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Abstract. Maximum deflection in a beam is a design criteria and occurs generally at or close to the
mid-span. Neural networks have been developed for the continuous composite beams to predict the
inelastic mid-span deflections (typically for 20 years, considering cracking, and time effects, i.e., creep
and shrinkage, in concrete) from the elastic moments and elastic mid-span deflections (neglecting
instantaneous cracking and time effects). The training and testing data for the neural networks is generated
using a hybrid analytical-numerical procedure of analysis. The neural networks have been validated for
four example beams and the errors are shown to be small. This methodology, of using networks enables a
rapid estimation of inelastic mid-span deflections and requires a computational effort almost equal to that
required for the simple elastic analysis. The neural networks can be extended for the composite building
frames that would result in huge saving in computational time.
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1. Introduction

 

Change in the mid-span elastic deflection in a span of a continuous composite beam (Fig. 1)

occurs due to instantaneous cracking in concrete in hogging moment regions, as well as time effects

(creep and shrinkage) in concrete. Methods are available in the literature for analysis of the beams,

which take into account this change. These methods are based either on incremental or iterative

approach. Both the approaches require a computational effort, which is many times more than that

required for the elastic analysis (neglecting instantaneous cracking and time effects). The use of

neural networks may be made in such cases to rapidly estimate the quantities of design interest for

use in everyday design.

Principles and applications of neural networks in civil engineering have been summarized in the

works by Flood and Kartam (1994a, b) and Adeli (2001). Hajela and Berke (1991, 1992) have

examined the role of computing strategies in structural analysis and design. Some of the typical

applications of neural networks in the field of structural engineering include prediction of behavior of
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framed shear wall (Mo and Lin 1994) and prestressed concrete frame (Mo and Han 1995), prediction

of effect of welding on mechanical behavior of rebars (Mo and Koan 1998), prediction of behavior

of concrete confined in hollow bridge columns (Mo et al. 2002), prediction of seismic response of

prestressed concrete bridges (Jeng and Mo 2004), prediction of time effects in reinforced concrete

frames (Maru and Nagpal 2004), modeling of infilled steel frames (Subramnian et al. 2005),

estimation of hysteretic energy demand in steel moment resisting frames (Akbas 2006), prediction of

force reduction factor of prefabricated industrial buildings (Arslan et al. 2007), response prediction of

geometrically nonlinear truss (Cheng et al. 2007), structural damage diagnosis and detections (Tsai

and Hsu 2002, Qu et al. 2003, Lee et al. 2005, Cho et al. 2004, Yeung and Smith 2005, Jiang et al.

2006, Bakhary et al. 2007), prediction of inelastic moments in continuous composite beams

considering the concrete cracking (Chaudhary et al. 2007a) and prediction of shear lag in composite

box beams (Chandak et al. 2008). These studies reveal the strength of the neural network in

predicting the solutions of different structural engineering problems.

In this paper, neural networks have been developed for estimating the inelastic mid-span

deflection, Di (considering the instantaneous cracking and time effects in concrete) from the elastic

mid-span deflection, De (neglecting the instantaneous cracking and time effects in concrete). De, in

turn, can be obtained from any of the readily available software. This methodology of using

networks enables rapid estimation of Di and requires a computational effort almost equal to that

required for the simple elastic analysis. The networks have been validated for four example beams.

The errors are shown to be small for practical purposes. The networks can easily be extended for

large composite building frames, where a huge saving in computational effort would result. 

2. Analysis of continuous composite beams

For generalized and efficient neural networks, a huge number of training data sets are required;

for the generation of which, a highly efficient analysis procedure is desirable. Recently such a

procedure, a hybrid analytical-numerical procedure, for beams and frames, has been developed

(Chaudhary et al. 2007b, c). The procedure is highly computationally efficient and takes into

account the non-linear effects of concrete cracking and time-dependent effects of creep and

shrinkage. A cracked span length beam element consisting of an uncracked zone in the middle and

cracked zones at the ends (Fig. 2(a)) has been used in the procedure.

The analysis in the hybrid procedure is carried out in two parts. In the first part, an instantaneous

analysis is carried out using an iterative method. In the second part, a time-dependent analysis is

Fig. 1 Composite cross-section
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carried out by dividing the time into a number of time intervals to take into account the progressive

nature of cracking of concrete (Fig. 2(b)). As shown in the figure, crack lengths are assumed to be

constant in a time-interval and revised at the end of each time interval. The age-adjusted effective

modulus method, AAEMM (Bazant 1972) is used for predicting the creep and shrinkage effects.

CEB-FIP MC 90 (1993) is used for predicting the short term as well as time-dependent properties of

the concrete.

3. Significant extent of propagation of the effect of cracking

Cracking in continuous composite beams occurs in the end portions (hogging moment regions) of

spans at internal supports when subjected to sufficiently high loading. This instantaneous cracking

may further progress due to time effects. The mid-span elastic deflections De at the instantaneous

state gets changed to Di owing to cracking and gets further changed owing to time effects, at the

final state (typically 20 years).

The change in the mid-span deflection in spans along the length of a beam due to the

instantaneous cracking at a support reduces along the distance from the support. A preliminary

numerical study is therefore carried out to estimate the significant extent of the propagation of the

effect of the instantaneous cracking at a support, at the instantaneous and the final states. For the

study, a typical multi-span (number of spans = n) continuous composite beam, shown in Fig. 3(a),

is considered. The cross-sectional properties throughout the beam are kept constant unless

otherwise stated. The nature of the elastic moment diagram for the beam with equal spans

( ) and the same load intensities ( ) is shown in

Fig. 3(b) with the maximum moment occurring at the penultimate supports.

l1 l2 l3 … ln= = = = w1 w2 … wj wn 1–= = = =

Fig. 2 (a) Cracked span length beam element, (b) progressive nature of cracking 
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Let the loading be such that the instantaneous cracking occurs at a joint j. Let the ratio of the

cracking moment Mcr to the elastic moment at joint j, (neglecting cracking)  be Rj (cracking

moment ratio); thus a smaller value of Rj, indicates greater cracking. The change  in mid-span

deflection  of any span k at instantaneous or final state depends upon , and is expressed as

 
(1)

Further the change in , from its value at , is the effect of instantaneous

cracking occurring at joint j. Its normalized value,  (the value of ζ, at the centre of span k due to

cracking at the support j) may be taken as a measure of the extent of propagation of the effect of

cracking. The span length,  may be taken as the normalizing factor. The expression for  may

therefore be written as

 (2)
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Fig. 3 A typical multi-span continuous composite beam (a) geometry and loading, (b) elastic bending moment
diagram, (c) first span with increased loading, (d) elastic and inelastic deflection increased loading, (e)
fourth span with increased loading, (f) elastic and inelastic deflection with increased loading 



Neural networks for inelastic mid-span deflections in continuous composite beams 169

(3)

It may be noted that the second term in Eq. (3) is equal to zero at the instantaneous state.

For the preliminary numerical study, a beam with n = 7,  = 8.0 m and

Mcr = 25.5 kN·m is considered. Two cases are considered to identify the significant extent of the

propagation of the effect of the instantaneous cracking on the instantaneous state and the final state.

In the first case, the beam is made to crack at the instantaneous state over a penultimate support

(support 2, j = 2) by increasing the load on the first span, whereas in the second case cracking at the

instantaneous state is made to occur simultaneously over internal supports (supports 4 and 5, j = 4,

5) of 4th span, by increasing the load on 4th span. For both the cases, initially the loading on the

spans is kept equal to the cracking load, wcr (the load at which the moment, Me at any section of a

beam just becomes equal to Mcr).

Consider the first case. As stated above, the load on the first span (Fig. 3(c)) is increased keeping

the loads on other spans constant such that the instantaneous cracking takes place at support 2. The

natures of the elastic and the inelastic deflections are shown in Fig. 3(d).  varies with the

cracking moment ratio R2 (cracking moment ratio at support 2). Seven values of R2 (1.0, 0.90, 0.75,

0.60, 0.50, 0.40, and 0.25), in the practical range, resulting from the increase in w1 are considered.

Values of R2 equal to 1.0 and 0.25 indicate initiation of the cracking and the maximum cracking

respectively. The variations of  ( ), at the instantaneous state and at the final state, are

shown in Fig. 4(a). It is seen that the nature of variations at the two states are nearly the same.

Further, only the variations of  and  for the first adjacent spans of the cracked support 2

may be considered to be significant at both the states. 

Now, consider the second case in which the instantaneous cracking is made to occur

simultaneously at internal supports 4 and 5 of 4th span. For this purpose, w4 is increased (Fig. 3(e)).

The natures of elastic deflection, De and inelastic deflection, Di diagrams for this case are shown in

Fig. 3(f). Again, seven values of R4 (R5 being equal to R4 for the case considered) are considered.

The variations of  and  (for first adjacent spans of the cracked support 4 and 5

due to simultaneous cracking of the two supports) and ,  (for the second adjacent spans

of cracked supports 4 and 5 respectively) are shown in Fig. 4(b). It is again seen that the natures of

variations at the two states are nearly the same. Also, only the variations ,  (for

the first adjacent spans of the cracked supports 4 and 5) may be considered to be significant.
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Fig. 4 (a) Variation of  ζk, 2 with R2 for different spans for cracking at penultimate support (support 2), (b)
variation of ζk, 4-5 with R4 for different spans for cracking at internal supports (supports 4, 5)
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Therefore, it can be stated that, for both the cases, the significant extent of propagation of the

effect of instantaneous cracking at a support is limited to the first adjacent spans.

Similar numerical studies are carried out for beams with different lk, n and Mcr. From these studies

also (not reported), it is again observed that the extent of propagation of the effect of instantaneous

cracking and time effects is significant for the first adjacent spans of a cracked support.

It therefore follows that in order to establish the change in the mid-span deflection of a span j, the

effect of cracking at the supports j and j+1 only needs to be considered.

4. Structural parameters

The change in the mid-span deflection of a span j may be expressed in terms of a ratio designated

as inelastic deflection ratio,  (where  is the mid-span

deflection of span j with both ends assumed to be fixed and subjected to uniformly distributed

cracking load, wcr). This ratio would be the output parameter for the neural networks. 

It may be noted that the minimum number of spans in a continuous composite beam in which

cracking occurs is two. Further, the seven span beams may represent all the beams in which number

of spans is greater than three. For spans greater than three, non linear effect of cracking, creep and

shrinkage in internal spans as well as in end spans are similar, for the same structural parameters,

irrespective of the number of spans. It may, therefore, be assumed that a beam with seven spans

would represent all the beams with more than three spans. Any beam with number of spans greater

than three, say four or twelve, can also be chosen; e.g., Chaudhary et al. (2007a) used nine span

beam to represent all the beams with number of spans greater than three. Therefore, three sets of

beams with number of spans equal to two, three and seven may be considered to represent

continuous composite beams with any number of spans. 

As has been observed in the previous section, cracking at a support j significantly affects the mid-

span deflection of the first adjacent spans (span  and j). Accordingly, the probable structural

parameters, which may influence cracking at a support j and thus the inelastic deflection ratios 

(left span) and  (right span) are listed below:

1. Age of loading, t0.

2. Stiffness ratio of adjacent spans,  ( , where E = modulus of elasticity of

concrete, and Iun = transformed moment inertia of composite section about top fiber, the

reference axis).

3. Cracking moment ratio at the support, Rj.

4. Load ratio of the adjacent spans, .

5. Composite inertia ratio,  (Icr = transformed moment of inertia of steel section and

reinforcement about top fiber, the reference axis).

6. Cracking moment ratio at left adjacent support, .

7. Cracking moment ratio at right adjacent support, .

8. Grade of concrete, Gr.

The practical ranges for the different structural parameters are considered as (Chaudhary et al.

2007a, Pendharkar 2007): ; ; ; =
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5. Configuration of neural networks

The neural network model chosen in the present study is a multilayered feed-forward network

with neurons in all the layers fully connected in feed-forward manner (Fig. 5). Sigmoid function is

used as an activation function and the back propagation-learning algorithm is used for training. The

back propagation algorithm has been used successfully for many civil engineering applications (Mo

and Koan 1998, Mo et al. 2002, Maru and Nagpal 2004, Jeng and Mo 2004, Chaudhary et al.

2007a, Cheng et al. 2007, Chandak et al. 2008) and is considered as one of the most efficient

algorithm for the engineering applications (Tsai and Hsu 2002).

It has been shown earlier that the cracking at a support affects the change in mid-span deflections

of the first adjacent spans. Therefore, the structural parameters which influence the change in the

mid-span deflection of a span j are those which influence the cracking at the supports j and .

For an end span of the two span beam, the input consists of seven parameters, t0, , R2,

,  and Rj (for left end span j = 1, and for right end span j = 3, and the output is δj.

The parameter  has been assigned a constant value equal to 10, to model the end supports of

the two span beam. 

The inelastic deflection ratio, , for an end span and an internal span may be different for both

the three span and the seven span beams, therefore independent neural networks are proposed for

the end spans and the internal spans of these beams.

The parameters that govern δj are: t0,  and Gr owing to

cracking at the left support (support j) and t0,  and Gr owing to

cracking at the right support (support ). Out of these sixteen parameters, five parameters are

common i.e., t0,  and Gr. Therefore the eleven parameters for the inelastic deflection

ratio of span j are: t0, ,  and Gr.

For generality, for both the end spans and the internal spans eleven input parameters are

considered. For inelastic deflection ratio of left end span (j = 1), the parameters , ,

 and Rj, involving left span ( ) and supports  and j have been assigned a constant

value equal to 10, since these parameters are fictitious. Similarly for inelastic deflection ratio of

right end span ( ), the parameters  and  have been assigned a

constant value equal to 10.
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Fig. 5 A typical Neural network model
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6. Training of neural network

Since the training of the neural network is an essential step in its performance, a sufficiently large

database should be generated for the training and testing. Input data sets have been chosen to cover

the entire practical range of parameters and sufficiently large number of values of each of the

parameters. The number of data sets chosen is 6750 for the end spans of the two span beam, 33750

for the two end spans of the three span and the seven span beam each, 33750 for the internal span

of the three span beam and 1,68,750 for the internal spans of the seven span beam. The variation in

number of data sets for each of these cases is due to different number of input parameters and some

of the parameters being kept constant e.g., R3 for left end span of two span beam (see section 5).

Five neural networks, one each for the end span of the two span beam, the three span beam and

the seven span beam and designated as Net-2span-end, Net-3span-end and Net-7span-end

respectively and two networks for internal span(s) of the three span and the seven span beams,

designated as Net-3span-internal and Net-7span-internal are trained. 

In order to bring all the input parameters and output parameters in the range 0.0 to 1.0, the input

as well the output data are divided by normalization factors given in Table 1. Since the output

parameter can be negative in some cases (e.g., in a span having much larger adjacent spans) the

biases 9.7, 10.9, 41.2, 11.7 and 193 are first added to the output parameters, for the networks Net-

2span-end, Net-3span-end, Net-3span-internal, Net-7span-end and Net-7span-internal respectively,

before applying the normalization factors given in Table 2.

The training is carried out using the Stuttgart Neural Network Simulator (SNNS 1998). For

training, several trials with different numbers of neurons in the hidden layer are carried out. Two

third of data sets are used for training as training patterns whereas one third of data sets are used for

testing. For this partitioning, hold out method (Reich and Barai 1999), in which partitioning is done

randomly, has been adopted. The configurations of five optimum networks (number of input

parameters-number of neurons in hidden layer-number of output parameters) along with mean

square error MSE, square of coefficient of correlation , and number of epochs are given in Table 2.

The value of  for all the networks is greater than 0.9 for both training and testing data sets which

indicates the good generalization capability of network for any new input. Typically, for network

NET-2span-end, variation of the mean square error with the epochs is shown in Fig. 6. 

Rc

2

Rc

2

Table 1 Normalization factors for parameters 

Network

Parameters

Input Output

t0 Gr δ

Net-2span-end
22 - 4.05 - 4.05 - 10.5 10.5 - 1 41

19.85
22 4.05 - 4.05 - - 10.5 10.5 - 1 41

Net-3span-end
22 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 1 41

21.00
22 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 1 41

Net-3span-internal 22 4.05 4.05 4.05 4.05 10.5 4.05 4.05 10.5 1 41 48.25

Net-7span-end
22 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 1 41

148.5
22 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1 1 41

   Net-7span-internal 22 4.1 4.1 4.1 4.1 10.1 4.1 4.1 10.1 1 41 247.0

Sj 1– /Sj Sj/Sj 1+ wj 1– /wj wj/wj 1+ Rj 1– Rj Rj 1+ Rj 2+ I
cr

/I
un
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 7. Validation of neural networks

A two span continuous composite validation beam (each span 5.8 m long and subjected to

), the experimental results for which are available (Gilbert and Bradford 1995), is

considered. The network predicts inelastic deflection at centre of spans as 8.17 mm, against

8.00 mm reported by Gilbert and Bradford (1995). The two values are quite close for practical

purposes.

Trained neural networks are validated with a number of beams with a wide variation of input

parameters. Four example beams, EB1-EB4, are considered (Fig. 7) with , 

,  and . Inelastic deflections (20 years) for end spans

w 6.67 kN/m=

t0 10 days= M
cr

=

47.25 kN·m I
cr

/I
un

0.4332= Gr 32 N/mm
2

=

Table 2 Configuration of networks, mean square errors, square of coefficient of correlation and number of
epochs

Network Configuration
MSE

Epochs
Training Testing Training Testing

Net-2span-end 7-12-1 0.00019 0.00297 0.948 0.907 45000

Net-3span-end 11-15-1 0.00043 0.00105 0.955 0.928 45000

Net-3span-internal 11-15-1 0.00042 0.00119 0.941 0.919 45000

Net-7span-end 11-15-1 0.00091 0.00173 0.926 0.911 45000

Net-7span-internal 11-16-1 0.00008 0.00098 0.987 0.961 45000

Rc

2

Fig. 6 Variation of mean square error with epochs

Fig. 7 Example beams (a) EB1, (b) EB2, (c) EB3, and (d) EB4 
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Fig. 8 Variation of δ1 with S1/S2 for (a) two span beam, and (b) seven span beam

Table 3 Comparison of inelastic deflections obtained from the hybrid procedure and the neural networks 

Beam
Span
 No.

Elastic 
Deflection 

(mm)

Longterm inelastic deflections (mm)
Span/

DeflectionActual Network

EB1
1 6.33 10.30 10.96 1263

2 -0.64 0.37 0.42 -10197

EB2

1 4.14 7.20 7.61 1859

2 0.13
-

0.10 0.29 68997

3 3.31 5.07 5.37 1934

EB3

1 2.08 - 4.06 4.39 2744

2 3.77 - 5.81 6.09 2360

3 1.09 - 1.47 1.59 5892

4 -0.23 - -0.64 -0.47 -23542

5 6.33 11.03 11.47 1248

EB4

1 22.3 - 34.96 34.41 390

2 -0.04 - 2.91 3.97 -246942

3 11.53 - 19.12 19.54 815

4 7.55 - 17.51 18.59 1246

5 17.37 - 30.15 30.96 627

6 9.32 - 18.55 19.17 1223

7 10.44 - 18.84 19.97 948

8 8.52 - 15.63 16.43 985

9 5.34 - 5.70 6.02 1574

10 4.65 - 5.05 4.92 1701

11 10.29 - 14.43 13.59 816

12 0.21 - 6.80 6.07 31031

13 9.87 - 15.64 14.69 851

14 5.82 - 12.30 11.39 1702

15 22.09 36.07 38.08 470
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have been obtained using Net-2span-end for EB1, Net-3span-end for EB2 and Net-7span-end for

EB3 and EB4. Inelastic deflections for internal spans have been obtained using Net-2span-internal

for EB1, Net-3span-internal for EB2 and Net-7span-internal for EB3 and EB4. Thus as indicated

earlier for beams with spans greater than three (EB3 and EB4), the networks Net-7span-end and

Net-7span-internal developed for seven span beams have been used. 

Inelastic deflections obtained from the hybrid analytical-numerical procedure and the neural

networks, along with elastic deflections, are reported in Table 3. The root mean square percentage

errors in prediction of the inelastic deflections, on neglecting very high span to deflection ratios

(greater than 3000), are 6.41%, 5.69%, 5.93%, and 4.97% for EB1-EB4 respectively. The root mean

square percentage error for all the beams, on neglecting very high span to deflection ratios (greater

than 3000), is 5.03% which is acceptable for practical design. 

In practice, span/deflection ratio is limited to 250 to 350. For spans having a value of span to

deflection ratio close to this range, the error is smaller. For example, consider EB4. For span 1 with

span to deflection ratio equal to 390, the error is 1.57%, whereas for span 14 with span to deflection

ratio 1702, the error is 7.40%. 

8. Sensitivity analysis

Sensitivity studies are carried out using the developed neural networks and the hybrid analytical

numerical procedure and results compared. These studies show the influence of variation of input

parameters at a support on the output parameters of the adjacent spans. Also the values of the

output parameters obtained from the hybrid procedure and neural networks are compared. The

studies are carried out for the adjacent spans of a penultimate end support (support 2) of two span,

three span and seven span beams and for the adjacent spans of a typical internal support (support 4)

of a seven span beam.

In these studies, only one parameter is varied at a time keeping the other parameters constant,

either equal to the minimum or the maximum values of the parameters. These sets are designated as

the minimum value set and the maximum value set respectively. It may be further noted that since

the cross section of beams is the same throughout the length, the required stiffness ratios  for

the studies are achieved by varying the length of spans. 

8.1 Penultimate support

Sensitivity analysis in detail is reported here for the left span (span 1) of a penultimate end

support (support 2) of two span (n = 2) and seven span beams (n = 7) for two of the input

parameters namely,  and R2.

The variation of δ1 with the probable structural parameters of two span and seven span beams is

studied. The lengths, , are taken as 8.0 m. The span length, l1 is varied to achieve the

specific stiffness ratios. The cracking moment ratio, R1 is not considered for both two span and

seven span beams as the moment at support 1 is zero. Additionally, for two span beam, R3 is not

considered as again the moment is zero at support 3.

8.1.1 Effect of stiffness ratio, S1/S2

For the two span beam, the values of the other structural parameters, for the two sets considered,

Sj 1– /Sj

S1/S2

l1 j 2 to n=( )
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are: the minimum value set: t0 = 7 days, w1/w2 = 0.25, R2 = 0.25, Icr/Iun = 0.38, Gr = 20 N/mm2; and

the maximum value set: t0 = 21 days, w1/w2 = 4.00, R2 = 4.0, Icr/Iun = 0.54, Gr = 40 N/mm2. The two

sets for the seven span beam are: the minimum value set: t0 = 7 days, w1/w2 = 0.25, R2 = 0.25, Icr/Iun =

0.38, R3 = 0.25, Gr = 20 N/mm2; and the maximum value set: t0 = 21 days, w1/w2 = 4.00, R2 = 4.0,

Icr/Iun = 0.54, R3 = 4.0, Gr = 40 N/mm2. It may be noted that, R2 = 0.25 in the minimum value set,

represents maximum cracking; and R2 = 4.0 in the maximum value set represents absence of

cracking. The variations of output parameter δ1 for the beams are shown in Figs. 8(a)-(b). It is seen

that the values of δ1 obtained from the hybrid procedure and neural networks are quite close.

Further, for the maximum value set, the variation of δ1 with S1/S2 is significant.

8.1.2 Effect of cracking moment ratio, R2

For the two span beam, the minimum value set and the maximum value set chosen are:

t0 = 7 days, S1/S2 = 0.25, w1/w2 = 0.25, Icr/Iun = 0.38, Gr = 20 N/mm2; and t0 = 21 days, S1/S2 = 4.0,

w1/w2 = 4.0, Icr/Iun = 0.54, Gr = 40 N/mm2; respectively. For the seven span beam, the minimum

value set and the maximum value set are: t0 = 7 days, S1/S2 = 0.25, w1/w2 = 0.25, Icr/Iun = 0.38,

R3 = 0.25, Gr = 20 N/mm2; and t0 = 21 days, S1/S2 = 4.0, w1/w2 = 4.0, Icr/Iun = 0.54, R3 = 4.0,

Gr = 40 N/mm2 respectively. The variations are shown in Figs. 9(a)-(b). It is again seen that the

values of output parameter δ1 obtained from the hybrid procedure and neural networks are in close

agreement. Again, for the maximum value set, the variation of δ1 with R2 is significant.

Sensitivity studies are also carried out for , Icr/Iun, R3 and Gr. As observed earlier, the

values of output parameter δ1 obtained from the hybrid procedure and neural networks are in close

agreement. Also, again the variation of δ1 with these parameters is found to be significant for the

maximum value sets. Further, the variation of δ1 with each of the three parameters t0, I
cr/Iun and Gr

is found to be almost linear. 

8.2 Internal support

Similar studies, as performed for the sensitivity analysis of parameters at penultimate support

(support 2), are carried out for the sensitivity analysis of parameters at a typical internal support

(support 4) of a seven span beam, again considering the two extreme value sets of the parameters,

 and Gr. It is observed that, for internal support also, the values of

output parameters δ3 and δ4 obtained from the hybrid procedure and neural networks are in close
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t0 S3/S4 w3/w4 R3 R4 R5 I
cr
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un
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Fig. 9 Variation of δ1 with R2 for (a) two span beam, and (b) seven span beam
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agreement. It is also observed that the natures of variations of the output parameter of adjacent

spans with the parameters at internal support are similar to the corresponding variations at

penultimate support, though the numerical values are different. 

9. Conclusions

1. Neural networks have been developed for predicting the inelastic mid-span deflections of a

continuous composite beam. In development of the networks, use is made of the finding that the

cracking of a support influences the mid-span inelastic deflections of first adjacent spans, therefore,

the mid-span inelastic deflection of a span due to cracking of concrete and time effects can be

obtained with sufficient accuracy if the effect of cracking at the supports of the span, is considered.

2. The neural networks developed with the eleven structural parameters: t0, , ,

,  and Gr are shown to yield sufficiently accurate inelastic

deflections from the elastic deflections and require a computational effort almost equal to that

required for the simple elastic analysis. 

3. The networks for the seven span beams, Net-7span-end and Net-7span-internal can be used to

predict the mid-span inelastic deflections for beams having any number of spans greater than three. 

The development of the neural networks for predicting the long-term inelastic deflections of

composite beams is a step towards rapid estimation of long-term inelastic deflections in large

composite building frames where a huge computational effort is required. 
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Notations

E : modulus of elasticity of concrete 
Icr : transformed moment of inertia of steel section and reinforcement about top fiber
Iun : transformed moment of inertia of composite section about top fiber
De : mid-span elastic deflection 
Df : mid-span elastic deflection of fixed beam subjected to cracking load
Di : mid-span inelastic deflection
Mcr : cracking moment
Sj−1/Sj : stiffness ratio
l : span length
n : number of spans
w : uniformly distributed load
wcr : cracking load
wj−1/wj : load ratio
δ : inelastic deflection ratio 
ζ : normalized variation in mid-span deflection

Subscript
j, k : support or span number
n : number of spans




