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Abstract. The present paper will be concerned to the investigation of the stress-strain field around the
cavity that is loaded or partially loaded at the inner surface by the rotationally symmetric loading. The
cavity of the spherical, cylindrical or elliptical shape is situated in a stressed elastic continuum, subjected
to the gravitation field. As the contribution to the similar investigations, the paper introduces the new
function of loading in the form of the infinite sine series. Besides, in this paper the solution of stresses
around an oblong ellipsoid cavity, has been obtained using appropriate curvilinear elliptical coordinates.
This analytical approach avoids the solutions of the same problem that lead to expressions that contain
rather complex integrations. Thus the presented solutions provide the applicable and explicit expressions
for stresses and strains developed in infinite series with easily determinable coefficients by the use of
contemporary mathematical packages. The numerical examples are also included to confirm the
convergence of the obtained solutions.
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1. Introduction

An investigation of the influence of heterogeneities (inclusion, cavities, cracks, ...) on the effective
properties of the materials is of great interest in applied mathematics and computational mechanics
and a vast amount of literature covers this subject. Cavities are good approximations for modeling
voids existing in natural materials, such as geo-materials. Particular practical importance of such
investigations is related to determination of stress-strain fields around unsupported or supported
cavities in a solid rock mass created by excavations for underground structures. These investigations
enable a better understanding of interaction between underground structure and rock medium in
three-dimensional conditions. The practical consequences that may be derived from the evaluation
of disturbances of stresses and strains in vicinity of the cavities formed by underground excavations
in solid rocks are related to the essential requirements for the safety of the tunneling works,
particularly in cases where three-dimensional geometry of the cavities is playing significant role in
the stress-strain changes.

Determination of the stress-strain state around an elliptical cavity (oblong ellipsoid) situated in
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elastic continuum, with unsupported internal boundary, has been recently considered in the work by
Luki¢ et al. (2009). Also, in this paper a brief historical review of investigation of the mechanical
properties of solids containing spherical, cylindrical and elliptical cavities are given. The researches
particularly emphasized are: Neuber (1937), Sternberg and Sadowski (1952), Eshelby (1957, 1959),
Lur’e (1964), and the authors of recent studies, Tran-Cong (1997), Chen (2004), Xu et al. (1996),
Duan et al. (2005), Chen et al. (2003), Dong et al. (2003), Sharma et al. (2003), Rahman (2002),
Markenscoff (1998a, b), Riccardi and Montheillet (1999), Tsuchida et al. (2000), Chen and Lee
(2002). Most recently, Ou et al. (2008, 2009) obtained the solutions for the elastic fields around a
nanosized spheroidal cavity in an elastic medium subjected to arbitrary uniform remote loadings and
a uniformly uniaxial tension.

In spite of the fact that stress analysis of an infinite elastic body that contains cavities is a classic
topic, the most of the solutions of a general nature lead to rather complex and often unsolvable
integrations, that can not provide the usable expressions for stresses and strains. The applicable
solutions may be found in the literature for the cavities of spherical shape and for infinite cylinders,
while the applicable solutions for ellipsoidal cavities are rather scarce. In this paper the solution of
stresses around an oblong ellipsoid cavity that is loaded or partially loaded at the inner surface by
the rotationally symmetric loading has been obtained using appropriate curvilinear elliptical
coordinates. The derivation of expressions for stresses and strains have been made starting from the
solutions of the basic Navier differential equations for the displacements and use of Neuber-
Papkovich potentials that are harmonic scalar and vector functions. Applying the Bubnov-Galerkin’s
method, the formulation of the boundary conditions has been performed using functions satisfying
bi-harmonic differential equation, and being developed in infinite series by Legendre's polynomials.
This approach made possible to avoid the formulations for stresses and strains that contains
cumbersome integrals that determine the displacements and than also to avoid equally or even more
laborious procedures to differentiate these expressions in order to obtain the strains. Besides, in
order to analyze the support around the opening, the problem of the stress-strain state is extended to
the analysis of states in modified conditions, by setting the loading on the inner side of the cavity
which simulates the support. The previously elaborated loading functions, developed in infinite
series on the basis of Legendre’s polynomials Luki¢ (1998), or defined by Fourier series (Jaeger and
Cook 1969), have had the inherent shortcoming at the edges of loaded surface, that is avoided in
this paper by application of the loading function based on the infinite serial developed by sine
function.

2. Basic equations
We start by the Navier equations for the displacement field, Malvern (1969)

(1-2V)Vu+V(V-u)+

1-2v
K=0 1
e (1)

where K is the constant body force; u is displacement vector; v is Poisson’s coefficient; G is the
shear modulus. If the only body force is the gravitational force, the Laplacian of this body force
potential is zero, i.e.

K=0 2
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so the differential Eq. (1) becomes homogeneous
(1-2WVu+V(V-u) =0 (3)
Making use of Neuber-Papkovich potentials @, and @ Papkovich (1932), it has been shown that

1
4(1-v)

u==o-

V(®y+r- D) “)

where
V'd, =0, VO=0 (5)

Obviously, @, and ® are harmonic scalar and vector functions, respectively. Usually we make use
of the potential function y

1
4(1-v)

(DOy+r-D) ©6)

So defined function is biharmonic, i.e.
VVY =0 (7)

Eq. (7) is basic for the solutions of the problem. Particularly, for the spherical and elliptical
cavities they are derived in the form of infinite series of Legendre’s polynomials. The solutions for
infinite cylinder have been derived in the form of infinite series of Bessel’s functions.

3. Boundary conditions

Boundary conditions required for determination unknown constants in expressions for stresses are
given in terms of stresses acting on the cavity surface. The total stresses around the cavity are
determined by superimposing primary stresses acting in the continuum without a cavity and
“partial” stresses which are caused by the presence of cavity.

*
o, = o +ao”
— pr
T =t 3

* . .
where o, 7, =the total stresses, o;, 7; = partial stresses due to the presence of a cavity and

o/, 7)" = primary stresses; (i, j = respective coordinate).

4. Spherical cavity

In the spherical coordinates (v, ¢, ), Fig. 1, for axisymmetric conditions towards z axis are

up=10 )
ou ou
—Tr = —9? —
30 0, 30 0 (10)

Then the Eq. (3) is satisfied by
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x=rsing cosd
y=rsingsind
Z=rcosg

Fig. 1 Spherical coordinate system

[n(n+3=4v)cr "' —(n+1)dr" 1P, (cosp) (11)

[Ms

u, =—

n=0

dP,(cosp)

u,= =3 [(4=n—4vc,r"+d "] (12)
n=0 d(D
where
1 d n
P,(u) = —=(i'~1) (13)
nldu
are Legendre’s polynomials (¢ = cosg), and
dP,
2= —WP,~P,.) (14)
H =1

Constants ¢, and d, have to be determined from the boundary conditions.
Egs. (11), (12) and (7) provide the expressions for stresses

o = £ [n(n2 +3n-2v)c,r " —(n+1)(n+2)d r " ]Pn (4)
1+vis

* E - 2 —-n—1 2 -n-3
o =—-<- n(n“-2n-1+2v)c r —(n+D)"dr
; 1+V{ ZO[ ( Yo, = (n+ 1> d,r ™ P (w)

+ [(4 —n—-d)er"" +dr" ]ctg (o—dp” (#)
n=0 d(ﬂ

o) =m{2[—n(n+3—4nv—2v)cnr "+ d,r 3]@(;;)

(=]

n=

- dP”(u)}
- 4-n-4v "+d ? |ctgp—2
> [ (4=n—dv)c,r " ote

n=0
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- P
; E —[(n2 -2+2v)c,r " +(n+2)d " Jid 2(4)
+v

n=1

T, =
Tg = Tpg =0 (15)

Expressions (15) represent the “partial” stresses caused by the presence of a cavity, in the stressed
elastic continuum. They are given as infinite series based on Legendre’s polynomials P,(cos¢) and
constants ¢, and d,,.

Unknown constants ¢, and d,, as mentioned before, are to be determined for partially loaded
(supported) cavity surface, from the following boundary conditions

or :_p((p)} for =R (16)
7,,=0

where p(@) is support loading and R is sphere radius. Taking into account Eq. (8) one obtains

o, =-0c"-
T p((p)} for r=R a17)
Ty = —Th
The primary stresses in continuum for “hydrostatic” stress field are defined
o =0, =0, =yH
=gl = e =0 (18)
with yis the unit weight of the continuum and H is the height above cavity axis.
The loading function has been defined as infinite sine series
N IR RN ¢ 1 8 U V. 72 SIS SR S S S
p(p) pz(2j+ SRy (B-9); —B<e<p; (7-p<o<n+p)
j=0
p(@) = 0; on the unloaded part of the cavity (19)
0=0
(t-p<o<ntp) (-B<o<p)

Fig. 2 Partially loaded surface in axial symmetry
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p @I @ one member series
(2) two member series

@ three member series

B
Fig. 3 Graphical presentation of loading function

where [ is the given angle that defines loaded surface, Fig. 2 and Fig. 3. The main advantages of
this type of loading function are:

e the absence of the discontinuous transition to zero value at the ends of loaded area

e the fast convergence to the central value of the loading within loaded area, and

e the fast convergence to the zero value at the ends of the loaded area trough sine functions.

Expanding of ¢, 7/, and p(¢) in infinite series based on Legendre’s polynomials, by the use of
the general formula

w0 1
)= %(2'1 + P, (u) [P, (1) dt (20)
n=0 -1
one can obtain

o4 p(g) = 3 A,P,(c050)
n=0

dP (cosgo) @1

ZB

Taking into account Egs. (18)-(21), from Eq. (15) we find that

TE’ Z [n(n*+3n-2V)c, 8" ~(n+ 1)(n+2)d,R " 1P, (cosp) = =3 4,P,(cosg)  (22)
— n=0

dpP (cos Q) _ dP (cos )

lii [(F=2=2V)e,R "' —(n+2)d R "] (23)

P

where
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20417 .
4, = Z5=[(o"+p(@)P,(cosp)singdp (= R)
0

_ 2n+1)(n-1)! TprdP (cos (p)

B
" T 2 mn—1)! Of”" do

inpdg (24)

are determined by development in sine series, Appendix A.

The Egs. (22) and (23) contains infinite sums on the both sides of the same row, therefore they
provide the possibility to form the set of linear equations for determination of unknown constants ¢,
and d,,

5. Cylindrical cavity

In deriving the stresses around cylindrical cavity one may refer to potential ¥ defined by Eq. (6)
which provides the following relationships for “partial” stresses

o =2 (VV y Y
oz or’
. D oW
o a—[(2— v e Zz}
&, = Q( W ‘I’—la;y)
0z r or
2
= ?-[(1 - V)VZW—Q%J 25)
or oz
VA
gz
/ '
2
Z 17
Y . %ﬁj{;j/
9 r X 1 4
“Tz0 b Tz

)/ X=rCosg
y=rsing
z=z

Fig. 4 Cylindrical coordinate system
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In cylindrical coordinates (r, ¢, z), Fig. 4, operator V’ is defined by
2
0,00
or’ ror g7

The potential function y has been supposed as infinite sine series

Y= Zf(kr)sinkz
k=0
where f{kr) is unknown function. Substituting this in Eq. (7) we obtain

d  d o\(dfkr)  dfikr) - _
(drz+rdr_k)( R o) k) = 0

Its solution may be written as
flkr) = B\ Ky(kr)+ B,rK,(kr)

So, general solution of Eq. (7) has the following form

Y(r,z) = i [B,K,(kr)+ BorK, (kr)]sinkz

k=0

(26)

27)

(28)

(29)

(30)

where By and B, are constants and K (kr) and K,(kr) are the Bessel's functions of zero and first

order.

The expression for ¥(r, z) given in Eq. (30) introduced in Eq. (25) is providing the solution for
the “partial” stress state caused by the presence of cylindrical cavity in elastic continuum subjected

to constant stresses in vicinity of the cavity

o =3k coskz{KO(kr)[Bz(l ~2v)—kB]-K, (kr)(krBz +ij}
k=0 7

0

B

*
G(P
k=0

%
GZ

8

*

rz

k=

(=}

The primary stresses in continuum for “hydrostatic” stress field are defined by

r
O_P

I

Y L
=0, =0, =yH

§
=0

with yis the unit weight of the continuum and H is the height above cavity axis.

D k*cos kz{Bz (1-2V)K,(kr) +—LK | (kr)
r

i k* coskz{K(kr)[kB, = 2(2 = v)B, |+ B,krK, (kr)}

k=0

r,, = Y k’sinkz{-B,krK,(kr) - [kB, = 2(1-v)B, |+ K, (kr)}

G1)

(32)
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Fig. 5 Axisymmetrical partial loading

Fig. 6 Graphical view of the loading function

The loading is expressed in the form of infinite sine series

- N 1 L @ntDr S gcn<
p(2) p;{)(znﬂ)ﬂsm - (a—z); 0<z<a

p(z)=0; z<0Az2a (33)

The partially loaded surface of a cylinder by constant loading p within the area defined —a/2 <z <
+a/2 and the shape of loading function are shown on Fig. 5 and Fig. 6.

The unknown constants B; and B, of Eq. (31) are to be resolved from the boundary conditions

o, =—of r—p(i)
R for r=R (34)

in the form

o [20-0) Kykn)
31732[ k _rKl(kr)J

(35)
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9=0

<

x=cshusing cosd
y=cshusing sind
z=cchucosp

Fig. 7 Oblong ellipsoidal coordinate system

6. Elliptical cavity (oblong ellipsoid)

Introducing the oblong ellipsoidal coordinates, Fig. 7
x = cshusinpcospcos@; y = cshusingsind; z = cchucosg (36)

the stress state around elliptic cavity having the shape of rotational oblong ellipsoid can be defined
on the basis of solution derived from Eq. (7), where general potential ¥ = ®;+x®D, +y D, +zD,
(Papkovich-Neuber) in the case of axial symmetry is reduced to

Y = Oy(u, @)+ cchucos pd;(u, @) 37)

where ¢ is focus distance and ®, and ®; are harmonic functions
The stresses for axisymmetrical loading, in oblong elliptical coordinates, expressed by a potential,
are expressed in the form

20 00, 3

oY . oY 2¢ [ 0D
0,=———5 ——7| =—sinpcosp———chushu |+— cshucospt—
op 0z h™ Ou vh™\ Ou

chucosqo—&chusingoj
o9

. 1Y Fov v . 2a 0, . 2¢ (0D, oD, .
=——————| =—shuchu———singcosp [-—- cchusing +——| —=chucosp ———=chusing
 hnop* h'\ ou op W 0 vi*\ ou op
0;:—% ﬁCf)S(p_%_chu 2—62 20, chucosgo——aq)3 chusing
h*\ Op singp oOu shu ) vh i op
‘ 1 *F c*(o¥ oY . a o0, . oD,
Typ =" +—| =—chushut——sinpcosg |+—| ———cchusing +—=cshucosgp

h™ oudp h™\ Op ou h ou o

To=1,4=0 (38)
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where
0= cz(chzu —cos’ )

o= 2(1—1) (39)

1Z

The general solution of Eq. (7) is postulated in the form of infinite series based on associated
Legendre’s functions of the first and second order

¥ =3 Y [fonPl(cos )0l (chu)] (40)

n=0m=0

where f;,, = unknown coefficients to be defined across the stress boundary conditions.
Using Egs. (37) and (40) the potential may be expressed as

W= Pl (cos@) 0 (chi) = 3 3 A, P (cos )0 (chu) +

n=0m=0 n=0m=0

cehucos Y 3 C,,, Py (cos@) O} (chu) (4D

n=-lm=0

where ®@y(u, @) and Ps(u, ) are harmonics given as series

(DO(u,(/J) = Z Z AnmP:(COSQ))Q;n(Chu)

n=0m=0

Dy ) = Z Z CnmPZ+1(COS¢))Q:+1(Chu) (42)

n=-1m=0

For the case of m = 0 the solution in Eq. (40) is simpler

¥ = 3 [f,P(c0s)O,(chu)] )
n=0

By defined potential in Eq. (37) one may obtain

Y= ZZ:OAnPnQn+CChuCOS(p Z CnPn+lQn+l (44)

n=-1

where the harmonics @y(u, @) and ®;(u, @) are given as

0, = ZAnPnQn; ®; = Z CoPi1Ope (45)
n=0 n=-1
with use of P, = P,(cos@) and O, = O,(chu).
The solutions of Eqs. (41) and (44) introduced in Eq. (38) are providing the full tensor of
“partial” stresses caused by the presence of the elliptical cavity in the stressed elastic continuum.
Due to the space consuming expressions the stress tensor will be presented here only for the case
of m = 0, i.e., by the single infinite series



420 D. Luki¢, A. Proki¢ and P. Anagnosti
O—:: Z (U:IAV[})}'IQ}’[ + Ur?An})nQnH + UsAnPnJrlQn + U:Cn})nJrlQn + UnSCnPnQnJrl + U:CnPrHl n+1)
n=-1

O.::): Z (w:lAn})nQn + gor?An})rHlQn + (pgAn})nQnJrl + (chn})nQnH + (pSCnRHIQn + ¢n6CnPn+1 n+1)

n=-1

O-;: z (GLAnI)nQn + ®flAnPn+lQn + GzAn})nQrHl + ®iCnPnQn+l + ®sznPn+1Qn + ®ZCnEz+l n+1)
n=-1

T;qo: Z (]:11 AnR’th + 7—;12An})nQn+1 + ]—:’13AHPVI+1QVI + 7:74Cn})n+1 n+l + ]-;'ISCWPWQW + T;'tGCnI)nQrHI + T;ZCnPnHQn + Y;ISCVIR'HI n+1)
n=-1
(46)

Coefficients in Eq. (46) U;, (p;, @; (i=1,2.6)and T; (i=1,2 ..., 8) are given in the Appendix
B. The partial stresses in Eq. (46) vanishes “in infinity”. It may be said that for practical problems
this is achieved at the distances equal to double size of the cavity.

The boundary conditions are given in terms of stresses

o,=-c’" -
T p"((p)} for w=u, (k=1,2) (47)
. =—z

up up
The primary stresses in continuum are defined for “hydrostatic” stress field (in oblong ellipsoidal

coordinates)

pr _ pr _ pr _
o, =0, =0y = yH
pr _ _pr _ _pr _
Tu(p = Tuo — 00 0 (48)

with yis the unit weight of the continuum and H is the height above cavity axis.

The same problem that appeared in the cases of spherical and cylindrical cavity, the defining of
supporting loading function is also subject of determination for ellipsoidal cavity. The selection of
the functiuon is associated with conditions imposed by the solution of differential equation
VVY =0, namely the continuity of the loading function on the boundary. The supporting loading
which is the most frequent case of partially loaded cavity surface is shown on the Fig. 8 and Fig. 3

b
K7

Y

\

NN

R

/

IO

A

AN

Fig. 8 Support loading on the boundary p;(¢)



Stress field around axisymmetric partially supported cavities 421

N\

N\
o

l/\
m

N\

—\

Fig. 9 Support loading on the boundary p,(¢)

and its definition is

= 2j+)r  7-2p
p1(@) = 0; outside the loaded area (49)

p1(¢)=pi 1 sin(2j+1)”(<0—ﬂ); BLo<n—f; (n+pLe<27-pf)
j=0

and case of partially loaded cavity surface is shown on the Fig. 9 and Fig. 3

N~ 4 (2t Dz .
Dp2(®) pj;)(zjﬂ)ﬂsm 27 (p+tp); —P<o<p

p.(@) = 0; outside the loaded area (50)
Expanding of ¢/, 7/, and p,(¢) in infinite series based on Legendre’s polynomials, by the use
of the general formula Eq. (20) and substituting (48)-(50) into Eq. (46), we obtain the set of
equations (with m = 0) for unknown constants
> [A,, (@, 2By + @B+, Pryn) + Cy(by 4By + 055 Py + 03B, + by Py + b751+4Pn+4):|

n=-—1
= Zl:kn (‘],11-431—4 + q,f_an_z + qun + q3+2])n+2 + ‘12+4Pn+4)J 51
n=0

and
0

Z[An(a:%}’n%—i-afHP +a® P.. +a P

n-1 n+1" n+l n+3" n+3

)+C, (br?{'iPnfB +b, P, gt b5+1pn+1 + b3+3pn+3 + brlzgspws )]

n-1"n
n=-1

=2 |:ln (S}I'I—S})n—S 80 3Brs T 50 By 4 Sy B + 503 Py + 57,5 Pus )] (52)
n=—1
On the basis of derived expressions (51) and (52) it may be concluded that they are analogous to
the expressions (23) and (24) given in the paper (Luki¢ et al. 2009) for unsupported cavity, but with
the difference that for the elliptic cavity the coefficients 4, are to be obtained on the basis of
development of primary stresses o/ and supporting loading p(¢), by Legendre’s polynomials
(Appendix A). The remaining coefficients are given in Appendix C of the paper.
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7. Numerical examples

The numerical implementation of the analytical solutions described previously has been elaborated
for the example of elliptical cavity, together with results for spherical and cylindrical cavities of
similar size, situated in the same continuum under axisymmetric primary stresses. The stresses have
been computed for three cited cavities on the basis of the following data:

e Continuum properties: ¥ =28 kN/m® ; v= 0.3 ; E= 20 x 10° kN/m?

e Geometry: H = 100 m

1. spherical cavity ro=2m; Ar=02m
2. cylindrical cavity ro=2m; Ar=02m
3. oblong ellipsoidal cavity — #,=1.44 m; Au=0.1 m;c=3m

where Ar = the applied increment of radial coordinate for estimation of stress field at consecutive
radial distances and Au = the applied increment of u-coordinate for estimation of stress field at
consecutive oblong ellipsoidal surfaces.

e The loading on the inner side of the cavity

1. spherical cavity p =200 kN/m? ; S =n/4
2. cylindrical cavity p=200kN/m?;a=2m
3. oblong ellipsoidal cavity  p = 200 kN/m?* ; B =nr/4

For presentation and numerical interpretation of the obtained analytical results, particularly for the
elongated oblong rotational ellipsoid, the numerical case that has been selected provides the
possibility to derive many conclusions on the basis of the presented diagrams of the obtained
results. First of all the obtained results are showing the inpact of the geometry of the elliptic cavity
on the values of stresses, then the significant result is obtained by the impact of the internal loading
on the state of stresses around the cavity. Morever, possibly the most important result is that the
obtained values shown on diagrams clearly confirm that the stresses obtained for an elongated
ellipsoidal cavity are bounded by the stress state for spherical cavity on one side, and by the stress
state for infinitive cylindrical cavity on the other side. This has been presented within the frames of
numerical case by the diagrams on Fig. 10 and Fig. 11. It also shown that the influence of the
cavity to the initial stress state is vanishing at the distance of appr. four diameters of the cavity i.e.,
the stress state become equal to the initial one, that is the well known feature confirmed by other
means, particularly within the frame of rock mechanics.

Stress or, ou

1200

1000
© LS
< 800 PR = oo

PR crtt
= 0 L. / ........
o R - - - Sphere
7 )

g 400 Lr “,-" ------ ««  Cylinder
2 Gr, Gu . / = Ellipsoid
5 200 4 :

25 3.0 35 4.0 45
Coordinate R (U) [m]

Fig. 10 Radial stresses for considered cavities
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2 3400 =~ ........ Cylinder
6 ~ . Ellipsoid
< 3200 > o
6 Se.
[2] \Y iy
|
@ 3000 D\ [ re—— .
-------------- - ow oma
5 G, Oz Ih— .............................
2800 =
| ;}
2600 |
-1.5 | éfZO 25 3.0 3.5 4.0 4.5

Coordinate R (U) [mj

Fig. 11 Tangential stresses for considered cavities

8. Conclusions

This paper represents the study of the stress-strain states around unsupported and partially
supported cavities in the stressed continuum. The similarity of the resolution of the problems for the
cavities of different shapes has been elaborated, and importance of application of adequate
coordinates has been confirmed, as the aid for simplifying the mathematical operations.

The presently available studies of stress concentration in rock mass were mainly concerned with
analytical solutions for spherical and infinite cylinder cavity. The extension of these solutions to a
more general shape (of an oblong ellipsoid), that is most common shape of underground rock
excavations, has been considered in this paper. The solutions for all cavity shapes are also presented
for the purpose of comparison of their numerical outcomes.

Besides, it has been demonstrated that the introduced single parametric loading function in the
form of infinitive sine series, may be very useful for further studies of stress states around cavities.
Some advantages in the use of such a function have been noted.
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Stress field around axisymmetric partially supported cavities

: coefficients

: coefficients (m =0 — 4,, C,)

: constants

: focus distance

: constants

: harmonic vector function

: harmonic scalar function

: unknown coefficients

: shear modulus

: height above cavity axis (m)

: constant force

: Bessel’s function of zero order

: Bessel’s function of first order

: constant loading

: support loading function

: support loading function (k = 1,2)

: Legendre’s polynomials of first order
: sphere radius (m)

: spherical coordinates

: cylindrical coordinates

: displacement vector

: oblong ellipsoidal coordinates

: Legendre’s polynomials of second order
: given angle that defines loaded surface
: unit weight of the continuum

: increment of radial coordinate

: applied increment of u-coordinate

: total stresses

: partial stresses due to the presence of a cavity
: primary stresses

: Poisson’s coefficient

: potential function
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Appendix A

The development of a function in the trigonometric series and Legendre’s polynomials is defined by expres-
sion

=3 H,,P, (cosp)cosm b
n=0m=0
where the coefficients H,,, are defined by expression

_(n=m)!Q2n+ D77

H [d0[fx P)'(cos @)cosm Osin pdp
0 0

" (ntm)!27A,

where 4p=2 (m=0)and 4, =1 (m # 0)
In case of : m = 0 one may obtain

f='3 H,P(cosp)
where H,, is to be determined by expression "
H, = (2’74;127}/& P,(cosp)sinpde
In the literature known development of the functioon is
F = iHnPﬁl)(cosq))

n=0

where H,, is defined by

_@2n+D(n-1" (1) .
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Appendix B

Coefficients in expressions defining stresses Eq. (46)
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Appendix C

Coefficients related to unknown constants in expressions Eq. (51) and Eq. (52)
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