below the elastic tensile strain limit ε0. The relationship

between the tensile strain of concrete  and the radial pressure of concrete  at the

rebar-concrete interface can then be derived as (Rahman et al. 1995, Aiello et al. 2001):

(12)

whereas the elastic tensile strain of the FRP rebar  at the rebar-concrete interface can be

computed as:

(13)

in which 

αc and αb are the transverse thermal coefficients of expansion of the concrete and the FRP rebar; 

νc is the Poisson’s ratio of the concrete;

νb is the Poisson’s ratio of the FRP rebar in the transverse direction; and

Eb is the elastic modulus of the FRP rebar.

Based on the compatibility of the circumferential strains at the rebar-concrete interface (i.e.,

), the radial pressure  can be computed by equating Eq. (12) and

Eq. (13) as:

(14)
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adopting the elastic tensile strain of the FRP rebar in Eq. (13):

 (16)

The radial pressure of the partially cracked concrete under thermal loads, , in the above

equation can be computed by using Eq. (5) for the range of the temperature increments considered

ri
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pcp T∆, 1 νb–( )
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-------------------------------–=
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Fig. 4 The computational procedure for the inner crack radius ri and the radial pressure of concrete  for
a specified temperature increment ∆T

pcp T∆,
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in this paper ( ) because the properties of concrete are the same as for the normal-

temperature case. Whilst, in general cases, the properties of concrete can simply be modified in

accordance with the varying temperature increments. Because  is a function of the inner crack

radius ri, the solution to Eq. (16) can be obtained numerically for radial pressure  by trialing

for the value of ri that satisfies the compatibility condition of Eq. (16). 

When the temperature increment ∆T reaches a specific value at which the radial pressure 

obtained from Eq. (16) is equal to the cracking resistance of concrete  as determined by

Eq. (11), the splitting failure takes place. The temperature increment ∆T at which =  is

denoted as the critical temperature increment . By substituting the cracking resistance 

and the corresponding crack radius ri, max for  and ri in Eq. (16), respectively, the critical

temperature increment  can be obtained:

(17)

The procedure to compute the radial pressure of concrete in the elastic stage and the partially

cracked elastic stage for a given temperature increment ∆T can be summarized as illustrated in

Fig. 4. Note that the cracking resistance  of the FRP reinforced concrete model and the

corresponding value of the inner crack radius ri, max can be directly obtained from Eq. (11) after

which the critical temperature increment  can be computed using Eq. (17).

3. Comparison with previous solutions and experimental results

The critical temperature increment  values computed by the proposed model are compared

with the results obtained from the previous experiments (Aiello 1999, Aiello et al. 2001, Masmoudi

et al. 2005, Zaidi and Masmoudi 2008), the analytical model of Aiello et al. (2001) and the

mesoscopic thermoelastic damage (MTED) model of Wong et al. (2006) as summarized in Table 1.

Note that the previous experimental investigations were conducted for cylindrical and rectangular

concrete specimens reinforced with AFRP and GFRP bars which were slowly heated until the

splitting failure of concrete occurred. For the rectangular FRP reinforced concrete specimens, the

value of c in Table 1 is taken as a shorter distance between one-half of the reinforcement spacing

and the minimum concrete cover. 

The values of  shown in Table 1 are also plotted for different values of c/d in Fig. 5. It is

seen from Fig. 5 that the proposed model can predict the critical temperature increments values

close to the results obtained by the previous experiments and Aiello et al.’s model. 

The inner crack radius ri values estimated by the proposed method for FRP reinforced concrete

prior to the splitting failure are also compared with the results obtained by the MTED model. Note

that because it is difficult, if not virtually impossible, to measure the internal crack radii within

concrete specimens, currently there are no experimental data available. The cracking patterns of the

concrete cover for a cylindrical FRP reinforced concrete specimen with c/d = 4.38 predicted by the

MTED model are compared with the crack radii computed by the proposed model as illustrated in

Fig. 6. It is apparent from the illustration that the computed crack radii closely approximate the

MTED modeling results for the temperature increments ranging between 34oC-74oC. However, the

proposed model overestimates the critical temperature increment  at 85oC, compared with 76oC

as predicted by the MTED model.
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Table 1 Comparison of the ∆Tcr values computed by the proposed method with the results obtained from the previous studies

Specimen 
Geometry

FRP Material Properties
Concrete Material 

Properties
c/d

Diameter
of Rebar

(mm)

Critical temperature increment (oC) References 
for 

experimental 
results

Experimental 
Results

Aiello et al.’s 
model (2001)

MTED model
(Wong et al. 2006)

Proposed 
model

Rectangular

AFRP type 
Eb = 3,200 MPa
νb = 0.38*
αb = 60.0×10-6/oC

Ec= 24,300 MPa
ftc= 2.36 MPa
νc = 0.18*
αc = 10.0×10-6/oC

1.19 10 40 14 - 22

Aiello 
(1999)

1.25 10 42 14 - 23

1.67 10 43 18 - 28

2.27 10 43 24 - 37

Ec= 34,000 MPa
ftc= 3.71 MPa
νc = 0.18*
αc = 10.0×10-6/oC

1.00 10 35 17 - 27

2.00 10 50 30 - 48

GFRP type
Eb = 7,100 MPa
νb = 0.34
αb = 41.2×10-6/oC**

Ec= 28,000 MPa
ftc= 4.20 MPa
νc = 0.17
αc = 11.6×10-6/oC

1.00 25 30 22 - 29

Zaidi and 
Masmoudi 

(2008)

1.30 25 40 27 - 35

1.40 19 40 29 - 37

1.60 16 >60 32 - 41

1.80 19,25 >60 36 - 45

2.20 16,19,25 >60 44 - 54

GFRP type
Eb = 4000 MPa
νb = 0.40
αb = 58.0×10-6/oC

Ec= 30,000 MPa
ftc= 3.90 MPa
νc = 0.18
αc = 12.1×10-6/oC

1.00 13 - 17 36,42,46*** 25
Wong et al. 

(2006)
1.27 13 - 21 28*** 30

2.00 13 - 30 54,52*** 43

1.46 13 41 23 - 33 Aiello et al. 
(2001) 

and
Wong et al.  

(2006)

Cylindrical

GFRP type
Eb = 4000 MPa
νb = 0.40
αb = 58.0×10-6/oC

Ec= 30,000 MPa
ftc= 3.90 MPa
νc = 0.18
αc = 12.1×10-6/oC

1.46 13 28 23 35 33

2.92 13 70 43 55 60

4.38 13 65 65 76 85

GFRP type
Eb = 7100 MPa
νb = 0.38
αb = 31.0×10-6/oC** for d = 13 mm 
αb = 34.9×10-6/oC** for d = 16 mm 
αb = 36.6×10-6/oC** for d = 19 mm 
αb = 43.1×10-6/oC** for d = 25 mm 

Ec= 28,000 MPa
ftc= 4.10 MPa
νc = 0.17
αc = 11.6×10-6/oC

0.80 25 30 16 - 23

Masmoudi 
et al. 

(2005)

1.00 25 30 19 - 26

1.20 19 30 28 - 36

1.50
13,16, 
19,25

34.5**** 35**** - 44****

Note: *General properties, **Temperature range: 30oC to 60oC, ***The different values of ∆Tcr reported for the MTED model are due to the varying
configurations of the model, *****Average values.



456 Pattamad Panedpojaman and Thanyawat Pothisiri

Fig. 5 Variation of ∆Tcr with respect to different c/d values for the proposed model compared with the
references (a) rectangular specimens and (b) cylindrical specimens

Table 2 Comparison of pcp, max and ri, max obtained from the proposed model (with tensile softening) and the
Aiello et al.’s model (without tensile softening)

c/d

ri, max/ru pcp, max/ftc

With tensile
 softening

Without tensile 
softening

With tensile 
softening

Without tensile
 softening

0.20 0.86 N/A 0.38 N/A

0.50 0.81 N/A 0.87 N/A

0.75 0.75 0.48 1.23 0.75

1.00 0.72 0.48 1.57 0.90

1.50 0.68 0.48 2.17 1.20

2.00 0.67 0.48 2.75 1.50

3.00 0.67 0.48 3.90 2.10

4.00 0.67 0.48 5.05 2.71
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It can be seen from Table 1 and Fig. 5 that the values of the critical temperature increment 

obtained from the proposed model are generally higher than those predicted by the Aiello et al.’s

model due to the tensile softening effect. By incorporating the tensile softening behavior of concrete

in the partially cracked elastic stage, the higher values of cracking resistance pcp, max and the

corresponding crack radius ri, max are obtained. Table 2 provides a comparison between the values of

pcp, max and ri, max obtained by the proposed model (with tensile softening) and the Aiello et al.’s

model (without tensile softening) by assuming the relationship Ec = 8460ftc according to ACI (2005).

The results in Table 2 are also plotted in Fig. 7, showing higher values of the cracking resistance

pcp, max for concrete with tensile softening within the range of c/d values considered. It is seen from

Table 2 that a constant value of ri, max = 0.48ru is obtained from the model without the tensile

softening behavior of concrete whereas the values of ri, max estimated by the proposed model vary

Tcr∆

Fig. 6 Comparison between the cracking patterns of the cylindrical FRP reinforced concrete specimens with
c/d = 4.38 as predicted by the MTED model and the crack radius ri values obtained by the proposed
model
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but converge to ri max = 0.67ru. This corresponds with the results of the MTED model (Fu et al.

2004 and Wong et al. 2006) in which the internal crack radii generally extend longer than 0.60ru.

4. Simplified design equations

Based on the proposed procedure, the critical temperature increment  can be computed by

substituting the cracking resistance pcp, max and the corresponding crack radius ri, max into Eq. (17).

However, the values of pcp, max and ri, max must be obtained through solving Eq. (11) numerically

which may not be convenient for design purpose. Therefore, we propose simplified equations for

estimating ri, max and pcp, max through a linear regression analysis of the values of the normalized

crack radius (ri, max/r0) and the normalized cracking resistance (pcp, max/ftc) that are obtained from the

proposed model for a range of c/d values as shown in Fig. 8:

ri, max/r0 = 1.27c/d + 0.89 with R2 = 0.995  (18)

pcp, max/ftc = 1.20c/d + 0.31 with R2 = 0.988 (19)

in which R2 is the coefficient of determination. Note that the above equations are derived by

assuming the relationship Ec = 8460ftc according to ACI (2005). By substituting the simplified

equations for ri, max/r0 and pcp, max/ftc and the relationship Ec = 8460ftc into Eq. (17), we obtain the

simplified equation for critical temperature increment  as:

(20)

Since the above equation is derived by using the relationship between Ec and ftc in accordance

with ACI (2005), the variation of this relationship (i.e., Ec/ftc ratios) must be examined in the

calculation of  by Eq. (20). The material properties for GFRP rebar and concrete with varying

Ec with respect to the same value of ftc in Table 3 are used to compute  for the specified range

of c/d values based on the procedure in Fig. 4. The results are then compared with the  values

Tcr∆

Tcr∆

Tcr∆ 1

αb αc–( )
---------------------

1.27c/d 0.89+

8460
----------------------------------

1.20c/d 0.31+( )ftc 1 νb–( )
Eb

--------------------------------------------------------------+⎝ ⎠
⎛ ⎞=

Tcr∆
Tcr∆

Tcr∆

Fig. 7 Variation of the cracking resistance of concrete with and without tensile softening with respect to
different c/d values
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estimated by using Eq. (20) as illustrated in Fig. 9. From the illustration, we observe good

agreements between the  values obtained from Eq. (20), which assumes Ec = 8460ftc, and those

computed by using the procedure in Fig. 4 with different values of Ec/ftc.

For design purpose, the minimum value of c/d to prevent the splitting failure in a FRP-reinforced

concrete element due to a designated temperature increment  can be obtained by substituting

 in Eq. (20) with  and rearranging terms:

 (21)

Tcr∆

Tdes∆
Tcr∆ Tdes∆

c/d
Tdes αb αc–( ) 6.64– 10

5–×∆

15.01 10
5– 1.20ftc 1 νb–( )

Eb

---------------------------------+×
-------------------------------------------------------------------- 0.26–=

Fig. 8 Linear regression of ri, max/r0 and pcp, max/fct with respect to c/d

Table 3 Material properties for ∆Tcr trial calculations

Material properties

Concrete

ftc 4.2 MPa

GFRP bar

Eb 7,100 MPaEc

(Ec/ftc)

28,000 MPa (6,700)
35,000 MPa (8,300)
42,000 MPa (10,000)

αc 11.6 × 10-6/oC αb 41.2 × 10-6/oC 

νc  0.17 νb  0.34
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It should, however, be noted that to design the optimal concrete cover for the FRP-reinforced

concrete element to prevent the splitting failure, an engineer must also consider the bonding effect

(ACI 2005) in addition to the effect of the designated temperature increment . The combined

effect should be further investigated from the theoretical and experimental point of view. Extensive

experimental investigations would allow a correct assessment of the concrete cover to prevent the

splitting failure due to the temperature increment and the bonding.

5. Conclusions

An analytical model has been proposed to evaluate the cracking resistance of FRP-reinforced

concrete elements under thermal loads taking into account the tensile softening behavior of the

partially cracked concrete. It is shown that the maximum crack radii and the cracking resistance of

the concrete cover can be increased by the effect of tensile softening, thereby increasing the critical

temperature increments for the FRP reinforced concrete. Through comparison with previous

solutions and experimental results, it is seen that most of the results obtained from the proposed

model agree better with the experimental data for the range of the c/d values considered compared

with the model without the tensile softening effect. Furthermore, the estimated crack radii at

different temperature increments conform with the cracking patterns predicted by the MTED model.

It can be implied from the current study that the present model that incorporates the tensile

softening effect can better characterize the actual behavior of the partially cracked concrete in

evaluating the cracking resistance of FRP reinforced concrete under thermal loads. Finally, through

a linear regression analysis we have derived simplified equations for estimating the maximum crack

radii, the critical temperature increments and the minimum concrete cover required to prevent the

splitting failure, which can be useful for design purpose.

Tdes∆

Fig. 9 Comparison of ∆Tcr values obtained from the simplified equation and the procedure in Fig. 4 
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