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Abstract. This article provides a discussion of the mathematic modeling of connections for designing
and qualifying structures, systems, and components subject to monotonic or cyclic loading. To characterize
the force-deformation behavior of connections under monotonic loading, a review of the Ramberg-
Osgood, Richard-Abbott, and Menegotto-Pinto models is conducted, and it is shown that these nonlinear
functions can be mathematically derived by scaling up or down a linear force-deformation function. A
generalized four-parameter model for simulating connection behavior is investigated to facilitate nonlinear
regression analysis. In order to perform seismic analysis of frameworks, a hysteretic model accounting for
loading, unloading, and reloading is described using the established monotonic model. For preliminary
analysis, a method is provided to quickly determine the model parameters that fit approximately with the
observed data. To reach more accurate values of the parameters, the methods of nonlinear regression
analysis are investigated and the modified Levenberg-Marquardt and separable nonlinear least-square
algorithms are applied in determining the model parameters. Example case studies illustrate the procedure
for the computation through the use of experimental/analytical data taken form the literature.
Transformation of connection curves from the three-parameter model to the four-parameter model for
structural analysis is conducted based on the modeling of connections subject to fire.

Keywords: connection models; monotonic/cyclic loading; force-deformation relation; observed data;
nonlinear regression analysis.

1. Introduction

It has been recognized for a long time that connection effect may significantly influence the

response of the connected frameworks when beam-to-column or column-to-base connections are

assumed either rigid or pinned for simplifying analysis. In most situations, a connection may be

neither rigid nor pinned, and the semi-rigid (or partially restrained) behavior of the connection is

required being considered in structural design (AISC 2005, CEN 2005, CSA 2009). Generally,

moment-rotation connections in a frame play a more important role in resisting seismic loading

compared to axial/shear connections. Recent research, however, shows that the axial/shear

connections may be also important in preventing catenary failure or shear failure in extreme vertical

impact loading (Liu et al. 2008, Liu 2009, Liu et al. 2010). In principle, the models discussed

hereinafter can be applied for axial and/or shear connections once the corresponding analysis/test

results are obtained. For example, the experimental data for single-angle all-bolted connections
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(Gong 2009) and double-angle shear connections (Gong and Gillies 2008) may be used to establish

the modelling of shear-connections. Note that more work is needed to investigate the characteristics

of axial/shear failure of connections. The following discussion focuses on the modeling of moment-

rotation connections, and the ways briefly described below can achieve the connection models.

First, the most straightforward way is to conduct experiments to determine the moment-rotation

relationship. Many experimental results for specific connection configurations have been collected

in some data banks, such as those in the literature (Goverdham 1983, Kishi and Chen 1986, Xu

1994, Kishi et al. 2004). To facilitate structural analysis, empirical models have been proposed

using curve-fitting technique to fit these tested data. Among them the power model is the most

common one being used in practice. Although the linear model (Rathbun 1936) is still used to date

in the elastic analysis of frameworks because of its simplicity, nonlinear power models (Ramberg

and Osgood 1943, Menegotto and Pinto 1973, Richard and Abbott 1975, Frye and Morris 1975, Lui

and Chen 1986, Kishi and Chen 1986, Lee and Melchers 1986) can much more accurately simulate

the behaviour of semi-rigid connections. These models are applied in the computer-based nonlinear

analysis of semi-rigid frames. The parameters involved within each model were determined using

linear or nonlinear regression analysis to fit with experimental measurements. Recent experience

(Liu et al. 2008, Chen et al. 2010) shows that the dimensions of connection specimens in the

databanks or test reports are generally less than those expected for practical frames. Thus, structural

designers might have limitations to directly employ these connection data in their routine design

work except the selected connections are approximately matched with those specimens described in

the databanks. 

Second, the way based on empirical models may be more practical, where the model parameters

are determined by partial or complete theoretical analyses. For example, the three-parameter power

model has been used to simulate the moment-rotation relationship of single and double web angle

connections and top- and seat-angle connections (Kishi and Chen 1990). The parameters of nominal

moment capacity and initial rotational stiffness were obtained by analysis, while the shape

parameter was determined using the least-square curve fitting with experimental data. These

parameters may be also determined using finite element method of analysis. For example, the

parameters of simple power model were determined by parametrical study for extended end-plate

connections (Krishnamurthy et al. 1979). Based on Richard-Abbott model (1975), the inelastic finite

element analysis was conducted to investigate the behaviour of extended end-plate connections

(Sherbourne and Bahaari 1997). Analytical results are much dependant upon the selected

mechanical/mathematical models or element sizes that are used to simulate the behavior of the

connected components. Since some factors such as contact between components of a connection

remain unclear, the results from semi-analysis are fit with tested data but those from finite element

method may be verified with experimental results. 

Finally, the third way is referred to as component-based modeling of joints/connections, which can

be used to directly calculate the rotational stiffness, strength and capacity of either a bolted or

welded connection by analysis alone. The basic concept is taking such as column web panel in

shear, column flange, bolts, end-plate, beam flange and beam web in a joint as individual

components to establish an analytical model, and then the load-deformation relationship is derived

based on the deformed joint in equilibrium. This method is stipulated in Eurocode 3 Part 1-8 (CEN

2005) with guidelines for designing beam-to-column, beam-to-beam, and column-to-base joints.

More detailed information and application of the method are presented in the literature for modeling

flush-extended-end-plate joints (Zoetemijer 1983, Simões da Silva et al. 2004), angle-cleat joints
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(Jaspart 1997), and composite joints (Anderson 1998, Huber 2001, Barnett et al. 2001) for beam-to-

column connections. Regarding column-to-base connections, the component-based modeling is

presented in more detail in the literature (Wald 1998, Langdon and Schleyer 2004), where the

moment-axial-force interaction is taken into account.

Compared to the experimental or semi-experimental method, the merit of the component-based

method is that conducting analysis alone can establish the moment-rotation relationship upon using

the dominant components of the joint. The analysis results can be directly incorporated in the

analysis and design of simple, continuous and semi-continuous frameworks. In a framed structure,

beams and columns are the basic components, and their cross-sectional properties such as moments

of inertia and plastic moments are determined by pure analysis. When connections are also

considered as basic components of the frame, it is logically true that calculating the connection

properties such as elastic stiffness and moment capacity by analysis will facilitate the design of steel

frameworks with semi-rigid connections. Note that a connection or joint is extremely localized in a

structure, and the behavior of its components such as a bolt or endplate are considerably

complicated. Thus, the accuracy of the component-based method might require being calibrated

upon using more sophisticated analytical results and/or experimental data as performed in the

research work (Baniotopoulos and Wald 2000, Simões da Silva 2008). 

It is noted that the connection behavior discussed above is for the connections in the ambient

environmental conditions. Temperature effects of connections on semi-rigid steel frames are crucial

in the analysis accounting for fire loading. Particularly after the 911 event, the importance of

designing steel structures against fire hazards is addressed in the FEMA-403 (2002) document.

Testing results of steel beams in the elevating and cooling process indicate that the catenary action

on beam is significant (Li and Guo 2008), and such catenary effect might be an important failure

mode that causes progressive collapse through connection damage (Liu et al. 2010). The research

results for steel connections and bolts subjected to fire (Simões da Silva et al. 2005, Kirby 2005)

might be helpful to interpret the failure of WTC Building 7. Typical curves for moment-rotation

connections in ambient temperature are shown in Fig. 1(a), while the connection curves due to

elevated temperature are shown in Fig. 1(b). These curves can be obtained by either analyses or

experiments. Mathematic function/s should be selected to simulate these curves, and the connection

Fig. 1 Moment-rotation curves for connections
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modelling is established for the purpose of structural analysis. 

Once the connection models are defined by the specific parameters, these connections can be

incorporated in frameworks as components like beams and columns. It should be pointed out that

more advanced method of structural analysis has to be applied to predict the response of

displacements and internal forces. To perform such a nonlinear structural analysis, the method

applied to the progressive-collapse analysis of steel frameworks under abnormal loading may be

employed (Liu et al. 2010), where it highlights the importance of connection behavior to bridge

over local damage. When using this method, the connection stiffness should be derived using the

established connection model, and the end-fixity factors should be defined to characterize the

stiffness degradation behavior. In addition to the connection effect, the influence of structural

stability/buckling is also included in the analysis procedure (Liu and Xu 2005, Liu et al. 2008).

More detailed information accounting for semi-rigid connections with hybrid beam-column

members can be found in the recent research (Liu 2009). Another interested point may be that the

semi-rigid axial and shear connection models have been introduced in the nonlinear analysis method

aforementioned. 

This article discusses the connection models that are commonly applied in practice, the

relationship between them, and their physical/mathematical meaning. The characteristics of the

empirical power models are discussed at first, and then an extended four-parameter model is

proposed to simulate the behavior of connections. After presenting a simple analysis method to

estimate the model parameters, the methods of linear and nonlinear regression analyses on the basis

of the modified Levenberg-Marquardt and the separable nonlinear least-square methods are provided

to determine the required model parameters using observed datum pairs. Although this article

presents the connection modeling focused on rotational behaviour, the discussed models can be

applied in general to axial or shear connections.

2. Nonlinear moment-rotation models

Moment-rotation relationship of semi-rigid connections can be obtained through integrating the

stresses in the connection region by analysis alone. It is difficult to achieve much more accurate

results because the complicated stress-strain relationships over a connection. This is due to the

uncertainty of the common mechanical properties such as Young’s modulus E, Poison’s ratio ν,

yield stress, and ultimate stress in the post-elastic range. These values for different materials in any

material or design standard or handbook (e.g., AISC 2005) are averaged from coupon tests. To

illustrate the inaccuracy involved in the analysis, the nonlinear behavior of the stress-train

relationship from an extreme simple tension test is discussed as described for mild steel in the

literature (Hibbeler 2004). In the inelastic range up to rapture, the stress-strain relationship may be

difficult to be determined from the recorded data due to the change of the cross-sectional area in the

loading process. For instance, if a specimen has initial cross-sectional area A0 and gauge-length

distance l0 between the two punch marks, the strain is defined as

(1)

where l is the instantaneous length under the action of axial force P. It should be pointed out that

the length l in Eq. (1) is at the final state of deformation. If the instantaneous length should be

considered such as in large deformation situations, however, the actual strain may be different from

ε l l0–( )/l0=
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that defined in Eq. (1). To distinguish the strain with and without accounting for the deformation

process, the terminology of engineering strain is used in this subsection to refer to as the strain in

Eq. (1), while the following strain is referred to as true strain

(2)

which takes the deformation process into account. Note that the terminology of engineering and true

stress/strain is not used in the engineering community, but stress/strain is employed frequently.

It is seen from Eqs. (1) and (2) that, the engineering strain ε is progressively greater than true

strain εtr in tension but less in compression. At the same time, if the instantaneous cross-sectional

area is defined as A, the true stress σtr and engineering stress σ have expressions σtr = P/A and σ =

P/A0. If the material is assumed incompressible (i.e., Al = A0l0), the true stress and engineering

stress have the following relationship

(3)

It can be seen from Eq. (3) that the true stress is increasingly higher than the engineering stress in

tension but lower in compression. In engineering practice the true stress-strain curve is replaced by

the engineering stress-strain curve when the strain is small. Such replacement is accurate slightly up

to yield-stress point and the error after this point is ignored because it may not be of interest in

general structure design. Note also that the assumption of Al = A0l0 may not hold in the range after

necking or cracking. This indicates that even the true stress-strain relationship Eq. (3) may not

correctly model the material behavior in the post-yielding range, especially when loading beyond

the point of necking. Therefore, instead of using Eq. (3) empirical stress-strain functions (e.g.,

Ramberg-Osgood 1943, Richard-Abbott 1975) are employed to represent the σ-ε relationship to fit

with experimental data. 

Now, even if the previous nonlinear σ-ε relationships can be established for a fibre or a

component within a joint or connection region, it may be difficult to derive the moment-rotation

relationship of the connection by integrating all the stresses over the region due to the highly-

nonlinear stress-strain distributions. Thus, the component-based joint modelling may involve much

of uncertainty in modeling the nonlinear behaviour of each component. To reduce such uncertainty

caused by the simplified analysis model, experimental data of the similar connections may be

applied to verify and adjust the analytical modelling such that the accuracy of the analytical results

is improved. This is beyond the scope of this article, and the following presentation is focused on

the characteristics of the mathematic models, which can be applied to deal with either analytical or

experimental data of semi-rigid connections.

2.1 Rotation-based relationship

The common models for moment-rotation relationships applied in engineering are illustrated in

Fig. 2, where the actual curve in heavy-thick line obtained from experimental results can be

represented by linear or piecewise linear or nonlinear curves. The linear relation 0-1-3 in Fig. 2(a) is

the most popular model applied to the linear structural analysis for the serviceability limit states

design. It can be seen that the linear relation is in a limited domain, and using such a linear model

in structural analysis may lead to significant error but in conservative (Liu 2009). In order to

improve the accuracy, the bilinear loading path 0-2-3-4-5 may be used when elastic deformation is

εtr
dl

l
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l
0

l
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l
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negligibly small, while using bilinear loading path 0-1-3-4-5 takes the elastic deformation into

account. To further reflect the actual behavior of connections, the trilinear 0-1-4-5 is more close to

the actual M-θ relationship, whereas the trilinear 0-1-4-6 further includes the strain hardening effect.

The linear elastic model above is essential in conventional structural analysis and design,

especially for preliminary assessment by hand calculation. While the bilinear or trilinear model is

incorporated in a nonlinear analysis to assess the safety margin. For computer-based analysis, a

more sophisticated nonlinear model may be considered in lieu of the bilinear or trilinear model. At

first, it is assumed that the stress-strain power model (Ramberg and Osgood 1943) is used to model

the actual moment-rotation relationship as shown in Fig. 2(b), where parameters θ, θe, θp, and Re are

the total rotation, elastic rotation, additional rotation and elastic rotational stiffness. For a given

loading level M, the actual rotation θ can be considered the summation of elastic rotation θe and

additional rotation θp and expressed as

(4)

where the three parameters Re, κ and γ are determined using analytical/experimental data. Eq. (4) is

of clear physical meaning that indicates the total deformation is nonlinearly scaled up by adding a

nonlinear portion θp, which is expressed as a function of the elastic deformation θe by means of

combination factor κ and exponent γ. Parameter γ is generally not equal to unity and its variation

will adjust the curve shape. Thus, like the Ramberg-Osgood model, Eq. (4) is commonly called as a

power law to simulate the constitutive relationship of connections. Once the elastic stiffness Re is

determined at first by experimental data, parameters κ and γ can be estimated using the linear least-

square curve-fitting method through the following expression

(5)

Alternatively, the three parameters can be found from a nonlinear regression analysis using the

method presented later. The advantage of the power model of Eq. (4) is that the model parameters

can be readily determined using Eq. (5) for the experimental data of a semi-rigid connection.

Realize from Fig. 2(b) that the power model Eq. (4) is based on modifying the elastic deformation

by adding an additional deformation term θp, and some information in the limit state, such as the

nominal maximum moment Mn, is not directly reflected in the expression. Alternatively, the total

θ θe θp+ θe κθe

γ
+ M/Re κ M/Re( )γ+= = =

lnκ γ ln M/Re( )+ ln θ M/Re–( )=

Fig. 2 Mathematical representations of the moment-rotation relations
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rotation θ may be reached by scaling up the linear elastic deformation θe by multiplying a non-

dimensional term and this leads to

(6)

where the ratio M/Mn ≤ 1 allows for the linear elastic deformation to be amplified. Note that the

exponent γ here has different meaning from that in Eq. (4). If moment M approaches nominal Mn in

Eq. (6), the total deformation tends to infinity and the connection stiffness approaches zero. Eq. (6)

is also referred to as a three-parameter power model, which has been applied to simulate the θ-M

relation of semi-rigid connections (Chen et al. 1996). If the same set of data is used to determine

the three parameters in each model of Eqs. (4) and (6), both the two models can be used to simulate

the same connection behaviour.

2.2 Moment-based relationship

It may be convenient to express moment M as a function of rotation θ for the connections. From

Eq. (6) the bending moment can be expressed in terms of rotation as

(7)

The physical meaning of the M-θ relationship of Eq. (7) can be interpreted through Fig. 3, where

if specifying a rotation level θ, the actual moment M can be achieved by scaling down the linear

moment Me (= Reθ) by a factor as shown in the equation. If a reference rotation θ0 (= Mn/Re) shown

in Fig. 3 is introduced, the expression of Eq. (7) can be written in non-dimensional form as

(8)

This expression may be used to eliminate the influence of dimensions of connections. 

θ
M/Re

1 M/Mn( )γ–[ ]
1/γ

--------------------------------------=

M
Me

1 Me/Mn( )γ+[ ]
1/γ

----------------------------------------
Reθ

1 Reθ/Mn( )γ+[ ]
1/γ

------------------------------------------= =

M

Mn

-------
θ/θ0

1 θ/θ0( )γ+[ ]
1/γ

-----------------------------------=

Fig. 3 Rotational stiffness based on the nonlinear model
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2.3 Rotational stiffness

Upon differentiating Eqs. (7) or (8) with respect to θ, the tangent rotational stiffness R of the

connection can be found as

(9)

It is seen for the three-parameter model that tangent stiffness R of the connection degrades to zero

when rotation θ tends to infinity for any positive value of exponent γ. This means that the three-

parameter model Eq. (8) does not include strain hardening/softening effect and thus can only

simulate some types of connections.

It may be concluded that the above nonlinear moment-rotation model of connections can be

interpreted as the modification of the linear model by scaling up rotation or scaling down bending

moment. For a given loading level, the actual rotation may be expressed as the linear elastic rotation

plus an additional rotation (i.e., scaling up the elastic rotation). Inversely, for a given rotational

loading level, the actual moment is obtained by scaling down the linear moment.

3. Moment-rotation model with four parameters

This section presents the derivation of the four-parameter connection model based on the three-

parameter model discussed in the previous section. After discussing the nature of Richard-Abbott

and Menegotto-Pinto models, a general four-parameter model is studied. In the end of this section, a

guideline for establishing a hysteretic model is provided on the basis of the established connection

model in monotonic loading. 

3.1 Four-parameter model

In the three-parameter model when rotation θ becomes very large, the rotational stiffness R in

Eq. (9) tends to zero, and strain hardening/softening behaviour is excluded in the model. If the strain

hardening/softening is significant for the connections under consideration, a modified model should

be developed. When a nominal stiffness Rn in the large rotation range in Fig. 4 is introduced to

represent the strain hardening/softening behaviour, the stiffness R in Eq. (9) can be modified and

expressed as

(10)

which satisfies the following conditions: R(0) = Re and R(∞) = Rn, and when Rn = 0 Eq. (10)

reduces to Eq. (9). Integrating Eq. (10) with respect to θ once yields the following moment

(11)

To be consistent with Eq. (8), the reference rotation θ0 is taken as

(12)

R
Md

θd
--------

Re

1 θ/θ0( )γ+[ ]
1 1+ /γ

----------------------------------------= =

R
Md

θd
--------

Re Rn–( )

1 θ/θ0( )γ+[ ]
1 1+ /γ

---------------------------------------- Rn+= =

M
Re Rn–( )θ

1 θ/θ0( )γ+[ ]
1/γ

----------------------------------- Rnθ+=

θ0 M0/ Re Rn–( )=
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which represents the rotation at the intersection between tangent line associated with elastic stiffness

Re and the line with nominal stiffness Rn indicated in Fig. 4. In Eq. (12) M0 is referred to as a

reference moment. Substituting Eq. (12) into Eq. (11) yields the following moment-rotation

relationship

(13)

which is same as the moment-rotation model or stress-strain model proposed by Richard and Abbott

(1975). In addition to the notations previously defined in Fig. 3, the parameter Rn is referred to as

the nominal strain-hardening/softening stiffness, while parameter γ still controls the shape of the

curve so that it is referred to as a shape parameter. 

3.2 Characteristics of four-parameter model

It is seen from Fig. 4 that for the four-parameter model, the relation between reference moment

M0 and nominal maximal moment Mn is given by

(14)

which is equivalent to Eq. (12) but the nominal rotation θn rather than the reference rotation θ0 is

addressed. If set Rn to 0, Eq. (13) reduces to Eq. (7) and the reference moment M0 takes the same

value of nominal moment Mn. From Eq. (10), the tangent stiffness tends to Rn instead of zero when

rotation θ tends to infinity as shown in Fig. 4. Thus, positive Rn is associated with strain hardening,

and negative associated with strain softening. It should be pointed out that using negative stiffness

of connections may cause numerical problem in the structural analysis. Such a problem is not yet

well resolved and using negative stiffness should be with caution. When Rn = Re, the expression of

Eq. (13) reduces to the following linear model

(15)

It can be also shown that if the shape parameter γ in Eq. (13) tends to infinity, the moment-

rotation relationship of the four-parameter model reduces to

M
Re Rn–( )θ

1 Re Rn–( )θ/M0[ ]γ+{ }
1/γ

----------------------------------------------------------- Rnθ+=

M0 Mn Rnθ–= n

M Reθ=

Fig. 4 Four-parameter power models with different references
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(16a, b)

which corresponds to the bilinear model with trace 0-1-4 as shown in Fig. 2(a). If the asymptotic

line of the model in Eq. (13) is assumed as Ma, the asymptotic line of the four-parameter model can

be expressed as

(17)

which is indicated in Fig. 4, and is derived from the conditions M(θ) − Ma(θ) → 0 and M(θ)/Ma(θ)

→ 1. It is seen that the reference moment M0 is equal to the moment Ma(θ) when θ is equal to zero,

while nominal maximum moment is attained from Eq. (17) when θ is equal to θn. All the previous

discussions indicate that the four-parameter model can simulate linear, bilinear, and highly nonlinear

behavior of moment-rotation relationships with appropriate parametric values. This model has been

selected to model the behaviour of semi-rigid connections (Hsieh and Delerlein 1990, Xu 1994,

Faella et al. 2000, Kishi et al. 2004, Liu et al. 2008). 

3.3 Generalized four-parameter model

It is interesting to note that a similar expression of a four-parameter model proposed by

Menegotto and Pinto (1973) is used to simulate the behaviour of reinforcement bars in the nonlinear

analysis of reinforced concrete frameworks subjected to cyclic loading. This model has been

frequently employed in the area of reinforced concrete structures to represent the nonlinear

monotonic stress-strain relationship of steel reinforcement (Faria et al. 2004). If Menegotto-Pinto

model is selected to simulate connections, the mathematic moment-rotation relationship can be

expressed using the notations in this article as

(18)

which is similar in form to that in Eq. (13). When the reference moment M0 is taken the same value

as that in Richard-Abbott model, the only difference between these two models is the reference

rotation θ0 as shown in Fig. 4. For Menegotto-Pinto model, the reference rotation θ0 corresponding

to Eq. (18) can be expressed as

(19)

which is the rotation at the intersection of elastic tangent line and line M = M0 shown in Fig. 4. It is

observed that for the same reference moment M0, both reference rotations in the two models are

quite close. Thus, when nominal stiffness Rn is generally far smaller than the elastic stiffness Re, the

difference between these two models is negligible small. In addition, the two four-parameter models

reduce to the three-parameter model of Eq. (7) as shown in the previous derivation when Rn tends

to zero. 

In the Richard-Abbott and Menegotto-Pinto models, the reference M0 or reference rotation θ0 is

used to characterize model behavior. The reference rotation θ0 can be used to show the sharp

turning point of the curve as shown in Fig. 4. If a new parameter ρ, taken as the reciprocal of the

reference rotation θ0, is introduced so that a generalized four-parameter is reached

M
Reθ if θ θ0≤

Rnθ if θ θ0>⎩
⎨
⎧

=

Ma M0 Rnθ+=

M
Re Rn–( )θ

1 Reθ/M0( )γ+[ ]
1/γ

------------------------------------------ Rnθ+=

θ0 M0/Re=
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(20)

It is important to point out that parameter ρ is independent on the rest three parameters Rn, Re and

γ in the model of Eq. (20). Obviously, this model includes Richard-Abbott and Menegotto-Pinto

models if ρ = (Re− Rn)/M0 and ρ = Re/M0, respectively.

For any given observed data to be fitted, different four parameters are obtained from the models

in Eqs. (13), (18) or (20) by using regression analysis with least-square method (see the example in

Subsection 5.1). However, much close predictions can be achieved through these models for the

same datum pairs. As aforementioned the Menegotto-Pinto model proposed in 1973 has been

extensively used in concrete structures to model the nonlinear stress-strain relationships of the

reinforcements under cyclic or seismic loading. While the Richard-Abbott model is frequently used

to simulate the nonlinear moment-rotation relations of semi-rigid connections of steel frameworks.

Both of them can be used to model semi-rigid connections. The model in Eq. (20) may be applied

in the analysis of both reinforced concrete and steel structures.

Compared with the Menegotto-Pinto and Richard-Abbott models, two benefits can be achieved by

using the proposed model in Eq. (20). At first, the model of Eq. (20) is more flexible to be applied

in nonlinear regression analysis, where the popular algorithm of separable nonlinear least squares

(Golub and Pereyra 2003) can be used with two linear parameters Rn and Re and two nonlinear

parameters ρ and γ. In Menegotto-Pinto model only Rn is linearly separable parameter, while in

Richard-Abbott model no parameter is linearly separable. Secondly, the reference moment M0 is not

implicitly involved in Eq. (20). Thus, a moment, such as the plastic moment Mp in inelastic analysis

(Liu et al. 2008), can be selected to normalize the expression in Eq. (20).

3.4 Modeling of connections under cyclic loading

After Northridge earthquake, it is recognized that welded connections experienced unexpected

damage and semi-rigid connections had favorable performance against earthquake ground motion.

Welded connections behave more like rigid connections. To account for semi-rigid connections in

seismic analysis of steel frames, hysteretic effect of connections should be modeled. In the past two

decades, much of research is given to investigate the dynamic behavior of semi-rigid connections

and the associated steel structures subject to cyclic or transient loading (Elnashai et al. 1998, Chan

and Chui 2000, Simões et al. 2001, Pucinotti 2006, Yang and Kim 2007, Saravanan et al. 2009).

The methods provided in the literature (Liu and Lu 2010) may be used to enforce base earthquake

motions to the superstructures with semi-rigid connections. 

Modeling of connections accounting for cyclic behavior can be achieved upon using the

connection model for monotonic loading. The hysteretic behavior for the dynamic analysis should

include the effect of loading, unloading, and reloading in cyclic loading process. The backbone

curve in either positive or negative loading direction can be represented by such as Richard-Abbott

connection model. In the positive loading direction, the moment-rotation relation follows the defined

curve with elastic stiffness Re+ and nominal stiffness Rn+. Similarly, the moment-rotation relation

follows the defined curve with elastic stiffness Re− and nominal stiffness Rn− in the negative direction

loading. Generally, the behavior of a connection in positive loading direction is different from that

in the negative loading direction. Once the monotonic connection model in each loading direction is

obtained, the corresponding hysteretic model can be established. More detailed information for the

M
Re Rn–( )θ

1 ρθ( )γ+[ ]
1/γ

------------------------------- Rnθ+=
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cyclic connection models can be found in the literature (Chan and Chui 2000). 

As a guideline for obtaining the cyclic model, Fig. 5 illustrates a way to model connections with

cyclic behavior. Note that since axial connection, shear connection, and moment connection may be

involved in a frame (Liu 2008), the cyclic modeling in Fig. 5 may represent the axial force-

deformation, shear-deformation, and moment-rotation relations. It is assumed that the connection is

loaded in the positive direction following the monotonic connection (backbone) curve up to point A,

and then linear unloading with elastic stiffness Re− proceeds to point B, at which the internal loading

reduces to zero. This unloading continues from point B following the monotonic connection cure in

the negative direction down to point C, and then linear reloading occurs with elastic stiffness Re+

defined for positive loading direction. The first cycle is ended at point D, where the internal force/

moment approaches zero. A new cycle will start from this point, and the cyclic loading is repeated

till the completeness of external loading. It should be pointed out that when Re+ is not equal to Re−,

the elastic linear stiffness should be changed when reversal loading occurs in the linear unloading or

reloading process. For instance, stiffness Re+ should be used when reloading occurs at point E in the

linear unloading process in Fig. 5. 

Note that the hardening effect is included in the cyclic model discussed because stiffness Rn

shown in Fig. 4 is taken into account. It is observed that pinching effect is singnificant from

experimental results. Howver, as indicated in the analysis against progressive collape (Liu et al.

2010), the localised failire or stiffenss degradation model may affect the localised response

singnificanly but not the global reaponse of the frame. Therefore, the hysteretic model described in

Fig. 5 is considered sufficient to take the stiffness degradation of connections under cyclic/dynamic

loading into account.

4. Determination of model parameters

In principle, in order to obtain the parameters involved in any one of mathematical models

discussed in Section 3, a linear or nonlinear regression analysis should be performed to fit the

Fig. 5 Cyclic modeling of connections
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experimental or analytical data. For example, for a single-web angle connection (Lipson 1968)

shown in Fig. 6(a), the experimental data are shown as the small circles in Fig. 6(b). The four

parameters Re, Rn, M0, and γ in Richard-Abbott model may be obtained using nonlinear least-square

method. The standardized functions can be obtained for different type of connections by using

multiple linear regression analysis (Attiogbe and Morris 1991). This section presents how to

determine the parameters Rn, Re, ρ, and γ in the modified four-parameter model in Eq. (20). 

Note that because of the slip between components at the initial moment, some tested moment-

rotation values may not represent the actual behavior of the connections. If necessary, these untrue

values should be excluded prior to regression analysis. 

4.1 Nonlinear regression analysis

A sophisticated way for finding the parameters in a mathematical model is to conduct a nonlinear

regression analysis based on the given datum pairs. Using Richard-Abbott model and tested data,

nonlinear least-square method was used to fit the data (Attiogbe and Morris 1991). Several

algorithms can be used to estimate the parameters in either linear or nonlinear models. Since it is

crucial to find the parameters in the model that is used in the analysis and design of frameworks,

this section presents in much detail the methods for estimating model parameters. It is well known

that the Gauss-Newton (GN) method employs the linearization of the fitting function to find the

parameters by solving iteratively a linear least-square problem. To shrink the step size at each step

to ensure a reduction in the summation of the squares, the modified Levenberg-Marquardt method

adopts a trust-region approach, also referred to as ridge regression or regularization to find the

parameters (Golub and Pereyra 2003). 

Some software packages such as NL2SOL (Dennis et al. 1981) that uses a hybrid combination of

GN method and estimation of a positive-definite approximation to the Hessian from differences of

the first derivatives can be directly employed to conduct the nonlinear regression analysis. Some

related information such as the updated variable projection (VP or VARPRO) method can also be

found in the review article (Golub and Pereyra 2003). To determine the parameter values involved

such as in the four-parameter model, the following moment-rotation model for semi-rigid

connections is defined 

Fig. 6 Experimental data for multiple regression analysis 
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(21)

where Fj is a function that fits the experimental or analytical datum pairs (Mj, θj) (j = 1, 2, …, m).

Based on Eq. (21), the nonlinear regression analysis is required to solve the following minimum

problem

(22)

In regression analysis, the first derivatives of the fitting function Fj with respect to each of the

parameters Re, Ru, ρ, and γ are needed to form the Jacobian matrix in the analysis procedure such as

in the Levenberg-Marquardt method. To simplify the expressions in the following derivation, let a

parameter

(23)

and then differentiating Fj with respect to each parameters yields

(24a)

(24b)

(24c)

(24d)

Incorporating the subroutine for calculating the residual vector {Mj – Fj} base on Eq. (22) and for

all the derivatives in Eqs. (24a,b,c,d) into the FORTRAN codes (MINPACK, see the web link in the

reference), the four parameters can be found. In order to compare the results between the Richard-

Abbott, Menegotto-Pinto, and the proposed models, the derivatives related to Richard-Abbott and

Menegotto-Pinto models with respect to the corresponding parameters are given in Appendix A. In

these equations, parameter κj in each model has its own definition.

If the separable nonlinear least-square method is used, the function in Eq. (21) is rearranged and

expressed as

(25)

where Re and Rn are two linear parameters, while the two nonlinear functions Φ1 and Φ2 are given

by

, (26a, b)
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in which ρ and γ are two nonlinear parameters. In the nonlinear regression analysis, the first

derivatives of the combination functions Φ1 and Φ2 with respect to each of the nonlinear parameters

ρ and γ are needed, and the corresponding expressions are

(27a)

(27b)

where κj is given in Eq. (23). Comparing the algorithm of the foregoing separable nonlinear least-

square method with that of the Levenberg-Marquardt method, the linear parameters are eliminated

in the nonlinear iterative procedure by solving the linear least-square problem based the Moore-

Penrose generalized inverse (Dennis et al. 1981). Thus, the separable nonlinear least-square method

is more efficient than the Levenberg-Marquardt method.

4.2 Simple method

In view of the highly nonlinearity of the moment-rotation relationship, it is necessary to find a

simple way that can quickly figure out the parameters by hand to approximately estimate the model

parameters based on the observed data. In this regard, the following procedure may be useful. 

From Fig. 7, the nominal maximum moment Mn and the corresponding rotation θn from the data

to be fitted for a specific connection can be evaluated by

(28a, b)

where m0 denotes the number selected to estimate the average values at which term Mn might

represent the maximal moment well, and m0 may take number of two or three. The elastic or initial

connection stiffness Re can be determined using the following expression

(29)
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---------
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∑
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Fig. 7 Moment-rotation curves from simple and regression analyses 



446 Yuxin Liu

where number m1 is selected such that the moment M and θ have the best linear relationship in the

elastic range. This can be generally determined from the first pairs of experimental data. Note that

to get rid of the effect of initial slip between components, the first two to five datum pairs may be

omitted, thus number of 3 suggested in Eq. (29) may change. Once the nominal maximum moment

Mn and linear stiffness Re are found, the parameter ρ associated with reference rotation can be

determined by Eq. (20). To this end, the nominal stiffness Rn can be determined using the following

formula

(30)

where the nominal point (Mn, θn) is known and taken as a reference point, and (M*, θ*) is the point

obtained by taking the average of the appropriate m2 datum pairs. These data, which are before or

after but not included the data used in Eqs. (28a,b), will be chosen such that the moment M and θ

have the best linear relationship in the domain close to the ultimate point. Note that back m2 datum

pairs are used in strain hardening case from the nominal point, while forward m2 pairs are used in

strain softening case. Once Mn, θn, and Rn are determined, Eq. (14) is used to find moment M0, and

the corresponding reference rotation θ0 is determined using Eq. (12) as defined for the Richard-

Abbott model with the known elastic stiffness Re and moment M0. Finally, to determine the shape

parameter, Eq. (20) can be expressed as

(31)

If selecting a pair of (Mj, θj) such that θj = 1/ρ = θ0, then the foregoing expression becomes

(32)

where linear interpolation may be performed to determine Mj by using the known data. It is seen

that the foregoing procedure is quite simple and only a calculator may be used to find the four

parameters. The approximate values found through Eqs. (29) to (32) together with Eq. (19) can be

served as the initial parameters used in the nonlinear regression analysis, and the application will be

illustrated in the next section.

5. Example case studies

This section presents four examples that serve as the application of the connection models

discussed above. Only the models for monotonic loading conditions are considered, and the

hysteretic model will be incorporated into the analysis of structures. In the first example, the

experimental data are used to compare the difference of connection models, and the second example

is to compare the modeling with both experimental and analytical data. The third example is to

show how the experimental curves are represented by the Richard-Abbott model. Finally, a

discussion of model transformation is performed to transfer the moment-rotation curves expressed
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by 3-parameter model into the curves expressed by 4-parameter model.

5.1 Modeling by experimental datum pairs

To illustrate the application of the foregoing procedure proposed in Section 4.2, the experimental

data listed in the first two columns in Table 1 (Lipson 1968) are employed in the regression

analysis. These tested results are obtained for the single-web angle connection in Fig. 6(a), where

the original English units are shown in the figure. For the structural steel, the Young’s modulus and

yield stress are 200 GPa and 248 MPa, respectively. When using the Levenberg-Marquardt method,

the following initial parameters for the three models are obtained from the formulas of the previous

Table 1 Experimental and predicted results

Experimental Data Richard-Abbott Menegotto-Pinto Proposed

θ 
(rad×10-3)

M 
(kN-m)

M 
(kN-m)

Error 
(%)

M 
(kN-m)

Error
 (%)

M 
(kN-m)

Error 
(%)

0.00 0.00 0 0 0 0 0 0

0.40 2.75 3.46 25.49 3.46 25.50 3.46 25.49

0.53 4.66 4.59 −1.53 4.59 −1.52 4.59 −1.53

0.80 6.78 6.79 0.13 6.79 0.14 6.79 0.13

0.93 8.26 7.84 −5.13 7.84 −5.12 7.84 −5.13

1.33 11.23 10.72 −4.56 10.72 −4.56 10.72 −4.56

1.73 12.92 13.10 1.39 13.10 1.39 13.10 1.39

2.13 14.62 14.99 2.56 14.99 2.55 14.99 2.56

2.67 16.53 16.86 2.02 16.86 2.02 16.86 2.02

3.33 18.22 18.46 1.33 18.46 1.33 18.46 1.33

3.87 19.49 19.38 −0.58 19.38 −0.58 19.38 −0.58

4.67 20.76 20.41 −1.72 20.41 −1.72 20.41 −1.72

5.20 21.40 20.95 −2.08 20.96 −2.08 20.95 −2.08

6.27 22.46 21.87 −2.61 21.87 −2.61 21.87 −2.62

8.40 23.31 23.38 0.33 23.38 0.33 23.38 0.32

9.87 24.15 24.32 0.69 24.32 0.69 24.32 0.68

11.47 25.00 25.30 1.21 25.31 1.22 25.30 1.21

13.07 26.06 26.27 0.80 26.27 0.80 26.27 0.80

14.67 27.12 27.22 0.38 27.22 0.38 27.22 0.38

16.13 27.97 28.09 0.44 28.09 0.44 28.09 0.44

17.73 28.82 29.03 0.76 29.03 0.76 29.03 0.76

18.67 29.45 29.58 0.45 29.58 0.45 29.58 0.45

20.13 30.30 30.44 0.48 30.44 0.48 30.44 0.48

21.47 31.36 31.22 −0.43 31.22 −0.42 31.22 −0.42

22.53 31.78 31.85 0.21 31.85 0.21 31.85 0.21

23.87 32.63 32.63 0.00 32.63 0.00 32.63 0.00

25.07 33.48 33.33 −0.44 33.33 −0.43 33.33 −0.43

26.53 34.43 34.19 −0.70 34.19 −0.70 34.19 −0.70

27.60 34.96 34.81 −0.42 34.81 −0.42 34.81 −0.42
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simple analysis. From Eqs. (28a,b) and Table 1, the nominal maximum moment and rotation can be

found to be 

 kN-m

rad

According to Eq. (29), taking the first two non-zero datum pairs, the elastic stiffness is 

 kN-m/rad

To find the nominal stiffness, the three datum pairs close to those used to calculate the nominal

maximum moment and rotation are selected from Table 1 and the corresponding average values are

given by

 kN-m

 rad

Substituting the relevant values into Eq. (30) yields

 kN-m/rad

In order to determine the shape parameter γ, the reference moment M0 is found as,

 kN-m

and the corresponding reference rotation θ0 from Eq. (12) is given by,

rad

From Table 1, the moment Mj can be determined by interpolation method as

 kN-m

Therefore, the shape parameter is found from Eq. (32) as,

All the previous parametric values are listed in Table 2. 

To illustrate the results from the proposed method of nonlinear regression analysis, the model

parameters of the Richard-Abbott, Menegotto-Pinto, and the general models are determined using

the approximate parameters calculated above. After conducting nonlinear-regression analysis for

each connection model are the four parameters are found and listed in Table 2. It is seen from this

table that the simple method can get well estimates of the model parameters for this example. There

is no significant difference of the parameter Re, Rn, or γ predicted by the three models, but the

reference moment M0 does have difference due to the distinction of the three models. As expected,

Mn 33.33 34.19 34.81+ +( )/3 34.29= =
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using Eq. (12) and the value ρ (=1/θ0) can yields M0 = 18.726 kN-m, which is the value found in

Richard-Abbott model, while using Eq. (19) M0 = 20.078 kN-m, which is the value found in

Menegotto-Pinto model. This shows that the proposed general model in this study can accurately

cover the Richard-Abbott and Menegotto-Pinto models.

Applying the parameters in Table 2 to the corresponding models, the predicted moments for each

model against the rotations are also listed in Table 1, where little difference of moments is found

among the three models. The corresponding three moment-rotation curves are shown in Fig. 6(b) as

the solid curves, which are concurrent. This indicates that all three four-parameter can efficiently

simulate the test results. 

If separable nonlinear least-square method is used, the linear parameters are found to be Re =

8.6733 kN-m × 103/rad, and Rn = 0.5831 kN-m × 103/rad; while the nonlinear parameters ρ = 0.4319

103/rad and γ = 2.6050. These values are very close to those listed in Table 2. Note that the

FORTRAN codes developed in this study based on Levenberg-Marquardt method can only be

applied to the problem with one independent variable, whereas those codes based on separable

nonlinear least-square method can deal with multiple independent variables. 

5.2 Modeling by experimental and analytical data

This example is to check the effectiveness of the four-parameter model by means of the simplified

method and nonlinear regression analyses through the use of the dada presented by Sherbourne and

Bahaari (1997). The experimental data for the connection are shown as the small circles, while the

results obtained by the 3D finite element method are those shown as the cross symbols in Fig. 7(a).

The four parameters obtained by using the simplified analysis method are shown in the second row

of Table 3 for the experimental data. Taken these approximate parameters as the initial values in the

nonlinear regression analysis for the same data, after conducting the nonlinear regression analysis

the four parameters are shown in the third row of Table 3. Performing the same analyses for the

data obtained from 3D finite element analysis, the four parameters are shown in the fourth and fifth

Table 2 Four parameters obtained using different models

Method
R

n

(kN-m×103/rad)
R

e

(kN-m×103/rad)
γ

M0

(kN-m)
ρ

(103/rad)

Proposed (Simple) 0.6237 8.5809 2.5549 17.823 0.4465

Richard-Abbott 0.5832 8.6730 2.6054 18.729 -

Menegotto-Pinto 0.5831 8.6736 2.6046 20.080 -

Proposed (regression) 0.5831 8.6743 2.6036 - 0.4320

Table 3 Parameters in different models

Parameters
R

n

(kN-m×103/rad)
R

e 

(kN-m×103/rad)
γ

ρ
 (103/rad)

Test
Simple 1.3636 25.962 0.3491 0.6342

Regression -0.3305 30.596 0.2853 0.6405

3D
Simple 1.6827 13.454 2.5817 0.3052

Regression 1.1673 14.261 2.0532 0.2763
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columns, respectively. 

It is seen from Table 3 that the nominal stiffness Rn is negative (−0.3305) from the regression

analysis based on the experimental data shown in Fig. 7(a). This means that strain-softening

behaviour will be predicted using the nonlinear regression analysis, while based on the simple

analysis strain-hardening behaviour will be predicted. This phenomenon reminds us that sufficient

experimental data located around the limit state should be used in the regression analysis so that the

four parameter model can reflect actual moment-rotation behaviour. Using the obtained parameters,

the curves from regression analyses are plotted in Fig. 7(a). It is seen that the four-parameter model

can fit well both the experimental and the analytical data in the ranges of the given data,

respectively. It is again show from Table 3 that the proposed simple method can lead to reasonably

accurate results compared to those from nonlinear regression analysis. These curves are graphically

shown in Fig. 7(b). 

It should be pointed out that when using the four parameter model to fit either the experimental or

analytical data, only the predictions within the original datum range are reliable. Significant errors

may occur beyond the original datum domain. To improve the accuracy, the obtained dada from

either test or analysis should include the information of strain hardening/softening behaviour.

Otherwise, significant error may occur in the nonlinear analysis of the framework with these

connections when the rotations exceed datum ranges.

5.3 Modeling by experimental curves

Sometimes, the behavior of semi-rigid connections is characterized by moment-rotation curves

rather than datum pairs, and the connection curves may be required to be digitized and then

represented by a proper connection model for structural analysis. This example shows how the

connection curves are transformed and represented using the Richard-Abbott four-parameter model

on the basis of the tests of beam-to-column and column-to-base connections to be applied in the

testing of semi-rigid portal frames (Liew et al. 1997). More detailed information regarding the

specimen description, setup, dimensions, and material properties of the connections can be found in

the referred paper.

The beam-to-column connection JSRF2 with bolted angles is considered in this example study,

and the deformed connection associated with moment M and rotation angle θ are illustrated in

Fig. 8(a), where the tested moment-rotation results for the connection are traced as the dotted curve.

It is observed that the unloading and reloading behavior in the elastic range is consistent with that

in the cyclic model shown in Fig. 5. In principle, the procedure for determining the model

parameters is the same as that described in Subsection 5.1, but the tested curve should be digitized

as the datum pairs as those in Table 1. Note also that the data in unloading and reloading are

excluded, i.e., only the data relevant to the backbone cure are used. After applying the curve-fitting

technique, the four parameters in Eq. (13) are determined to be M0 = 79 kN-m, Re = 7202 kN-m/

rad, Rn = 144 kN-m/rad, and γ = 0.57. The corresponding curve is shown in Fig. 8(a) as the solid

line, which is a good fitting with the tested data.

To be consistent with the JSRF2 connection that was used in the same frame, the tested column-

to-base connection CB2 with axial force 0.24Py, where Py is yield force in pure axial loading, is

considered to obtain the four parameters in the Richard-Abbott model. The setup of the specimen

associated with moment M and rotation angle θ are illustrated in Fig. 8(b), and the value of θ is

determined using the end displacements D1 and D2 of the steel bars welded to the column and the
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total length Dt of the two bars (Liew et al. 1997). The tested moment-rotation results for the

connection are traced in Fig. 8(b) as the dotted curve. After applying the curve-fitting technique for

the tested data, the four parameters in Eq. (13) are determined to be M0 = 148 kN-m, Re = 24721

kN-m/rad, Rn = 151 kN-m/rad, and γ = 0.78, which correspond to the solid curve shown in

Fig. 8(b). Both the beam-to-column and column-to-base connection curves with the four-parameter

model have been used in the nonlinear analysis of the portal frame (Liu et al. 2008). 

5.4 Model transformation

Different nonlinear connection models discussed above in this article, including Ramberg-Osgood,

Richard-Abbott, Menegotto-Pinto, and the general model, may be applied in the nonlinear analysis

of steel structures connected with semi-rigid connections. Occasionally, transformation between

different connection models may be required for a specific purpose of analysis. For example, in the

nonlinear or progressive-collapse analysis of steel frames with semi-rigid connections (Liu 2009,

Liu et al. 2010), the computer code has been developed on the basis of the Richard-Abbott model.

If the computer code is used for the case where the connections are simulated by Ramberg-Osgood,

then the connection curves represented by Ramberg-Osgood model have to be transformed into

those characterized by the Richard-Abbott model such that the computer code can be directly

applied. This example shows how such a model transformation is achieved using tested moment-

rotation data of connections subjected to elevated temperature.

Involved in this example is to show the fire behavior of moment-rotation connections based on

the tested results in the reference (Al-Jabri et al. 2005), and the connection curves expressed in 3-

parameter (3-P) model are transformed to those expressed in 4-parameter (4-P) model for the

purpose of structural analysis. In general, the behavior of moment-rotation connections under fire

can be simulated using the Ramberg-Osgood 3-P model as

(33)

which is slightly different from that in Eq. (4), and here the three parameters n, A and B are

determined using experimental results. On the basis of the model parameters for Group 2

connection as shown Fig. 9(a), the values of n, A and B are taken from the reference (Al-Jabri et al.

θ M/A 0.01 M/B( )n+=

Fig. 8 Moment-rotation relations from experimental curves
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2005) and listed in Table 4 for the cases where the values of temperature are equal to 20oC, 200oC,

400oC, 500oC, and 600oC, respectively. Fig. 9(b) shows the corresponding M-θ curves of the

connection as the solid lines.

At each temperature level, the M-θ data with sufficient pairs are calculated using Eq. (33), and

then applying the curve-fitting technique as applied previously to obtain the four parameters in

Eq. (13). For instance, when the ambient temperature is of 20oC, the four parameters are determined

to be Re = 27323 kN-m/rad, Rn = 462.05 kN-m/rad, M0 = 136.13 kN-m, and γ = 1.101, which are

shown in the second row of Table 4. For all other selected temperatures, the values of the four

parameters are obtained similarly and listed in Table 4. Using Eq. (13) with the values of four

parameters in Table 4, the 4-P connection curves are shown in Fig. 9(b) as the dashed lines. It is

seen from the figure that the 3-P and 4-P models have very good agreement in modeling the

moment-rotation relationship. These moment-rotation curves except for that in 500oC are applied in

the analysis of steel frameworks to assess the fire behavior (Chen et al. 2010). 

It is noted from Fig. 9(b) that the fire effect on steel connections is insignificant when the

temperature is below about 200oC. Above this temperature, the influence of fire should be

considered in the analysis, and how to incorporate such fire connections in the steel frameworks

needs be investigated further. Note also that the fire behavior discussed is for the connection

specimens that were put in the tests where the whole beam ends and column sections were put in a

completely enclosed compartment. In reality, when a fire accident happens in an enclosed or

partially-enclosed room space, only part of the connection/joint is exposed to fire. The connection

behavior in this situation may be also interested for structural steel design. 

Fig. 9 Transformation from 3-Parameter to 4-Parameter Model

Table 4 Parameters of 3-P and 4-P models in various temperatures

T (°C) n A (kN-m/mrad) B (kN-m) R
e
 (kN-m/rad) R

n 
(kN-m/rad) M0 (kN-m) γ

20 4.9 21.5 27.5 27323 462.05 136.13 1.101

200 4.9 13 27 15228 411.18 134.38 1.313

400 4.9 8.325 25.5 9022.4 453.83 117.86 1.689

500 4.9 5 18.65 5319 327.73 85.19 1.84

600 4.9 2.5 12.2 2635.6 180.38 46.05 1.931
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6. Conclusions

Semi-rigid connection models for simulating the moment-rotation relationships are investigated in

this article. Linear model is taken as a basis to derive the nonlinear connection models. It is shown

that the Ramberg-Osgood (RO) model with three parameters is considered a linear term plus a

nonlinear term that scales the elastic deformation up to the actual nonlinear deformation for a given

bending moment level. This model can be alternatively expressed as a linear term plus a nonlinear

term that scales the elastic bending moment down to the actual nonlinear moment for the given

deformation level. To include more information in the ultimate state of a connection, the RO model

can be extended to the four-parameter model such as the Richard-Abbott (RA) or Menegotto-Pinto

(MP) model. A more general model, which includes RA and MP models, is proposed in this study

to simulate the moment-rotation relationship of connections to facilitate nonlinear regression

analysis. For preliminary analysis, a procedure is provided for determining the four parameters that

approximately fit with the observed data. The modified Levenberg-Marquardt algorithm can be used

to find the model parameters, but the separable nonlinear least-square algorithm is shown to be

more effective for the proposed model compared to RA and MP models. 

Analysis results show that the four-parameter connection model can well simulate linear, bilinear,

and highly nonlinear moment-rotation relationships, especially for modeling the connections with

significant strain hardening or softening. Note from this study that the predictions based on the

connection models are dependent on the data used in the regression analyses. The predicted moment

or rotation may not be accurate if it is far away from the connection data being used to establish the

model. A guideline for developoing a hysteretic model of connections subjected to cyclic loading is

helpful for the analysis and design of steel structures under seismic loading. The hysteretic model of

connections is generated using the established monotonic models in the positive and negative

loading directions, and using the initial elastic stiffnesses for unloading and reloading. Example

study also shows that the four-parameter model can be used to simulate the connections at high

temperature.

Note that future work is needed to obtain the experimental or analytical data accounting for the

variations of geometric size parameters for each category of connections so that the standardized

model parameters can meet the requirements in practice. A series of standard experiments need to

conduct to determine the connection parameters to be applied in the analysis and design of steel

frameworks. Alternatively, the component-based method provided in the Erocode 3 (CEN 2005) is

attractive and can be effectively applied to establish the required connection modeling for design. In

addition, modeling of axial and shear connections needs to be developed and the interaction of

axial, shear, and bending effects should be taken into account. 
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Appendix 

In order to compare the results obtained by different models, this appendix presents the first derivatives
with respect to the parameters in Richard-Abbott (RA) model (1975) and Menegotto- Pinto (MP) model
(1973) that are used in the nonlinear regression analysis based on the modified Levenberg-Marquardt algo-
rithm to form the Jacobian matrix.

In Richard-Abbott model, the mathematic model of the relationship between moment M and rotation θ is
given by

(A1)

where parameters R
u
, R

e
, M0, and γ denote the nominal stiffness, elastic stiffness, reference moment, and

shape parameter, respectively. If an intermediate parameter is introduced as

(A2)

upon differentiating M in Eq. (A1) with respect to each parameters yields

(A3a)

(A3b)

(A3c)

(A3d)

If the same notations for Richard-Abbott model are used, the Menegotto-Pinto (MP) model can be
expressed as 

(A4)

If an intermediate parameter like in Eq. (A2) is used

(A5)

then differentiating M with respect to each parameters yields

(A6a)

(A6b)

(A6c)

(A6d)
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