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Abstract. A numerical procedure for the geometrical and material nonlinear analysis of concrete beams
prestressed with external tendons is described, where the effects of external prestressing are treated as the
equivalent loads applied on the concrete beams. The geometrical nonlinearity is considered not only the
eccentricity variations of external tendons (second-order effects) but also the large displacement effects of
the structure. The numerical method can predict the nonlinear response of externally prestressed concrete
beams throughout the entire loading history with considerable accuracy. An evaluation of second-order
effects of externally prestressed concrete beams is carried out using the proposed analysis. The analysis
shows that the second-order effects have significant influence on the response characteristics of externally
prestressed concrete beams. They lead to inferior ultimate load and strength capacities and a lower
ultimate stress increase in tendons. Based on the current analysis, it is recommended that, for simply-
supported externally prestressed beams with straight horizontal tendons, one deviator at midspan instead of
two deviators at one-third span be furnished to minimize these effects.

Keywords: external tendons; prestressed concrete beams; second-order effects; response; numerical
analysis.

1. Introduction

In an externally prestressed concrete beam, the prestressing tendons are integrated into the

concrete beam through end anchorages and deviator points; thus the tendons between adjacent

anchorages and/or deviators remain rectilinear throughout the whole loading history. When the beam

deforms under external loads, the eccentricities or effective depths of external tendons except at the

points of anchorages and deviators would change, causing what is referred to as second-order

effects (Harajli et al. 1999). The second-order effects are one of the most important features of

externally prestressed concrete beams, since they make the beams have different response

characteristics and strength capacities from the ones with internal tendons, hence bringing new

issues for the analysis and design of these structures. It is necessary to carry out an in-depth

investigation of the second-order effects to well understand this important feature inherent in

external tendon systems.
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Many experimental researches on the behavior of beams with external prestressing have been

carried out, including the recent works by Chen et al. (2009) and Ahn et al. (2010), and great

achievements have already been obtained. However, laboratory experiments have their limitations

such as high cost and limited number and size of the specimens. These limitations could be well

overcome by the numerical analysis.

Analysis of externally prestresed concrete beams is considerably complicated due to the

eccentricity variations of external tendons (second-order effects) and the strain incompatibility

between the external tendons and the adjacent concrete. Over the last two decades, a number of

models (Alkhairi and Naaman 1993, Ariyawardena and Ghali 2002, Aziz et al. 2005, El-Ariss 2004,

Ng and Tan 2006, Pisani 2005, Ramos and Aparicio 1996) for nonlinear analysis of externally

prestressed concrete beams have been developed, where the geometrical nonlinearity was taken into

account by the variations in the tendon eccentricity. For slender beams such the ones used for

externally prestressed concrete beams, the nonlinear geometrical effects (large displacement effects)

of the structure play also an important role in the member behavior. Dall’Asta et al. (1996, 2007)

and Zona et al. (2008) presented a set of works that include the nonlinear geometrical behavior of

the structure in the analysis of beams prestressed with external tendons. So far, however, few of the

available models have been used to investigate the behavior of beams prestressed with external

tendons.

In this study, a numerical procedure for the geometrical and material nonlinear analysis of

concrete beams prestressed with external tendon is described, where the geometrical nonlinearity is

considered not only the variations in the eccentricity of external tendons but also the large

displacement effects of the structure. A parametric evaluation is then conducted by the proposed

analysis to increase the depth of understanding of second-order effects of externally prestressed

concrete beams.

2. Numerical procedure

2.1 Finite element formulation

Consider a beam element which are defined in the local coordinate system (x, y), as shown in Fig. 1.

Assuming that a plane section remains plane after bending and that the shear deformation is

negligible, the axial strain ε at any fibre of a concrete section is defined by 
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Fig. 1 Contribution of the external tendon segment to the beam element
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where u and v are axial and transverse displacements, respectively; and the second term of the right

side represents the large displacement effects.

Assuming u is a linear function and v is a cubic polynomial function of x, and applying the

principle of virtual work, the following element equilibrium equation can be determined (Lou and

Xiang 2006)

 (2)

where  is the element equivalent nodal loads; ue is the element nodal displacements; and  is

the element tangent stiffness matrix which, based on the Total Lagrangian description, consists of

three components, namely, the material stiffness matrix, the geometrical stiffness matrix and the

large displacement stiffness matrix. If the Updated Lagrangian description is used, only two

components of the stiffness matrix, the material stiffness matrix and the geometrical stiffness matrix,

would be considered. 

2.2 Contribution of external prestressing

The external tendon can be considered as an assemblage of a series of tendon segments each of

which spans a beam element, as shown in Fig. 1, in which ei and ej are the tendon eccentricities at

element nodes i and j, respectively. For externally prestressed concrete beams, the eccentricities ei
and ej change with increasing member deformation, except at anchorages and deviators. The

location of each tendon segment determined in terms of the current nodal displacements at

anchorages and deviators, together with the nodal displacements of the beam element are used to

update the eccentricities ei and ej, thus allowing the second-order effects of externally prestressed

concrete beams to be considered in the numerical procedure.

For each step, the current tendon strain increment calculated by the elongation ratio of the entire

tendon is added to the previous total to obtain the current tendon strain. The current tendon stress is

then obtained by using the stress-strain relationship for the prestressing steel. Once the force in

external tendons is determined, its contribution to the beam element can be conveniently obtained

by converting the tensile force Npc into equivalent nodal loads (Lou and Xiang 2006), as shown in

Fig. 1.

2.3 Implementation

The member tangent equilibrium equations are assembled in the global coordinate system, which

is fixed in space, from the contributions of all the elements. After imposing appropriate boundary

conditions, the entire nonlinear equilibrium path for the structure is traced by an updated normal

plane arc-length solution technique (Lam and Morley 1992). This solution algorithm deals well with

the changes of response such as cracking, yielding and crushing, and it can easily proceed past the

possible limit points during the loading history.

In a numerical analysis, the concrete beam is divided into a number of beam elements

interconnected by nodes. The spacing between adjacent nodes relies on several factors such as load

geometry and deviator configurations. In general, a spacing of one to two times the beam depth can

be used. The cross section of a beam element is subdivided into discrete layers to include varied

material properties. The layer number is dependent on the section shape and analysis precision
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required. Generally, 10, 12 and 16 layers can be respectively used in a typical analysis for

rectangular, T and double-T sections.

The nonlinear stress-strain relationships for concrete in compression (Hognestad 1951) and in

tension (Kwak and Kim 2002), prestressing steel (Menegotto and Pinto 1973) and ordinary

reinforcement (elasto-perfectly plastic behavior) as selected by Lou and Xiang (2006) are adopted

here in this study.

The proposed numerical method has been validated by different experimental tests available in the

literature. The comparisons between numerical predictions and experimental results of the entire

load-deflection response and moment versus stress increase in external tendons for some beam

specimens can be seen in Lou and Xiang (2006), and they showed good agreement.

3. Evaluation of second-order effects

Simply-supported prestressed concrete beams with straight horizontal tendons having an initial

eccentricity of 200 mm all along the span, as shown in Fig. 2, are used for the analysis to evaluate

the second-order effects of externally prestressed beams. Three different deviator configurations are

chosen: no deviators, one deviator at midspan and two deviators at one-third span. Besides, a

corresponding unbonded internally prestressed concrete beam is also used for comparison. The

beams are of a rectangular section with 300 mm wide and 600 mm depth and with tendon area Ap,

ordinary tension reinforcement area As and ordinary compression reinforcement area As
' ,

respectively, of 500, 720 and 360 mm2. The effective depths of ordinary tension and compression

reinforcement are equal to 565 and 35 mm, respectively. The material properties are as follows: the

concrete cylinder compressive strength and elastic modulus are of 40.0 MPa and 36.3 GPa,

respectively; the yield strength and elastic modulus of ordinary reinforcement are of 450 MPa and

200 GPa, respectively; and the ultimate tensile strength and elastic modulus of prestressing steel

Fig. 2 Details of externally prestressed concrete beams used for second-order effect analysis
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tendons are of 1860 MPa and 195 GPa, respectively. The effective prestress in external tendons is

taken as 1120 MPa.

Two levels of span-depth ratio L/dp (ratio of the span length to the initial tendon depth) are

selected. In addition to a usual span-depth ratio of 20, a span-depth ratio of as large as 32 is also

selected to illustrate more clearly the significant influence of second-order effects on the flexural

behavior of very slender externally prestressed concrete beams and to further demonstrate a

reasonable measure for minimizing the second-order effects. Two types of load application, single

concentrated load and uniform load, are used in the analysis.

3.1 Eccentricities of external tendons

Prior to the analysis, it is necessary to designate a reference state corresponding to the effective

prestress fpe in tendons. There are two different reference states frequently used: one is the

equilibrium state of the beam under combined effective prestressing and self-weight, and the other

is the state of self-equilibrium of the beam under the effects of effective prestressing, not

considering the self-weight effects. Since the self-weight is always existent, the first one is more

practical and is selected in this study.

The eccentricities of external tendons, at the reference state under effective prestressing and self-

weight, along the beam span for span-depth ratios of 20 and 32 are plotted in Figs. 3(a) and (b),

respectively (only half span plotted due to symmetry). It is seen from Fig. 3(a) that at the reference

state, for a span-depth ratio of 20, eccentricities of the tendons, particularly of the tendons with no

deviators, have a certain increase from the initial eccentricity of 200 mm, leading to more pre-

compressive stresses in the concrete. Therefore, at this state, the second-order effects would play a

positive role on the behavior of externally prestressed concrete beams with a normal span-depth

ratio. However, for a span-depth ratio of 32, the effects of self-weight become more important, and

may be larger than those of effective prestressing, resulting in a reduction in tendon eccentricities

near the critical regions, as shown in Fig. 3(b). For comparison, the variations in tendon

eccentricities along the span at another reference state (under effective prestressing) are also plotted

Fig. 3 Tendon eccentricities along the span at the reference state (a) span-depth ratio of 20, (b) span-depth
ratio of 32
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in Fig. 3. Due to not considering the effects of self-weight, much larger tendon eccentricities are

rendered as compared to the reference state selected in this study.

Figs. 4(a) and (b) present the tendon eccentricities at the ultimate limit state for span-depth ratios

of 20 and 32, respectively. From Fig. 4, it is seen that, due to a larger ultimate deflection developed,

the second-order effects for a uniform load is more serious than that for a single concentrated load.

In addition, the figure shows how significant the second-order effects exist in the beams without

deviators: for a span-depth ratio of 20, the tendon eccentricities at the midspan section reduce

remarkably from an initial eccentricity of 200 mm to 91.7 mm for a single concentrated load and to

78.0 mm for a uniform load, while for a span-depth ratio of 32, the tendon eccentricities are sharply

reduced even to negative values of −93.5 mm and −110.6 mm for single concentrated load and

uniform load, respectively. It can also be seen in Fig. 4 that providing one or two deviators can

effectively diminish the second-order effects. However, the eccentricity variation mode of tendons

with one deviator is quite different from that of tendons with two deviators, resulting in different

influences of second-order effects for these two deviator configurations. On the one hand, although

tendons with one deviator register a larger reduction in eccentricities along most of the span, their

eccentricity variations are not serious at the critical regions around the midspan. On the other hand,

for tendons with two deviators, although the eccentricity variations can be negligible at the regions

between each end support and 1/3 span, the reduction in eccentricities is much more significant

around the midspan section. Since the beams are crushed at the midspan section, it may be

concluded that, for minimizing the second-order effects of a prestressed concrete beam with external

straight horizontal tendons, providing one deviator at midspan is more effective than providing two

deviators at one-third span. This conclusion will be further verified by the nonlinear response

characteristics of the beams as illustrated below.

3.2 Load (moment)-deflection response

Figs. 5(a) and (b) show the load (moment)-deflection response of externally prestressed concrete

beams with span-depth ratios of 20 and 32, respectively, where the live moment refers to the

Fig. 4 Tendon eccentricities along the span at the ultimate limit state (a) span-depth ratio of 20, (b) span-
depth ratio of 32
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midspan moment caused by the live load. It can be seen from this figure that prior to the beam

collapse followed by a sudden drop of the applied load due to the crushing of the concrete at the

critical section, the beams experience almost three straight-stage behaviors with transitions at

cracking and yielding points, respectively. Once the beams are loaded to be cracked, the beam

stiffness is reduced considerably. Thereafter, the deflection increases rapidly with increasing load up

to the yielding of ordinary tension reinforcement. After that, the beam stiffness becomes very weak,

accompanying with a sharp increase in deflection until failure.

For a given span-depth ratio and load application, comparing the responses of beams with

different deviators, it is seen that the load (moment)-deflection responses for all three deviator

configurations are largely identical up to the cracking load. Beyond that, tendons without deviators

register larger beam deflection at any load level than do the other two deviator configurations,

tendons with one deviator at midspan and with two deviators at one-third span, which exhibit

almost identical response characteristics up to the yielding load. After the yielding of ordinary

tension reinforcement, negative stiffness occurs in the beam without any deviators, that is, the load

Fig. 5 Load (moment)-deflection response (a) span-depth ratio of 20, (b) span-depth ratio of 32
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(moment) decreases with continuously increasing deflection. This response characteristic is

particularly significant for the beam with a span-depth ratio of 32, as can be seen in Fig. 5(b). Also,

because two deviators are not placed at the section of the maximum deflection, the beam with two

deviators at one-third span mobilizes more significant second-order effects than the beam with one

deviator at midspan does.

The corresponding entire load (moment)-deflection responses of unbonded internally prestressed

concrete beams are also plotted in the figure for comparisons. They are almost identical to the

responses of the externally prestressed concrete beam with one deviator. This indicates that for

externally prestressed concrete beams with straight horizontal tendon profile, as long as one deviator

is provided at the section of the maximum deflection, the second-order effects of the beams can be

negligible even for a span-depth ratio of as large as 32.

At the ultimate limit state, it can be seen that the second-order effects, associated with the

reduction in the tendon eccentricities, seems to have little influence on the ultimate beam deflection,

but it leads to much lower ultimate load-carrying capacity of the beams, particularly of the very

slender beam. It is suggested that one deviator at midspan instead of two deviators at one-third

span, as discussed above, be used to minimize the second-order effects. In this analysis, with

provision of a deviator at the critical section, the ultimate single concentrated load and uniform load

increase by 23.2% and 27.5%, respectively, for a span-depth ratio of 20, and by 156.1% and

187.8%, respectively, for a span-depth ratio of 32, as compared to the cases of a beam without

deviators.

From Fig. 5, it can also be seen that, besides the span-depth parameter, the load type parameter

also has an important influence on the deflection development, and hence on the degree of second-

order effects. Compared to a single concentrated load, a uniform load registers a larger beam

deflection due to a larger length of plastic zone developed at the ultimate limit state, leading to

relatively more serious second-order effects if they are not minimized by furnishing one deviator at

midspan.

3.3 Response of load (moment) versus stress increase in tendons

Figs. 6(a) and (b) present the response characteristics of stress increase in tendons above the

effective stress with increasing load (moment) for externally prestressed concrete beams having

span-depth ratios of 20 and 32, respectively.

It is seen in this figure that, similar to the load (moment)-deflection response, the response

characteristics of stress increase in tendons also consist of three different stages, attributed to that

either concrete cracking or ordinary reinforcement yielding leads to much more stress increase in

tendons to resist the applied load (moment). For a given span-depth ratio and load application, prior

to cracking, all beams exhibit the same response, indicating at this stage the second-order effects are

negligible. After cracking, the second-order effects of the beam without deviators become more and

more important, leading to a larger increase in tendons at a given load (moment) as compared to the

beams with deviators, of which the second-order effects are still insignificant. When the ordinary

tension reinforcement reaches its yield point, the stress in tendons without any deviators rapidly

increases with decreasing load (moment) due to the severe second-order effects, which are

extremely significant for the very slender beam. Meanwhile, the second-order effects of the beam

with two deviators are no longer negligible, resulting in a larger stress increase in tendons in

comparison with the beam with one deviator, whose response characteristics of stress increase in
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tendons are basically identical to the corresponding beam with internal unbonded tendons.

At the ultimate limit state, it can be seen in the figure that the second-order effects result in a

much less ultimate stress increase in external tendons, which, together with a smaller eccentricity in

tendons, would produce a much smaller resisting moment. Therefore, the second-order effects cause

an inferior ultimate moment capacity of the beams, particularly of the very slender beam as shown

in Fig. 6(b). It is also seen that the provision of one deviator at midspan can effectively minimize

the second-order effects, even for a span-depth ratio of as large as 32. In this analysis, providing

one deviator at the critical section of a beam without deviators, the ultimate live moment and stress

increase in tendons induced by the single concentrated load increase by 24.5% and 14.3%,

respectively, for a span-depth ratio of 20, and by 170.3% and 48.2%, respectively, for a span-depth

ratio of 32; and those induced by the uniform load increase by 29.3% and 17.1%, respectively, for a

span-depth ratio of 20, and by 207.3% and 66.4%, respectively, for a span-depth ratio of 32.

From Fig. 6, it can be seen that, because of a larger plastic zone length developed at ultimate, a

Fig. 6 Response of load (moment) versus tendon stress increase (a) span-depth ratio of 20, (b) span-depth
ratio of 32
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uniform load registers larger ultimate tendon stress increase than a single concentrated load does.

However, this difference is less obvious for tendons without deviators. This is attributed to that for

tendons without any deviators a uniform load results in more significant second-order effects which

would reduce more tendon stress. Combining Figs. 6(a) and (b), it is seen that the span-depth ratio

parameter hardly influences the ultimate tendon stress increase, provided that the second-order

effects are negligible by furnishing one deviator at the section of the maximum deflection. However,

if the second-order effects are not effectively minimized, a larger span-depth ratio would mobilize a

less ultimate tendon stress increase because of the influence of second-order effects.

3.4 Relationship between deflection and tendon stress increase

The relationship curves between the tendon stress increase and the midspan deflection for span-

depth ratios of 20 and 32 are shown in Figs. 7(a) and (b), respectively. It is observed in Fig. 7 that,

since the external prestresssing tendons are still at the elastic range at the ultimate limit state, the

stress increase in tendons is almost linear with the increase of midspan deflection throughout the

whole loading history. It can be also seen from Figs. 7(a) or (b) that, at a given post-cracking

deflection, the beam without deviators mobilizes a smaller tendon stress increase in comparison

with the beams with deviators due to the influence of second-order effects. Furthermore, after

yielding of ordinary reinforcement, the second-order effects of the beam with two deviators at one-

third span are no longer negligible as mentioned previously, causing a smaller tendon stress increase

as compared to the beam with one deviator at midspan, whose complete response is identical to that

of the corresponding unbonded internally prestressed concrete beam.

3.5 Stress in ordinary reinforcement

Figs. 8(a) and (b) show the load-ordinary reinforcement stress response for span-depth ratios of 20

and 32, respectively. It is seen that before the application of the live load, a certain level of

precompressive stress exists in the midspan ordinary tension reinforcement, with the magnitude

Fig. 7 Relationship curves between tendon stress increase and deflection (a) span-depth ratio of 20, (b) span-
depth ratio of 32
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depending on combined effects of the effective prestressing (producing precompressive stress) and

self-weight (producing tensile stress), as well as the variations in tendon eccentricities (second-order

effects). The stress in the reinforcement increases linearly with increasing load up to cracking of the

concrete and after that, the reinforcement stress increases more quickly up to its yield strength of

450 MPa, and from then on this stress would remain constant since the elasto-perfectly plastic

behavior is assumed for the ordinary reinforcement. It is also seen that before cracking, the curves

for the beams with different deviators are almost identical, which verify that in the elastic range, the

second-order effects are negligible. However, the second-order effects of the beam without deviators

become more and more significant after cracking, leading to larger stress in the ordinary

reinforcement at a particular level of loading as compared to the other beams.

4. Conclusions

A numerical procedure based on the nonlinear beam flexural theory is described, which is capable

of conduct the geometrical and material nonlinear analysis of prestressed concrete beams with

external tendons throughout the entire loading history. The geometrical nonlinearity considered in

the numerical procedure includes not only the eccentricity variations of external tendons (second-

order effects) but also the large displacement effects of the structure. A numerical investigation of

second-order effects is conducted using the proposed analysis to increase the understanding of this

important feature inherent in the external tendon system.

The second-order effects are the most important characteristic that distinguishes an external

tendon system from an internal unbonded one. If the second-order effects are negligible by proper

measures, the response of externally prestressed concrete beams is basically identical to that of

unbonded internally prestressed concrete beams. The analysis shows that the second-order effects

have significant influence on the response characteristics of externally prestressed concrete beams.

Under a particular level of loading, these effects lead to a larger beam deflection as well as larger

stresses in external tendons and in ordinary reinforcement. Due to these effects, the stiffness of

Fig. 8 Response of load versus ordinary reinforcement stress (a) span-depth ratio of 20, (b) span-depth ratio
of 32 
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beams without deviators may become negative after the yielding of ordinary tension reinforcement.

At failure, the second-order effects lead to much lower ultimate load and moment capacities of the

beams and a less ultimate stress increase in tendons, but they seem to have little influence on the

ultimate beam deflection. For simply-supported prestressed concrete beams with external straight

horizontal tendons as used in this study, response of a beam with one deviator at midspan is nearly

identical to that of a corresponding unbonded internally prestressed beam, indicating that the

provision of one deviator at the section of the maximum beam deflection can effectively minimize

the second-order effects even for a very slender beam.
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