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Abstract. The load and resistance factors are generally obtained using the First Order Reliability
Method (FORM), in which the design point should be determined and derivative-based iterations have to
be used. In this paper, a simple method for estimating the load and resistance factors using the first four
moments of the basic random variables is proposed and a simple formula for the target mean resistance is
also proposed to avoid iteration computation. Unlike the currently used method, the load and resistance
factors can be determined using the proposed method even when the probability density functions (PDFs)
of the basic random variables are not available. Moreover, the proposed method does not need either the
iterative computation of derivatives or any design points. Thus, the present method provides a more
convenient and effective way to estimate the load and resistance factors in practical engineering.
Numerical examples are presented to demonstrate the advantages of the proposed fourth moment method
for determining the load and resistance factors.
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1. Introduction

As the insurance of the performance of a structure must be accomplished under conditions of

uncertainty, probabilistic analysis is generally necessary for reliability-based structural designs.

However, the reliability-based structural design may also be achieved without a complete

probabilistic analysis. If the required safety factors are predetermined on the basis of specified

probability-based requirement, reliability-based design may be accomplished through the adoption

of appropriate deterministic design criteria, e.g., the use of traditional safety factors. 

For practical use, design criteria should be as simple as possible; moreover, they should be

developed in a way that is familiar to the practical engineers. This can be accomplished through the
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use of load amplification factors and resistance reduction factors, known as the LRFD format (Ang

and Tang 1984, AIJ 2002). The nominal design loads are amplified by appropriate load factors and

the nominal resistances are reduced by corresponding resistance factors, and safety is assured if the

factored resistance is at least equal to the factored loads. The appropriate load and resistance factors

must be developed in order to obtain designs that achieve a prescribed level of reliability.

The load and resistance factors are generally determined using the first order reliability method

(FORM) (e.g., Melchers 1999, Nowak and Collins 2000), in which the “design point” must be

determined and derivative-based iterations have to be used. Also, it is inconvenient to deal with the

problem of multiple design points (Der-Kiureghian and Dakessian 1998, Barranco-Cicilia et al.

2009) with this procedure. At the present stage, the practicing engineers in general would not

perform reliability analysis in engineering designs, and they only use the load and resistance factors

recommended in design codes. However, with the trend towards the performance design, there will

be a necessity for designers to determine the load and resistance factors by themselves in order to

conduct structural design more flexibly. In such a case, it is required that the design code

recommend not only specific values of load and resistances factors but also suitable and simple

methods for determining these factors. AIJ (2002) recommendation has provided a simple method

based on the proposal of Mori (2002), in which all the random variables are assumed to have

known probability density functions (PDFs) and required to transfer into lognormal random

variables. However, in reality, the PDFs of some of the basic random variables are often unknown

due to the lack of statistical data. Therefore, it is important to find a way to obtain LRFD including

random variables with unknown PDFs.

In this paper, the basic principle of the load and resistance factor format is reviewed. A simple

method for estimating the load and resistance factors using the first four moments of the basic

random variables is proposed and a simple formula for the target mean resistance is also proposed

to avoid iterative computations. Since the proposed method is based on the first four moments of

the basic random variables, the load and resistances factors can be determined even when the

probability density functions of the random variables are unknown. The simplicity and efficiency of

the proposed method for determining the load and resistance factors are demonstrated with several

numerical examples.

 

2. Determination of load and resistance factors

The LRFD format may be expressed as the follows.

(1)

where φ = the resistance factor; γi = the partial load factor to be applied to load Si; Rn = the nominal

value of the resistance; and Sni = the nominal value of load Si.

In reliability-based structural design, the resistance factor φ and the load factor γi should be

determined based on a specified reliability, i.e., the design format, Eq. (1), should be equivalent to

the following equations in probability terms.

 
(2)

or (3)

φRn ΣγiSni≥

G X( ) R ΣSi–=

Pf PfT≤ β βT≥
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where R and Si are the random variables representing the uncertainty in the resistance and load

effects. Pf and β are the probability of failure and reliability index corresponding to the performance

function Eq. (2). PfT and βT are the target probability of failure and target reliability index,

respectively.

If R and Si are mutually independent normal random variables, the second moment method is

correct and the design formula becomes

(4)

where

 (5a)

 (5b)

where β2M is the second moment reliability index; µG and σG are the mean value and standard

deviation of the performance function G(X), respectively; µR and σR are the mean value and

standard deviation of R, respectively; and µSi and σSi are the mean value and standard deviation of

Si, respectively.

Substituting Eq. (5) in Eq. (4) leads to 

 (6)

Comparing Eq. (6) with Eq. (1), the load and resistance factors can be expressed as 

 (7a)

 (7b)

where VR and VSi are the coefficient of variation (COV) of R and Si, respectively; and αR and αSi are

the direction cosines (also known as separating factors) of R and Si, respectively.

, (8)

When R and Si are non-normal random variables, the second moment reliability index expressed

in Eq. (5) does not correctly reflect the real failure probability corresponding to the performance

function in Eq. (2). The reliability index in this case is generally obtained by the first order

reliability method (FORM), where the design format can be expressed as 

(9)

And the load and resistance factors can be obtained as (Ang and Tang 1984)

 

, (10)

where R* and S*
i  are the values of variables R and Si at the design point of FORM, respectively.

Since R* and S*
i  are usually obtained using derivative-based iterations, explicit expressions of R*

β2M βT≥

β2M

µG

σG

------=

µG µR ΣµSi–= σG σR

2 ΣσSi

2
+=

µR 1 αRVRβT–( ) ΣµSi 1 αSiVSiβT+( )≥

φ 1 αRVRβT–( )
µR

Rn

-----=

γi 1 αSiVSiβT+( )
µSi

Sni

------=

αR

σR

σG

------= αSi

σSi

σG

------=

R
* ΣSi

*≥

φ
R*

Rn

-----= γi
Si

*

Sni

------=
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and S*
i  are not available. Some simplifications have been proposed in order to avoid iterative

computations (Ugata 2000, Mori 2002).

In the present paper, the reliability index in Eq. (3) is derived using the method of moments.

Since the central moments of the performance function, as described in Eq. (2), can be obtained

easily, the probability of failure, which is defined as P[G(X) < 0] can be expressed as a function of

the central moments. Since no derivative-based iteration is necessary in the proposed method, the

required load and resistance factors are much easier to determine.

3. Load and resistance factors by method of moments

3.1 Determination of load and resistance factors using the third-moment method 

Substituting the third-moment reliability index in the design format described in Eq. (3), produces

(11)

where the third-moment reliability index β3M is given by Zhao et al. (2006)

(12)

where α3G is the skewness of G(X). The α3G in Eq. (2) can be computed by

(13)

Substituting Eq. (13) in Eq. (11) leads to

 (14)

Denoting the right side of Eq. (14) as β2T, one obtains

 (15)

(16)

It can be observed that Eq. (15) is the same as Eq. (3), which implies that if the second moment

reliability index β2M is at least equal to β2T, the reliability index β will be at least equal to the target

reliability index βT, and the required reliability is satisfied. Therefore, β2T can be considered to be a

target value of β2M, and is hereafter denoted as the target second moment reliability index.

Substituting Eq. (5) in Eq. (15) leads to

(17)

Comparing Eq. (17) with Eq. (1), the load and resistance factors may be expressed as

 (18a)

β3M βT≥

β3M
1

α3G

-------- 3 9 α3G

2
6α3Gβ2M–+–( )=

α3G
1

σG

3
------ α3RσR

3 Σα3SiσSi

3
–( )=

β2M βT
1

6
---α3G βT

2
1–( )–≥

β2M β2T≥

β2T βT
1

6
---α3G βT

2
1–( )–=

µR 1 αRVRβ2T–( ) ΣµSi 1 αSiVSiβ2T+( )≥

φ 1 αRVRβ2T–( )
µR

Rn

-----=
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 (18b)

where VR and VSi are the coefficients of variation, and αR and αSi are the direction cosines,

respectively, for R and Si, which are the same as those in Eq. (8).

Comparing Eq. (18) with Eq. (7), it can be observed that after replacing βT in Eq. (7) by β2T in

Eq. (18), the determination of the load and resistance factors using the third moment method is

essentially the same as that by the second moment method.

The variations of the target second moment reliability index β2T with respect to the target

reliability index βT are shown in Fig. 1. As can be seen from Fig. 1, β2T is larger than βT for

negative α3G and smaller than βT for positive α3G. When α3G = 0, β2T = βT, then, Eq. (15) becomes

exactly the same as Eq. (4), and the load and resistance factors can be determined using Eq. (7) and

Eq. (8).

3.2 Determination of load and resistance factors using the fourth moment method 

Consider the performance function in Eq. (2). Without loss of generality, standardize the

performance function G(X) using the following standardized variable

(19)

Then the probability of failure corresponding to the performance function, Eq. (2), can be

expressed as the following according to its definition.

 (20)

where β2M is the second moment reliability index given in Eq. (5a).

γi 1 αSiVSiβ2T+( )
µSi

Sni

------=

zu
G µG–

σG

---------------=

Pf P G 0≤[ ] P zuσG µG+ 0≤[ ] P zu
µG

σG

------–≤ P zu β2M–≤[ ]= = = =

Fig. 1 The target 2M reliability index based on the third moment method
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The standardized variable zu can be expressed as a third order polynomial function of the standard

normal variable u (Fleishman 1978) as follows.

(21)

where a1, a2, a3, and a4 are the polynomial coefficients that can be obtained by making the first four

moments of the right side of Eq. (21) equal to those of the left side (Zhao and Lu 2008). 

Eq. (21) is simple if the coefficients a1, a2, a3, and a4 are known. However, the determination of

the four coefficients is not easy, since the solution of nonlinear equations has to be solved

(Fleishman 1978). In order to avoid this difficulty, Eq. (21) can be simplified by the fourth moment

standardization functions (Zhao and Lu 2007a), of which Eq. (21) can be expressed as

(22)

where S(u) denotes the third polynomial of u; the coefficients l1, k1, and k2 are given as

, (23a)

, (23b)

where α4G is the 4th dimensionless central moment, i.e., the kurtosis of G(X), and is calculated

from 

(24)

where α4G and α4Si are the kurtosis of R and Si, respectively.

Substituting Eq. (22) in Eq. (20), one obtains 

(25)

Suppose the inverse function of S is 

(26)

According to Eq. (25) and Eq. (26), it is not difficult to obtain

 (27)

Therefore, the reliability index is expressed as

 (28)

Substituting Eq. (28) in the design format described in Eq. (3) leads to

 (29)

and which 

(30)

Denoting the right side of Eq. (30) as β2T, one obtains
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 (31a)

 (31b)

As described in the previous section, Eq. (31a) is the same as Eq. (3) implying that if the second

moment reliability index β2M is at least equal to β2T, the reliability index β will be at least equal to

the target reliability index βT, and the required reliability is satisfied. Therefore, β2T is denoted as the

target second moment reliability index.

Since Eq. (31a) is the same as Eq. (4) except that the right side is β2T, the load and resistance

factors corresponding to Eq. (31a) can be easily obtained by substituting βT in the right side of

Eq. (4) with β2T. The design formula is essentially the same as Eq. (17) and the load and resistance

factors are essentially the same as Eq. (18).

Especially for the case of α4G = 3, it can be derived that h4 = 0, , and Eq. (31b)

becomes

 (32)

β2M β2T≥

β2T l1 k1βT l1βT

2
– k2βT

3
+ +=

h3

1

6
---α3G=

β2T k1βT
1

6
---α3G βT

2
1–( )–=

Fig. 2 The Target 2M reliability index based on the fourth moment method
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When the value of α3G is small enough, , then Eq. (32) becomes

essentially the same as Eq. (16) based on the third moment method.

When α4G = 3 and α3G = 0, l1, l2, k1, and k2 will be obtained as l1 = l2 = k2 = 0 and k1 = 1, and

thus β2T = βT. Then, Eq. (31a) becomes the same as Eq. (4), and the load and resistance factors can

be determined using Eq. (7) and Eq. (8).

The variations of the target second moment reliability index β2T with respect to the target

reliability index βT are shown in Fig. 2(a) in the case of α3G = 0, and in Figs. 2(b), (c), and (d) in

the cases of α4G = 2.8, α4G = 3.0, and α4G = 3.2, respectively. From these figures, one can see that

β2T is generally larger than βT for negative α3G and smaller than βT for positive α3G. One can also

see that β2T is generally larger than βT for α4G > 3.0 and smaller than βT for positive α4G < 3.0.

4. Determination of the mean resistance 

4.1 The iteration method

Since the load and resistance factors are determined when the reliability index is equal to the

target reliability index, the mean value of the resistance should be determined under this condition

(hereafter referred to as the target mean resistance). Generally, the target mean resistance is

computed using the following iteration equation.

 (33)

where µRk and µRk-1 are the kth and (k-1)th iteration value of the mean value of resistance; βk−1 is the

(k-1)th iteration value of the third or fourth moment reliability index.

4.2 Simple formulas for the target mean resistance

The following simple formula is proposed to avoid the iterative computations of the target mean

resistance

(34)

where µRT = the target mean resistance; σG0 = the standard deviation of G(X) and β2T0 = the target

2M reliability index, which are obtained using µR0. 

µR0 is given by the following equation, which is obtained from try and error 

(35)

The steps for determining the load and resistance factors using the fourth moment method are as

follows:

(1) Calculate µR0 using the Eq. (35).

(2) Calculate σG0, α3G0, α4G0, and β2T0 using Eq. (5), Eq. (13), Eq. (24), and Eq. (31b),

respectively, and determine µRT with the aid of Eq. (34).

(3) Calculate σG, α3G, α4G, and β2T using Eq. (5), Eq. (13), Eq. (24), and Eq. (31b), respectively,

and calculate αR and αSi with the aid of Eq. (8).

(4) Determine the load and resistance factors using Eq. (18).

k1 1/ 1 α3G

2
/36+( ) 1≈=

µRk µRk 1– βT βk 1––( )σG+=

µRT ΣµSi β2T
0
σG

0
+=

µR
0

ΣµSi βT

3.3ΣσSi

2
+=
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4.3 The efficiency of the simple formula

In order to investigate the efficiency of the proposed simple formula in the fourth moment

method, several cases under different conditions are examined.

Case 1: Consider the following performance function

 (36)

where

R = resistance, with unknown probability density function (PDF), µR/Rn = 1.1, V = 0.15, α3R =

0.453, α4R = 3.368;

D = dead load, with unknown PDF, µD/Dn = 1, V = 0.1, α3D = 0.0, α4D = 3.0;

L = live load, with unknown PDF, µL/Ln = 0.45, V = 0.4, α3L = 1.264,  α4L = 5.969; and S = snow

load, with unknown PDF, µS/Sn = 0.47, V = 0.25, α3S = 1.140, α4S = 5.4.

G X( ) R D L S+ +( )–=

Fig. 3 Figure for case 1



28 Zhao-Hui Lu, Yan-Gang Zhao and Alfredo H-S. Ang

Consider the mean value of D, L with µD = 1.0, µL/µD = 0.5, the load and resistance factors

obtained using the simple formula are illustrated in Figs. 3(a)-(c), compared with the corresponding

factors obtained using iterative calculations of the fourth moment for βT = 2.0, 3.0, and 4.0. The

target mean resistances obtained using the simple formula and those obtained using iterative

calculations are illustrated in Fig. 3(d). It can be observed from Fig. 3 that the load and resistance

factors and the target mean resistances obtained by the two methods are essentially the same for a

given target reliability index. 

Case 2: Consider the following performance function

 (37)

where

R = resistance, with unknown PDF, µR/Rn = 1.1, V = 0.15, α3R = 0.453, α4R = 3.368;

D = dead load, with unknown PDF, µD/Dn = 1, V = 0.1, α3D = 0.0, α4D = 3.0;

G X( ) R D L S W+ + +( )–=

Fig. 4 Figure for case 2
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L = live load, with unknown PDF, µL/Ln = 0.45, V = 0.4, α3L = 1.264, α4L = 5.969;

S = snow load, with unknown PDF, µS/Sn = 0.47, V = 0.25, α3L = 1.140, α4S = 5.4; and 

W = wind load, with unknown PDF, with µW/Wn= 0.6, V = 0.2, α3W = 1.140, α4W = 5.4.

Consider the mean value of D, L, and S with µD =1.0, µL/µD = 0.5, µS/µD = 0.5, the load and

resistance factors obtained using the simple formula are illustrated in Figs. 4(a)-(c), compared with

the corresponding factors obtained using iterative calculations of the fourth moments for βT = 2.0,

3.0, and 4.0. The target mean resistances obtained using the two methods are illustrated in Fig. 4(d).

As can be observed from Fig. 4, the load and resistance factors and the target mean resistances

obtained by the simple formula are quite satisfactory.

5. Investigations and discussion of the proposed method for LRFD 

5.1 LRFD including random variables with unknown PDFs

Consider the statically indeterminate beam shown in Fig. 5, where the beam is loaded with three

uniformly distributed loads, i.e., the dead load (D), live load (L), and snow load (S), in which the

snow load is the dominating load and is time-dependent. The probabilistic member strength and

loads are listed in Table 1. It is assumed that the design working life is 50 years.

The limit state function for the beam can be expressed as

(38)

where MP is the resistance; MD = (Dl2)/12, ML = (Ll2)/12, and MS = (Sl2)/12 are the load effects of D,

L, and S, respectively.

The objective is to determine the load and resistance factors for the performance function of Eq.

(38) in order to achieve a reliability of βT = 3.5. 

Since the PDFs of D and L are unknown, the method of FORM is not feasible. Here, the load and

resistance factors are obtained using the method of moments.

Because S is a Gumbel random variable, the probability distribution of the maximum S during 50

G X( ) MP MD ML MS+ +( )–=

Fig. 5 A statically indeterminate beam

Table 1 Basic random variables for Ex. 1

R or Si PDF Mean/Nominal Mean Vi α3i α4i

D Unknown µD/Dn = 1.0 µD 0.05 0.0 3.0

L Unknown µL/Ln = 0.45 0.3µD 0.4 1.264 6.907

S Gumbel µS/Sn = 0.47 1.25µD 0.35 1.140 5.4

Mp Lognormal µMp/Mpn = 1.0 µMp 0.1 0.301 3.162
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years is also the Gumbel distribution (Melchers 1999). The values of mean, mean/nominal,

coefficient of variation, skewness, and kurtosis corresponding to the maximum snow load over 50

years are readily obtained as: µS50 = 2.585µD, µS50/Sn = 0.972, VS50 = 0.169, α3S50 = 1.140, and α4S50 =

5.4.

According to Eq. (35), Eq.(5), and Eq. (13), 

,

The load and resistances can be determined using the third moment method:

After αG0 is obtained, β2T0 can be computed by Eq. (16)

The target mean resistance µMpT can be estimated with the aid of Eq. (34)

 

Then, with the aid of Eq. (5), Eq. (13), and Eq. (16), σG, α3G, and β2T can be obtained as

 and

Calculate αMp and αSi with the aid of Eq. (8)

Determine the load and resistance factors using Eq. (18), obtaining

Then, the LRFD format and the target mean resistance for this example using the third moment

method are obtained as

where MDn= (Dnl
2)/12, MLn= (Lnl

2)/12, and MSn= (Snl
2)/12.

As for the fourth moment method, the calculation process is illustrated as follows:

µG0, σG0, and α3G0 are determined, α4G0 and β2T0 can be obtained using Eqs. (24) and (31b),

respectively,

µMp0
ΣµMSi

βT

3.3ΣσMSi

2
7.556µMD

=+= µMD
µDl

2( )/12=

σG0 σMp0

2 ΣσMSi

2
+ 0.599µMD

= =

α3G0

1

σG0

3
-------- α3Mp

σMp0

3 Σα3MSi
σMSi

3
–( ) 0.417–= =

β2T0 βT
1

6
---α3G0 βT

2
1–( )– 4.283= =

µMpT ΣµMSi
β2T

0
σG

0
+ 6.449µMD

= =

σG 0.565µMD
α3G 0.512,–=,= β2T 4.46=

αMp
σMp

/σG 0.570, αMD
σMD

/σG 0.177= == =

αML
σML

/σG 0.212, αMS50
σMS50

/σG 0.774= == =

φ µMp
1 αMp

VMp
β2T–( )/Rn 0.873= =

γMD
µMD

1 αMD
VMD

β2T+( )/Dn 1.079= =

γML µML 1 αMLVMLβ2T+( )/Ln 0.620= =

γMS50
µMS50

1 αMS50
VMS50

β2T+( )/Sn 1.540==

0.87MPn 1.08MDn 0.62MLn 1.54MSn+ +≥

µMp 6.42µMD≥
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The target mean resistance µMpT can be estimated with the aid of Eq. (34)

Then, with the aid of Eq. (5), Eq. (13), Eq. (24), and Eq. (31b), σG, α3G, α4G, and β2T can be

obtained as

Calculate αMp and αMSi with the aid of Eq. (8)

Determine the load and resistance factors using Eq. (18)

Finally, the LRFD format and the target mean resistance for this example using the fourth moment

method are obtained as 

The results obtained using the Monte-Carlo Simulation (MCS) method (Melchers 1999, Schueller

2009) with 1,000,000 samples (the COV of MCS estimate is 6.5%) is as follows:

As can be seen from the design results, the target mean resistance obtained by the fourth moment

method is in close agreement with that of MCS.

5.2 Sectional design for a simple non-linear case

Consider the following nonlinear performance function of the fully plastic flexural capacity of a

steel beam section

 (39)

where

Y = the yield strength of steel, a lognormal variable.

Z = section modulus of the section, a lognormal variable.

M = the applied bending moment at the pertinent section, a Gumbel variable.

Determine the mean design section modulus for the performance function of Eq. (39), in order to

achieve a reliability of βT = 2.5.

The purpose of this design problem is to determine the appropriate µZ for any given µM to satisfy

the required reliability. Assume a mean value of Y to be µY = 276 Mpa and the coefficients of

variation of Y, Z, and M are VY = 0.1, VZ = 0.05, and VM = 0.3, respectively. We determine the

α4G0 3.695=

l20 0.0168, l10 0.0631, k10– 0.946, k20 0.0167= = = =

β2T0 l10 k10βT l10βT

2
– k20βT

3
+ + 4.736= =

µMpT ΣµMSi
β2T

0
σG

0
+ 6.72µMD

= =

σG 0.573µMD
, α3G 0.488, α4G– 3.824, β2T 4.889= = = =

αMp
0.582, αMD

0.174, αML
= 0.209, and αMS50

0.763= = =

φ 0.86, γMD
1.09, γML 0.63, γMS50

1.59= = = =

0.86MPn 1.09MDn 0.63MLn 1.59MSn+ +≥

µMp 6.67µMD≥

µMp 6.74µMD≥

G X( ) YZ M–=
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required design section as follows.

First, to calculate the value of µZ0

 

Let R = YZ, then

Therefore

The skewness of Y, Z, and M are readily obtained as

The skewness of R can be obtained by

Thus

The kurtosis of Y, Z, and M are readily obtained as

The kurtosis of R can be obtained by

therefore

and then

Therefore, at the limit state, the appropriate µZT obtained by using the fourth moment method is

shown as follows.

At the limit state, the design results of µZT using the third moment method and FORM are

obtained as 0.0077µM and 0.0079µM, respectively. The result obtained using Monte-Carlo Simulation

(MCS) with 1,000,000 samples (the COV of MCS estimate is 1.3%) is 0.0079µM. One can see that

µG µYµZ
0

µM– βT

3.3
σM

2
= =

µZ
0

βT

3.3
σM

2
µM+( )/µY 8.555 10

3–
µM×= =

σR
0

σYZ
0

µYµZ
0

( )2 1 VY

2
+( ) 1 VZ

2
+( ) 1–[ ] 0.2642µM= = =

σG
0

σR0

2
σM

2
+ 0.3997µM= =

α3Y 0.301, α3Z 0.150, α3M 1.14= = =

α3R
0

α3YZ
0

0.3371= =

α3G
0

α3R
0
σR

0

3
α3MσM

3
–( )[ ]/σG

0

3
0.3846–= =

α4Y 3.162, α4Z 3.04, α4M 5.4= = =

α4R
0

α4YZ
0

3.203= =

α4G
0

α4R
0
σR

0

4
α4MσM

4
6σR

0

2
σM

2
+ +( )/σG

0

4
3.800= =

l20 0.0211, l10 0.0569– , k10 0.9341, k20 0.0209= = = =

β2T0 l10 k10βT l10βT

2
– k20βT

3
+ + 2.961= =

µZT µM β2T0σσ
0

+{ }/µY 0.0079µM= =
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the same results are obtained by the present fourth moment method, FORM, and MCS method.

From the numerical examples, one can see that the present method needs neither iterative

computations of derivatives nor any design points. The designers or users can easily produce a

reliability-based design with the aid of the present method. 

5.3 Comparison with FORM

Consider the following performance function

(40)

where

R = resistance, a lognormal variable with µR/Rn = 1.1, V = 0.15;

D = dead load, a normal variable with, µD/Dn = 1, V = 0.1;

L = live load, a lognormal variable with µL/Ln = 0.45, V = 0.4;

S = snow load, a Gumbel variable with µS /Sn = 0.47, V = 0.25; and

W = wind load, a Gumbel variable with µW /Wn = 0.6, V = 0.2.

Consider the mean value of D, L, S, and W with µD = 1.0, µL/µD = 0.5, µS/µD = 2.0, µW/µD = 2.0. 

G X( ) R D L S W+ + +( )–=

Fig. 6 Comparisons of LRFD determined by FORM, the third moment method, and the fourth moment
method
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The load and resistance factors and the target mean resistances obtained using the fourth moment

method and those obtained by the third moment method and FORM are illustrated in Figs. 6(a) and

(b), respectively. The applicable range of the third moment method (Zhao et al. 2006) and the

fourth moment method (Zhao and Lu 2007b) are illustrated in Figs. 6(c) and (d), respectively. The

iterantion numbers of FORM for LRFD changed with the target reliability index (illustrated in the

cases of βT = 1.0, 1.25, 1.50, 1.75, 2.0, 2.25, 2.50, 2.75, 3.0, 3.25, 3.50, 3.75, 4.0, 4.25, 4.50) are

given in Table 2. From Fig. 6 and Table 2, one can observe the following:

(1) Although the load and resistance factors obtained by the method of moments are different

from those obtained by FORM, the target mean resistances obtained by both methods are

essentially the same. This can be explained by that the different combinations of load and

resistances factors can result in the same design results, while the set of factors obtained by

the proposed methods may be different from the one determined by FORM since the formulae

for load and resistances factors [i.e., Eq. (10) and Eqs. (18a) and (18b)] are different between

the two methods. Therefore, in design practice, if the resistance factors determined by either

of the method are adopted, the corresponding load factors (i.e., determined by the same

method as the one used to estimate the resistance factors) should be used.

(2) When βT > 3.0, the third moment method will give unconcervative results, this is because the

skewness exceeds the range of the third moment method.

(3) The target mean resistances obtained using the fourth moment method are in close agreement

with those of FORM over the entire range since the skewness is within the range of the fourth

moment method. 

(4) The derivative-based iteration numbers of FORM for LRFD varied from 8 to 20 as the target

reliability index changed from 1.0 to 4.50. While the iteration computation is avoided in the

proposed methods. For this reason, the proposed method is simpler to be used.

5.4 Two simple parabolic limit state functions

Consider the following two parabolic performance functions

(41a)

(41b)

in which X1 is a normal random variable with the mean and coefficient of variation of 10 and 0.1;

X2 is also a random variable with the coefficient of variation of 0.7. For a given target reliability

index of βT = 2.0, determine the mean value of X2.

For the performance function of Eq. (41a), using FORM, the mean value of X2 is obtained as: µX2 =

4.17 with corresponding design points of (10, 10) in X space; whereas using the fourth moment

method and the MCS method with 100,000 samples (the COV of MCS estimate of 2.07%), the

mean values of X2 are obtained as 4.43 and 4.44, respectively. As can be observed from the results,

G X( ) 10 X1 10–( )2 X2–+=

G X( ) 10 X1 10–( )2 X2––=

Table 2 Iteration numbers of FORM for LRFD

βT 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50

Iteration 
numbers

8 9 9 10 11 11 12 13 14 14 15 16 18 19 20



Estimation of load and resistance factors based on the fourth moment method 35

FORM provides inaccurate result for this performance function, whereas the result of the present

method is in close agreement with that of MCS.

For the performance function expressed in Eq. (41b), because this is a typical function with

multiple design points when using FORM, FORM cannot solve this simple problem; whereas using

the fourth moment method and the MCS method with 100,000 samples (the COV of MCS estimate

is 2.07%), the mean values of X2 are obtained as 3.16 and 3.20, respectively. 

6. Conclusions

1. A method for the determination of load and resistance factors for reliability-based structural

design using the fourth moment method is proposed and a simple formula for the target mean

resistance is also proposed to avoid iteration computation. Derivative-based iteration, which is

necessary in FORM, is demonstrated to be not necessary in the proposed method. The proposed

method is therefore much easier to apply. 

2. Although the load and resistance factors obtained by the proposed method may be different

from those obtained by FORM, in general, the target mean resistances obtained by both methods are

essentially the same. Therefore, in design practice, if the resistance factors determined by either of

the method are adopted, the corresponding load factors (i.e., determined by the same method as the

one used to estimate the resistance factors) should be used.

3. Since the proposed method is based on the first four moments of the basic random variables,

the load and resistances factors can be determined even when the PDFs of the random variables are

unknown.

4. The fourth moment method generally provides better results than the third moment method.
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