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A reinforced concrete frame element with shear effect
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Abstract. A novel flexibility-based 1D element that captures the material nonlinearity and second order
P-∆ effects within a reinforced concrete frame member is developed. The formulation is developed for 2D
planar frames in the modified fiber element framework but can readily be extended to 3D cases. The
nonlinear behavior of concrete including cracking and crushing is taken into account through a modified
hypo-elastic model. A parabolic and a constant shear stress distribution are used at section level to couple
the normal and tangential tractions at material level. The lack of objectivity due to softening of concrete
is addressed and objectivity of the response at the material level is attained by using a technique derived
from the crack band approach. Finally the efficiency and accuracy of the formulation is compared with
experimental results and is demonstrated by some numerical examples.
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1. Introduction

In a classical fiber element approach, the Navier-Bernoulli hypothesis is adopted for the

distribution of axial strains over the depth of the section and the effect of shear tractions are taken

to be negligible. In such a case a uniaxial constitutive law suffices to calculate the stress and

stiffness of the fibers and neglecting the shear effect in slender members is reasonable, provided that

the member fails in flexure and not in shear. However, for elements with span to depth ratios of less

than 5, or the elements subjected to the cyclic loads, the shear effects can dominate the response

and must be considered (Petrangeli et al. 1999, Sezen 2008). Attempts to take account of the shear

effect in the fiber (layer) element follow two specific trends. In the first, shear and axial tractions

are coupled at the material level and shear stress field over the section depth are obtained by

fulfillment of inter-fiber equilibrium (over the section and along the element) or application of a

predefined shear flow (strain) function (Vecchio and Collins 1988, Petrangeli et al. 1999). The first

approach is more accurate but also more time consuming in comparison with the second. 

Over the last two decades, the superior performance of the flexibility and mixed approach in the

formulation of frame elements has been demonstrated through different studies (Neuenhofer and

Filippou 1997, Taylor et al. 2003). The flexibility formulation has been separately used for
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geometrical and physical nonlinear analysis of frames, however the performance of the materially

nonlinear flexibility-based formulations within geometrical nonlinearity has not been investigated

thoroughly and it is limited to nonlinear time-dependent analysis of beams and columns.

In this paper a novel flexibility-based frame element based on the total secant stiffness is

formulated and the classic fiber element approach is replaced by a numerical integration to improve

the formulation efficiency. Recently, similar integration scheme at section level was elaborately used

by Shuraim (2001) to devise a variable layering system for nonlinear analysis of reinforced concrete

planar frames. Geometrical nonlinearity is taken into account by satisfying the equilibrium equations

for the deformed element and a composite Simpson integration scheme, accompanied with a

parabolic piecewise interpolation of curvature function is used to establish the deformed shape of

the element. In comparison with available methods such as stability functions which already have

been used in combination with flexibility formulation (Park and Kim 2008), this novel method of

modeling geometrical nonlinearity, offers superior accuracy without any limitation on the element

geometry and boundary condition. The effect of shear stress at material level (integration points) is

taken into account through a predefined parabolic or constant shear flow. The softening of concrete

under tension and compression is taken into account and a crack band concept is employed to

restore the objectivity of the results. 

2. Flexibility formulation based on the total secant stiffness

In this section, the satisfaction of equilibrium, compatibility and the constitutive laws a direct

iteration scheme based on the total secant stiffness approach is established.

2.1 Equilibrium equations

Fig. 1(a) shows a 2-node plane frame element AB with three degrees of freedom at each node (2

translations and 1 rotation). The equilibrium of the deformed configuration Ax (Fig. 1(b)), yields

(1)

(2)

D x( ) b x( )QA D
*

x( )+=

b x( ) 1– 0 0

0 x 1–
=

Fig. 1 (a) 2-node frame element AB in x-y plane, (b) free body diagram of Ax with deflection 
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where, D(x) = [N(x) M(x)]T is a vector of section generalized forces, b(x) is a force interpolation

matrix, QA = [Q1 Q2 Q3]
T is a vector of generalized nodal forces at end A and 

is vector of undulation effect which represents the deflection of the element with respect to the rotated

axis of the element after deformation (Carol and Murcia 1989).

Equilibrium across the section requires that

(3)

where y is the distance of the integration point from the element mid-plane (see Fig. 2(a)) and σx is

the first component of the stress vector σ = [σx σy τxy]
T.

2.2 Compatibility equations and stress-strain relationships

Assuming perfect bond and adopting the Navier-Bernoulli theory, the compatibility requirement is

D
*

x( ) 0  Q1v′ x( )[ ]T=

D x( ) σx Ad
Ω

 

∫ yσx Ad
Ω

 

∫–[ ]
T

=

Fig. 2 (a) Comparison of the classical fiber element and present formulation at section level, (b) side view
and cross section of frame element and material sub-element 
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obtained as

(4)

where εx denotes the first component of the strain vector ε = [εx εy γxy]
T, εr denotes the section axial

strain and κ is the section curvature. Decomposing the total strain εx, to a plastic strain component,

εpx, and an elastic strain component, εex, the stress at any point in the loading-unloading history of

material is given as

(5)

where Ee is the elastic total secant modulus of the theoretical unloading/reloading curve with respect

to total plastic strain.

If Eqs. (4) and (5) are substituted into Eq. (3), then (Valipour and Foster 2010)

(6)

(7)

(8)

where eks(x) is the secant stiffness matrix of the section, Dp(x) is the residual plastic force vector for

the section and d(x) = [εr κ]T is the generalized strain vector of the section. The flexibility matrix of

the section, efs(x), is obtained by inverting the section stiffness matrix and then Eq. (6) can be

rearranged as

(9)

Adopting the small strain assumption within beam theory and applying the principle of virtual

work for the cantilever configuration AB clamped at end B and subjected to a virtual load vector QA

at end A yields

(10)

Substituting Eqs. (1) and (9) into Eq. (10), gives

(11)

(12)

(13)
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where qA is the generalized deformation vector at end A of the element, eFAA is the flexibility sub-

matrix at end A, qp(A) is a vector of the nodal generalized plastic deformations at end A and  is

a vector of nodal generalised deformations due to the undulation effect. 

If  and  represent the generalised force vectors corresponding

with deformation vectors  and , respectively, Eq. (11) degenerates to

(15)

where eKAA is the stiffness sub-matrix at end A and is obtained by inverting eFAA.

Solving the equilibrium equations for the cantilever frame element clamped at end A and

subjected to nodal forces at end B yields similar equations that assembles to the element secant

stiffness matrix eKe

(16)

(17)

(18)

where Qp is the element nodal plastic force vector, Q* is the element nodal force vector due to

undulation effect and Γ is the transformation matrix defined as

(19)

Using Eqs. (15) to (18) and satisfying the equilibrium equations for the deformed element A'B'

(see Fig. 1(b)) leads to element matrix formulation as

(20)

(21)

where  is a vector of generalised nodal forces due to P-∆ effect.

In this study all of the integrals appearing in the formulation are calculated numerically. For this

purpose a network of integration points is required to be provided along the element axis and over

the section depth (Fig. 2(a)). In providing a network of integration points the element domain is

divided into small imaginary sub-elements with dimensions (i.e., ∆x, ∆y and ∆z) that are

proportional to the element (section) size and the integration point weight factor, wIP, (see Fig.

2(b)).
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3. Displacement interpolation along the element

In the displacement-based formulation the deformed shape of the element can be obtained by

nodal displacement values and adopted shape functions. In the force-based element, however, there

is no displacement shape function to be used and a different technique such as curvature-based

displacement interpolation is required (Neuenhofer and Filippou 1998).

Adopting the small strains and slope within the Navier-Bernoulli beam theory leads to the

following strain-displacement relationships for an arbitrary section at x along the element (Fig. 3)

(22)

where  is the lateral displacement of the section at x. With regards to Fig. 3, the undulation

deflection  is calculated as follows

(23)

In this study a composite Simpson integration method is employed to estimate the integrals along

the element axis, which is more straightforward and less costly compared with existing methods.

Using the composite Simpson scheme, the integral on the right side of the Eq. (23) can be estimated

easily for the odd numbered longitudinal sections. For the even numbered sections a piecewise

parabolic interpolation of curvature function is used. A composite Simpson scheme with (2n+1)

integration point along the element axis divides the element to n equal sub-elements. It is assumed

that the curvature varies parabolic along each sub-element (Fig. 3). Having the value of curvatures

for mid and end nodes of the sub-element, a 2nd order parabola is used to interpolate the curvature

along the sub-element and using this 2nd order parabola the integral in Eq. (23) can be calculated

analytically for the even numbered sections.
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Fig. 3 Outline of the composite Simpson integration scheme, element and sub-elements
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4. Material constitutive laws

Regardless of the simplifications made for formulating reinforced concrete beam elements, the

response of the element depends strongly on concrete constitutive law. Application of

computationally expensive concrete models within reinforced concrete beam elements reduces the

efficiency and simplicity of the analysis that are the appealing features of the 1D element. In this

study a nonlinear orthotropic model based on the equivalent uniaxial strain concept is recast in the

framework of the total strain (secant) formulation and consistent with damage models. The early

models of this kind were limited to 2D cases and proportional monotonic loading (Darwin and

Pecknold 1974), whereas the newer versions are able to model the concrete behavior under cyclic

loadings and take account of confining effects in 3D cases (Balan et al. 2001, He et al. 2006). More

recently, the concepts of total strain, orthotropic models and modified compression field theory have

been combined to develop a hysteretic material model for planar reinforced concrete elements (Yun

et al. 2008). 

The stress-strain relationship for an orthotropic material in total secant formulation takes the form

(24)

where, s = [σ1 σ2 τ12]
T and e = [ε1 ε2 γ12]

T represent the total stress and strain vector, respectively.

Subscripts 1 and 2 denote the current axes of orthotropy and Dsec is the total secant stiffness matrix

of the material in the local 1-2 coordinate system. The expansion of the recent stress-strain

relationship in 1-2 coordinate systems may be approximated in the symmetric form as (Darwin and

Pecknold 1974) 

(25)

where υ is the Poisson ratio, G* is a crack modified shear modulus and E1 and E2 are secant moduli

of elasticity corresponding with directions 1 and 2, respectively. 

The Poisson ratio is taken as υ = υ0 = 0.2, for the compression-compression state and for the

other states it is reduced by

(26)

where ε1(2),eq represents the equivalent tensile strain in direction 1(2).

The shear modulus follows two different paths, depending on the cracking state in the concrete.

For the case of uncracked concrete, the shear modulus remains invariant by adopting (Darwin and

Pecknold 1974)

(27)

For cracked concrete, the invariance of the constitutive law is maintained by adopting (Crisfield

and Wills 1989)
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(28)

where σu(v) and εu(v) represent the principal stresses and strains, respectively.

The equivalent uniaxial stress-strain diagram is shown in Fig. 4 (tensile strains taken as positive)

and the equivalent uniaxial strain (in the i direction) εi,eq, is calculated from

, (29)

The CEB-FIP model code 1990 stress-strain relationship is adopted for the ascending branch of

the concrete under compression with a linear descending branch. For concrete in tension, a linear

elastic law is employed. The unloading/reloading follows the total secant line to the origin (see

Fig. 4). The effective compressive and tensile strength of concrete are denoted as  and ,

respectively, εc and εt denote the strain corresponding with effective compressive and tensile

strength, respectively, εuc and εut represent the compressive and tensile strains, respectively, that

correspond to the second point of zero stress and are adjusted with respect to the crack band model

and the adopted integration scheme. The confining effect on the concrete ductility and strength can

be modeled by modifying the compressive strength, , the corresponding strain, εcc, and the

compressive ultimate strain, εucc, according to available uniaxial models (Mander et al. 1988).

The effective strength of the material and their corresponding strain is obtained from the bi-axial

failure envelope of the concrete (see Fig. 5). In the compression-compression region the effective

compressive strength (in direction 2) is obtained according to Kupfer et al. (1969) failure criterion

as

, (30)

where fc is the uniaxial compressive strength of concrete. In the tension-tension zone, the effective

tensile strength is equal to the concrete uniaxial tensile strength, ft. That is .

The tension-compression stress state consists of two parts. For α ≤ −0.2 the effective tensile

G
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Fig. 4 Equivalent uniaxial stress-strain law for concrete under tension and compression



A reinforced concrete frame element with shear effect 65

strength is reduced according to

, (31)

For the case of −0.2 ≤ α ≤ 0, the concrete cracks in the 1-direction simultaneously with the onset

of crushing in the 2-direction.

5. Solution scheme at material level

In this study a direct total secant iterative scheme is used to capture the post-peak response of the

concrete. At each section of a beam element two different groups of imaginary material sub-

elements are adopted to obtain the material response. The first are out-of-core sub-elements and the

second are in-core sub-elements (Fig. 6(a)).

A typical in-core sub-element of depth ∆y and length ∆x is decomposed to the concrete and

transverse reinforcement components, as shown in Fig. 6(b). The response of the sub-element can

be obtained by superimposing the concrete and reinforcement responses through equilibrium,

compatibility and fulfillment of the constitutive laws. The assumptions of smeared transverse

reinforcements and perfect bond are adopted within the sub-element formulation.

The value of the strain εx and shear stress τxy at each sub-element is available from compatibility

and from the prescribed shear stress distribution, respectively. Furthermore the total normal stress

acting on the sub-element in the y-y direction (see Fig. 6(b)) is assumed to be negligible (i.e.,

σty = 0); however, this term is not dropped in the governing equations. Because this recent

assumption is a simplification made in existing formulations of this kind and later in this paper a

method based on the equilibrium of two adjacent sections is presented to calculate σty. With the

values of εx, τxy and σty available, the iterative algorithm for material state determination at sub-

element level is summarized as follows:

f1t
ef 1 0.8σ2/fc+( )ft= σ2 0 σ1≤ ≤

Fig. 5 Schematic bi-axial failure curve of concrete in stress space
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Step (1): The secant stiffness matrix of the concrete block, iCsec, in global x-y coordinate system

is established (left superscript i denotes the iteration number)

(32)

where Tε is the strain transformation matrix. The stiffness matrix, Csec, relates the stress vector of

the concrete block (Fig. 6(b)) σc = [σx σcy τxy]
T to strain vector εc = ε = [εx εcy γxy]

T; that is

σc = Csecεc. For computational efficiency, the terms of Csec (i.e., c11, c12 c33) for Eq. (32) should be

pre-multiplied (refer Appendix).

Step (2): The following set of equations is solved and the vector of unknowns iu = [σx  εy  γxy]
T

is obtained 

, (33)

(34)

C
i

sec
T

ε

Ti
DsecTε

=

σcy σty ρsσsy–= ρs

As′
bs
-------=

1/c11  c12/c11– c13/c11–

c12/c11  c22 c12

2
– /c11( )  c23 c12c13/c11–( )

c13/c11  c23 c12c13/c11–( )  c33 c13

2
– /c11( )

σx

εy

γxy

εx

σcy

τxy

=

Fig. 6 (a) Side view of the beam and material sub-elements inside and outside of the core, (b) decomposition
of a typical in core sub-element to concrete and steel components
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where  and ρs are area, step and ratio of transverse reinforcement, respectively, and b is the

section width. According to the author’s experience during this step doing a few iterations to

calculate σsy corresponding with εy , improves the overall efficiency of the algorithm. In such a case,

the initial value of σsy is used to calculate the σcy from Eq. (33). The current value of σcy is

substituted in Eq. (34) for calculating the vector of unknowns, iu. The new value of εy is used to

correct the σsy and inner iteration loop goes back to Eq. (33) for calculating the updated σcy. This

loop is repeated until the convergence criterion is satisfied.

Step (3): With i
σc and i

εc on hand, the orientation of the principal stress (strain) coordinate and

the value of principal stresses (strains) are updated.

Step (4): The updated value of principal stresses (i+1σ1, 
i+1σ2) are used to determine the effective

strength of the material and their corresponding strains.

Step (5): The updated values of the principal strains (i+1ε1, 
i+1ε2) are calculated and then the

equivalent uniaxial strains are determined from Eqs. (26) and (29).

Step (6): The new stresses and secant modulus in the principal directions (i+1E1, 
i+1E2) are

obtained based on the adopted equivalent uniaxial stress-strain relationship (Fig. 4) and the current

values of the equivalent uniaxial strains (i+1ε1,eq, 
i+1ε2,eq).

Step (7): The convergence criterion at the material level is checked and, if satisfied, then the

material state procedure is completed and the solution is continued for the other material sub-

elements. Otherwise, the iteration is continued by returning to step (1).

The above explained material state determination algorithm is incorporated within a direct total

secant solution strategy at element (structure) level (Valipour and Foster 2010).

6. Treatment of shear

Coupling the shear and normal tractions at material level in a 1D frame element can be carried

out by two different methods; iterative fulfillment of inter-fiber equilibrium (over the depth of two

adjacent sections) or application of a predefined function for shear flow (strain). The first approach

is more accurate but time consuming while the second is more robust and efficient but is less

accurate. Furthermore, according to Vecchio and Collins (1988) application of a predefined shear

As′ , s

Fig. 7 (a) Section side view and integration points along with parabolic and constant shear stress distribution,
(b) relation between axial strain and shear model-3, (c) differential segment subjected to shear and
normal stresses
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strain underestimates the strains (displacements) whereas a kinetic shear constraint (i.e., predefined

shear flow) underestimates the ultimate strength. In this study two different types of kinetic shear

constraint (i.e., parabolic and constant shear flow) are used and their performance is examined

(Fig. 7(a)). The parabolic and constant shear stress distribution over the depth h of a rectangular

section with width b is

(35)

, (36)

where V is the total shear force acting on the section and wy, 1p and wy, np represent the weight factor

of the first and the last transverse integration points on the top and bottom chords of the section

(Fig. 7(a)), respectively. These hypothetical kinetic constraints usually lead to overestimation of the

shear carried by the tensile zone. However, the mechanisms of the aggregate interlock and dowel

action that is not captured by these models partially compensate this weakness. 

While imposing a predefined shear flow over the total depth of section improves the accuracy of

the element, it cannot properly model the shear failure of the sections caused by diagonal cracking

of the member or by crushing in the compressive zone of the section. A remedial method for

treating this weakness is to impose the shear just over compressive zone and that part of the tensile

zone where crack bridging exists. With regards to the concrete model adopted in this study, if the

tensile strain at a fiber (integration point) is larger than εut the governing equations at the material

level are unsolvable as the material has already cracked and the point cannot carry any shear

traction. In this case the shear flow is imposed on the part of the section with a strain of less than

εut (Fig. 7(b)). Shear failure is determined if the governing set of equations for all of the integration

points over the aforementioned zones can not be solved. In other words at the incident of the shear

failure the material points that carry the shear stresses are completely damaged due to diagonal

cracking (or crushing) based on the 2D hypo-elastic model. This model is called shear model-3 in

the numerical examples that follow.

Having the shear stress distribution assigned, the normal stress field, σty, can be calculated by

satisfying the differential equation of equilibrium (Fig. 7(c))

(37)

Substituting the predefined shear stress distribution in Eq. (37) and then integrating the resulting

relationship with respect to y, gives an explicit function for σty. For example, using a parabolic shear

distribution, leads to

(38)

where w(x) is the distributed load imposed on the top chord of the frame element. Eq. (38) implies

that the stress field σty is zero for elements without any distributed load. In reality, however, due to

non-uniform shear stress gradient along the element axis σty is not zero.
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7. Localization limiters and mesh objectivity

Since the softening response of concrete is considered in this study, the problems of objectivity

and spurious mesh sensitivity (i.e., mesh size effect and orientation bias) need to be addressed. In

rate independent models, the objectivity of results can be restored by introducing a characteristic

length into the material model. This characteristic length is introduced in the framework of the

crack band (cohesive crack) approach or nonlocal models (Bazant and Oh 1983, Bazant and Jirasek

2002, de Borst 2003). 

In frame elements the softening of response and lack of objectivity happens at two levels; at

material points due to cracking of tensile concrete or crushing of compressive concrete, and at

element level due to crushing of concrete over a plastic hinge zone. In this research a simple

method based on the crack band concept is employed to attain the objectivity at material level. A

similar technique in the framework of the microplane model has been successfully used in the FEM

context (Cervenka et al. 2005).

In previous sections it was noted that the provided network of integration points divides the

element domain to small sub-elements. In analogy with displacement-based elements in the FEM

context, these sub-elements are similar to low order constant stress-constant strain elements that

work with crack band (fictitious crack) models properly (Cervenka et al. 1995). Fig. 8(a) shows one

of these sub-elements in the softening state. According to crack band approach, in this sub-element

the localization zone softens (corresponding with point B in Fig. 8(b)), whereas the remaining part

of the element unloads through the branch AO (see Fig. 8(b)). The compatibility of the displacement

in 1-1 direction, yields

(39)

where ε is the sub-element strain in the 1-1 direction which is the principal stress (strain) axis

according to the concrete model used in this study, h denotes the crack band width (3 to 5 times of

the maximum aggregate), εb denotes the uniform softening strain over the band width and εu

denotes the strain in the unloading zone of the sub-element. With regards to Fig. 8(b) and

lε hεb l h–( )εu+=

Fig. 8 (a) Typical softened sub-element, (b) correspondence of stresses and strains for the softened sub-
element
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equilibrium in the 1-1 direction, Eq. (39) leads to

, (40)

where, Eelem-1 is the sub-element secant modulus in direction 1-1, Esoft is the softening secant

modulus, Eu is the unloading secant modulus from the peak stress and l is the equivalent length of

element in the 1-1 direction, which is obtained based on sub-element size and the rotation of

principal coordinate θ. If within step (6) of the solution procedure the current equivalent tensile

strain in the principal direction j-j (j = 1, 2) lies in the softening regime, the value of Eelem-j is

calculated from Eq. (40) and it is used in place of the secant modulus in the following steps of the

solution algorithm. The method proposed preserves the original stress-strain relationship for the

softening branch, whereas the original crack band model alters this relationship. This advantage

resolves the snap back problem associated with large size sub-elements that occur in the original

crack band approach.

The objectivity of results for compressive softening is restored by a fictitious crushing plane

model and adjusting the ultimate compressive strain, εf. In this model compressive displacements

and energy dissipation are localized in a crushing plane normal to the direction of compressive

principal stress and the value of displacement wf is independent of the structure size. The value of

wf varies from 0.4 mm to 0.7 mm for normal weight concrete and it is less than 0.3 mm for light

weight aggregate concrete (Markeset and Hillerborg 1995). Having the element equivalent length l

from the sub-element geometry (Fig. 8(a)), the adjusted value of ultimate strain εf is calculated

(Fig. 8(b)),

(41)

8. Numerical examples

8.1 Burns and Siess beam

In this example, the simply supported beam of Burns and Siess (1962) subjected to a point load at

mid span is analyzed (Fig. 9). The material properties for the specimen are fy = 315 MPa,

Es = 2.03 × 105 MPa, ft = 2.3 MPa, Ec = 2.6 × 104 MPa, fc = 33 MPa, εc = 0.002, εuc = 0.006,

1

Eelem 1–

----------------
h/l( )
Esoft

-----------
1 h/l–( )

Eu

-------------------+= h l≤

εf εc

wf

l
-----+=

Fig. 9 Geometry of the simple beam, cross section details and idealised FE model
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wf = 0.5 mm and the crack band width is 50 mm.

One half of the beam was modeled by a single flexibility-based element (Fig. 9). The load versus

mid-span displacement of the beam is shown in Fig. 10(a). The value of failure load obtained from

experiment, constant shear, parabolic shear and shear model-3 are 161 kN, 170 kN, 170 kN and

153 kN, respectively. It is observed that the shear model-3 underestimate the failure load, whereas

the constant and parabolic shear distributions overestimates the failure load.

Fig. 10(b) shows the results of analyses undertaken for 15 composite Simpson’s integration points

through the depth and varying number of points along the length. In Fig. 10(c) the number of points

along the length was kept constant (11 points) with the number of points through the depth varied.

The figures show that, providing a sufficiently fine mesh is adopted in each direction, the results

obtained are independent of the mesh grading. Further, the cracking load predicted by the

formulation is fairly accurate.

8.2 Bresler and Scordelis beam

Beam 0A-3 (Fig. 11) tested by Bresler and Scordelis (1963) was analyzed to show the capability

of the formulation for predicting shear failure (the beam has no shear reinforcement). The material

Fig. 10 Load versus mid span displacement response of Burns and Siess beam within different, (a) types of
shear distribution, (b) numbers of integration points along the element, (c) numbers of integration
points through the section depth 
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properties are fy= 550 MPa, Es= 2.06 × 105 MPa, ft = 2.4 MPa, Ec= 3.6 × 104 MPa, fc = 36.6 MPa,

εc = 0.002, εuc = 0.008. The crack band width was taken as 50 mm and wf = 0.5 mm. A single

flexibility frame element was used to model the beam with 19 integration points through the section

depth and 19 along the half length. The load versus mid-span displacement of the beam is shown in

Fig. 12 and the results are compared with the other available numerical results (Foster 1992). The

value of failure load obtained from experiment, parabolic shear and shear model-3 is 378 kN,

441 kN and 371 kN, respectively. It is observed that the shear model-3 predicts the failure load with

good accuracy with the predicted failure being diagonal tension, as observed in the test. On the

other hand, the ordinary parabolic shear model overestimates the failure load and predicts yielding

of the main tensile reinforcement.

8.3 Cyclic analysis of a beam-column

Low and Moehle (1987) studied the behavior of a reinforced concrete cantilever beam-column

subjected to a constant axial load and with a variable lateral displacement applied at its tip. The

Fig. 11 Geometry of beam and details of section 

Fig. 12 Load versus mid-span displacement 
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geometry of the sample and cross section are shown in Fig. 13. The material properties are

fy= 450 MPa, Es = 2.0 × 105 MPa, ft = 2.3 MPa, fc = 35 MPa, Ec= 2.6 × 104 MPa, εc = 0.002,

εuc = 0.01 and the constant axial force was P = 44.5 kN. The confinement effect is taken into

account by adopting the Mander et al. (1988) model. The crack band width was taken as 15 mm

and wf = 0.5 mm. A single flexibility frame element was used to model the cantilever with a

composite Simpson integration scheme with 9 points along the element and 15 points through the

depth. The lateral load versus displacement of the free end obtained from classical flexibility

element (without shear effects) and this study (including shear effects) are shown in Figs. 14(a) and

14(b), respectively. The response obtained from flexibility element with shear effect is softer at

higher levels of cyclic displacement and can capture a portion of the pinching effects. A second part

of the pinching effect caused by bond slip is not modeled and, therefore, not captured.

8.4 Dynamic analysis of a portal frame subjected to ground acceleration

A two-storey frame tested by Clough and Gidwani (1976) is analyzed. The geometry of the frame

and details of sections and loadings are shown in Fig. 15(a). The material properties are

fy= 350 MPa, Es = 2.0 × 105 MPa, ft = 2.5 MPa, fc = 30 MPa, Ec= 2.7 × 104 MPa, εc = 0.002 and

Fig. 13 Geometry and section details of the beam-column 

Fig. 14 Tip load-displacement of the cantilever beam-column, (a) classic fiber element without shear effect
(b) present study with shear effect
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εuc = 0.01. The confinement effect is taken into account by adopting the Mander et al. (1988) model

and the crack band width was taken as 25 mm and wf = 0.5 mm.

The frame was subjected to three consecutive ground acceleration histories on the shaking table.

Each of these motions corresponds to the N69W Taft accelerogram recorded during the Arvin-

Tahachapi earthquake of 21 July, 1952. The second test with acceleration record shown in Fig. 15(b)

is studied in this example.

Fig. 15 (a) Geometry of frame and section details for Clough and Gidwani (1976) test, (b) N69W Taft
accelerogram record scaled to 0.57g
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Using the flexibility formulation developed above, the frame was modelled with just 6 elements,

one per member. A Simpson scheme with 21 integration points over the section depth and 19 and

27 integration points along the columns and beams axis, respectively, were used. A Newmark time

integration scheme with a maximum time step of 0.05 sec was employed and a Rayleigh damping

with α = 0.001 (mass multiplier) and β = 0.00001 (stiffness multiplier) was adopted. The history of

first and second storey lateral displacement and the base shear are shown in Fig. 16. The maximum

value of lateral displacements and base shear are given in Table 1. It is seen that the analytical

results correlate reasonably well with the experimental data, noting that the bond slip has been

ignored in this model.

Fig. 16 (a) First storey lateral displacement, (b) second storey lateral displacement, (c) base shear versus time
for Clough and Gidwani (1976) frame

Table 1 Comparison of maximum displacement and base shear obtained from 
experiment and flexibility formulation 

Experiment Flexibility Formulation

1st Storey Disp. 49.8 44.6

2nd Storey Disp. 70.1 67.0

Base Shear 118.1 103.8
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9. Conclusions

A 1D force-based reinforced concrete frame element is derived based on the total secant stiffness.

The P-∆ geometrical nonlinearity effects and material nonlinearity including softening of concrete in

tension and compression is taken into account by a hypo-elastic model. The effects of shear

tractions at the material level are considered by employing a predefined shear flow function. Two

types of function (constant and parabolic) are used for estimating shear over the section depth and it

is shown that their performance is similar. A novel shear distribution is introduced in a way

consistent with the adopted concrete model. It is shown that the new shear distribution has the

capability to predict the ultimate shear failure load of the element with reasonable accuracy, whereas

distributing the shear flow over the total depth of the section overestimates the failure load of

members without transverse reinforcement. The problem of objectivity due to concrete softening is

addressed and a simple technique based on the crack band concept is derived to ensure objectivity.

Finally, it is to be generally noted that the efficiency of solution, as measured by overall

computational time, of force based finite element is vastly superior over that of their more widely

adopted displacement based counterparts and are well suited for non-linear analysis of large scale

framed structures. Historically, however, the weakness of single element force based 1D elements

has been their inability to capture shear effects easily and with sufficient accuracy. In this paper a

new approach has been developed that overcomes this disadvantage. The accuracy of the

formulation has been demonstrated with four numerical examples where, in each case, the response

has been shown to be captured well using a single 1D element.
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Appendix

The secant stiffness matrix in the local coordinate system for the ith iteration is

  (A1)

where cij are material stiffness components in the x-y global coordinate system and are obtained from the
Eq. (26). For computational efficiency, the coefficient terms of Eq. (A1) are pre multiplied to give

 (A2)

 (A3)

 (A4)

 (A5)

 (A6)

  (A7)

where, α is the current orientation of the principal stress (strain) coordinate system with respect to x-y global
coordinate system. In the first iteration an initial guess of α = 0, E1 = E2 = Ec and υ = υ0 can be used.
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