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Abstract. This paper focuses on a number of criteria that enable controlling the influence of geometric
simplification on the quality of finite element (FE) computations. To perform the mechanical simulation of
a component, the corresponding geometric model typically needs to be simplified in accordance with
hypotheses adopted regarding the component’s mechanical behaviour. The method presented herein serves
to compute an a posteriori indicator for the purpose of estimating the significance of each feature
removal. This method can be used as part of an adaptive process of geometric simplification. If a shape
detail removed during the shape simplification process proves to be influential on mechanical behaviour,
the particular detail can then be reinserted into the simplified model, thus making it possible to readapt
the initial simulation model. The fields of application for such a method are: static problems involving
linear elastic behaviour, and linear thermal problems with stationary conduction.

Keywords: adaptive modelling; geometric simplification; a posteriori mechanical indicator; structural
simulation; finite element; CAD; feature removal.

1. Introduction

The use of CAD in design applications makes it possible to more and more precisely represent

mechanical components containing a large number of details. For use in finite element (FE)

computations, these models are often overly refined; moreover, their direct use could cause several

disadvantages. If the user were to prescribe a smaller element size, then the mesh would contain too

many finite elements and the time required to run the computation would be excessive. On the

contrary, if a larger element size were prescribed, this would generate poorly-shaped elements and

convergence issues with respect to the computation. A preliminary model simplification step is thus

necessary. Various software applications serve to automate this step to a partial extent. Several

categories of approaches have been proposed in order to solve the problems involved in preparing

FE models from CAD data.

A first category addresses configurations for which small features must be removed in order to

derive a geometric model more compatible with the required FE size (Dabke et al. 1994, Mobley

et al. 1997, François et al. 2000, Zhu et al. 2002, Joshi et al. 2003). In these references, the

approaches are highly dependent on the modelling history of the specific part and focus on both the

building tree of the object and removal of selected features.
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A second category of approaches begins with a polyhedral model of the part (Schroeder et al.

1992, Cohen et al. 1995, Véron et al. 1997, Fine et al. 2000, Fine et al. 2005, Hamri et al. 2006).

In order to adapt the model, various adaptation functions are applied to the initial polyhedral model;

these functions combine the decimation process with removal of topological details.

Another category is characterised by idealisation treatments. Such operations are often required to

transform a volume into an open surface for the purpose of modelling plate behaviour. Similar

operations apply to transforming a volume feature into a line when modelling beam behaviour of a

structure. Our paper will focus solely on the errors produced by the first two categories of

geometric simplification approaches, the idealisation process will not be addressed herein.

For the engineer, finite element computation accuracy is a vital concern. Sources of error are

multi-fold: discretisation error, uncertainty on boundary conditions and the constitutive relation,

shape simplification (Szabo 1996), etc. Over the past twenty years, considerable work has been

devoted to discretisation errors and adaptive meshing (Babuska et al. 1978, Zhienkiewicz et al.

1987, Ladeveze et al. 1992). Geometric simplification can also strongly influence the quality of

finite element results. The choice and control of these simplifications are thus of primary

importance. When model preparation is manual, the ultimate model quality will depend on the

engineer's expertise. Many industries implement simplified models for their own specific

applications; these models are built from experience or simulations using the complete model (Livne

1994, Yoshimura 1998, Kim et al. 2001, Lee et al. 2003, Machnik et al. 1998). In an automatic

simplification process, the monitoring step uses input such as geometric criteria, curve and size.

According to an a priori approach, geometric criteria relative to the mechanical properties of the

problem may be added, these would include variations in: mass, volume, cross-section, and centre

of inertia (Foucault et al. 2004, Léon et al. 2004).

Yet these a priori criteria cannot quantify the real influence of a geometric simplification on finite

element simulations. For example, the errors generated by a hole removal will depend not only on

the hole dimension, but also on its location relative to the component. This shape feature could lie

in an area containing low or high stresses. To take into account the feature position, a mechanical

criterion requires information on the highly-stressed areas and hence a sketch of the set of analytical

results.

A real mechanical criterion relies upon an a posteriori process. After a simulation run on the

simplified part, the mechanical criterion is computed to evaluate the influence of each feature

removal. The engineer obtains information in order to quantify the influence of each simplification

on the accuracy of finite element results. Such a simplification process was introduced in Véron et al.

(1998). Following an initial analysis of the simplified problem, the authors undertook an adaptive

meshing process (the h-method), during which a size map was computed so as to define the optimal

mesh. The authors then used this map to monitor the geometric simplification process, the program

then removed the detail if its size was smaller than that given in this area by the size map. This

criterion yields incorrect information in the area where stresses are high yet remain smooth. The

prescribed optimal mesh sizes are too large in this specific area. For the thermal simulation,

Gopalakrishnan et al. (2007) also presented an a posteriori criterion for estimating defeaturing-

induced engineering analysis errors, this criterion requires computing two dual problems on the

simplified geometry.

Our criterion is also a fortiori and it approximates the energy norm of the difference between the

solution on the initial part and the solution on the simplified part. This error indicator necessitates a

local finite element computation in the vicinity of each feature. With this information, the user (or
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program, in an automatic simplification process) is able to redefine the simplified model and choose

to accept or not each simplification. The proposed criterion relates to either static analysis problems

with linear behaviour or thermal problems for stationary linear conduction. This paper has been

organised as follows. Section 2 will describe our proposed error estimator, and Section 3 will

highlight its efficiency for various types of problems. In Section 4, we will discuss an adaptive

modelling process that integrates CAD software tools.

Another adaptive modelling process has been developed through use of a software environment

based on a mixed representation that takes polyhedral models as a reference, yet still enables

retaining the semantic of the input CAD models. By combining basic operators acting on the

polyhedral model, a number of efficient tools and operators for handling shape sub-domains have

been derived (Ferrandes et al. 2007, Ferrandes et al. 2009) in order to automate the adaptive

modelling process. This development has allowed for an automatic simplification process, yet the

kinds of features potentially suppressed are much more limited.

2. Influence of geometric simplification

2.1 Error definition

We shall consider herein the framework of a static computation applied to a linear elastic

structure. As shown in Fig. 1, two categories of shape changes can be distinguished, i.e., additive or

subtractive, according to the geometric domain variations, thus resulting in either addition of the Ω3

domain or removal of the Ω4 domain.

Let’s assume that the solution on the initial domain Ω1 (see Fig. 1) yields the displacement field

, stress field  and strain field . We denote  the boundary of Ω1, similarly, ,  and

 are the solution fields of the problem on simplified domain Ω2 with boundary .

Let’s now assume that this simplified problem exactly matches the first one, i.e., that the error

equals zero if:

- at the intersection of the two domains, i.e., , the initial and simplified problem

solutions are equal,

- over domain Ω3, the stress and strain fields, i.e.,  and  respectively, equal zero,

- over domain Ω4, the stress and strain fields, i.e.,  and  respectively, equal zero.

To estimate the influence of these shape modifications, it is necessary to measure:

- the difference  on the common domain ,

- stresses  over Ω3,

- stresses  over Ω4.

We used the energy norm (Ladeveze et al. 1983, Ladeveze et al. 1991) to measure these

quantities. The corresponding error, denoted e, is given by 

U1 σ1 ε 1 ∂Ω1 U2 σ2

ε 2 ∂Ω2

Ω1 Ω2∩( )

σ2 ε2

σ1 ε1

U1 U2–( ) Ω1 Ω2∩( )

σ2

σ1

Fig. 1 Simplification example: initial domain Ω1 and simplified domain Ω2. Ω3 is the domain added to Ω1 to
produce Ω2. Ω4 is the domain removed from Ω1 to produce Ω2
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 (1)

This expression can then be transformed to obtain Eq. (2). To simplify this expression, we

assumed that the boundary of the simplified domain (i.e., Ω3 or Ω4) feature is free, i.e., no boundary

conditions applied on it. In the case of a constrained boundary, a similar demonstration could be

easily performed, though the expression and demonstration would be more elaborate.

 designates the unit normal pointing outward from domain Ω, while  designates the

volumetric fields of forces acting on Ω.

(2)

Proof:

To simplify this demonstration, we shall only consider a simplification of the additive type (i.e.,

feature Ω3). In this case, Eq. (1) is reduced to Eq. (3) 

(3)

We have assumed that the boundary of the simplified domain (i.e., Ω3 or Ω4) feature is free, i.e.,

no boundary conditions applied on it ( ).

Each integral can thus be transformed by using Green’s theorem and integration by parts, leading

to this expression (4) 

(4)

We can now divide the domain boundary into two parts  or , where respectively the

displacement  or surface tension  is given. On each domain, local Eq. (5) relate the stresses,

body forces  and boundary load 

(5)

Eq. (5) yield . The first integral of (4) therefore equals zero. The

boundary  can be divided into  and . On ,  stands for

the opposite of . It also becomes possible to transform (4) into (6)

 (6)
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On , the boundary conditions involve  or , and the second

integral of (5) equals zero. Moreover, in order to simplify this expression, we assumed that the

boundary of the removed feature is free, i.e., , which yields Eq. (6)

 (7)

In the general case and with simplifications of both the fist and second types, a similar

demonstration results in expression (2).

The error e is an absolute error. It proves more meaningful and simpler to introduce a relative

error, denoted ε and expressed in percent of strain energy in the problem, as follows

(8)

2.2 Error estimator

The computation of error e with Eq. (2) would require knowing the exact solution (quantities with

subscript 1) on the boundary of the removed shape feature. This solution is obviously unknown.

The following subsections will present two possibilities for evaluating this particular solution.

2.2.1 Direct estimator from finite element results

For a feature simplification of the additive type,  can be replaced by the solution obtained on

the modified part . The test constitutes a two-dimensional problem with stress plane elements.

From the initial domain, the final domain is obtained by removing three features. In order to

evaluate error estimation efficiency, the solution is computed on the initial part and then on the

simplified part, with these solutions then being used to compute the relative error. Fig. 2 displays

the initial domain, the simplified domain and the corresponding boundary conditions. Table 1

demonstrates that this error estimator effectively indicates the importance of each simplification.

Two drawbacks with this direct error estimation procedure can easily be identified:

- For problems such as those depicted in Fig. 3, our criterion cannot differentiate between the two

simplifications. For the two tension problems, the simplified problem and error estimation are

identical, yet the relative error is ten times higher for the second problem.

- For feature simplifications of the subtractive type, this criterion would not be suitable.
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σ1 nΩ3⋅ 0=

e
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Fig. 2 Two dimensional problem, initial problem with related form features (1, 2, 3) (at left) and simplified
problem with prescribed boundary conditions (at right) 
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2.2.2 Proposed error estimator

This solution was estimated on the initial domain by using a local computation over a domain

surrounding each suppressed detail. Fig. 2 shows an example of such domains (Ω5 and Ω6), which

correspond to sub-domains Ω3 and Ω4 in Fig. 1. The boundary conditions of local problems consist

of the displacements  obtained from the FE computation on the simplified problem Ω2. The bold

lines in Fig. 2 define the boundaries where prescribed displacements from  serve as boundary

conditions for local FE computations in the vicinity of Ω3 and Ω4.

By introducing the local FE computations described above, the relative error ε becomes εest, i.e.,

the value of the proposed error estimator.

From this approximation, it is now possible to differentiate the two problems in Fig. 3 and obtain

a precise error estimation for the two load cases (see Table 2).

2.2.3 Proposed error estimator and discretisation error

The demonstration set forth in Eq. (2) uses properties of the exact solution. The proposed error

estimator replaces the exact solution on the simplified problem with the FE results; hence,

discretisation errors influence both FE results and our proposed error estimator. A range of tests

with various mesh sizes show that these discretisation errors exert only a minor influence on the

U2

U2

Table 1 Comparison between the relative error (ε) and its estimation (εest) for each removed
feature (see in Fig. 2 the location and shape of each feature)

a = relative error ε b = error indicator εest  Robustness index a/b

Feature 1 1, 4%  0, 8% 1.75

Feature 2 4, 6% 3% 1.5

Feature 3 0.65%  0.5% 1.3

Fig. 3 Two traction problems that generate the same simplified problem after the hole removal

Table 2 Comparison between the relative error (ε) and its estimation (εest) for the removed hole
(see in Fig. 3) following the load direction

a = relative error ε b = error estimation εest  Robustness index a/b

Horizontal forces 1, 8% 1, 8% 1

Vertical forces 17% 18, 6% 0, 91
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proposed error estimator. In general, the influence of each simplification is quite different and our

proposed estimator is able to maintain the right order of magnitude.

3. Effectiveness of error estimator

3.1 Two-dimensional problem

To demonstrate the effectiveness of the adopted error estimator, let's consider the two-dimensional

problem with stress plane elements, as illustrated in Fig. 3. The proposed model features a simple

geometry, making it possible to easily compute the solution to the FE problem on both the initial

and simplified domains, following removal of each detail, i.e., shape feature (see Fig. 3). The FE

problem boundary conditions are the same as those given in the previous problem (Fig. 2). Using

the corresponding FE mesh, the real relative error ε given by each simplification can be computed

and compared with the error estimation obtained from the proposed indicator εest. Table 3 provides

the results for each removed detail. It can be noted that the error and its estimation produced very

similar results, i.e., of the same order of magnitude. Due to the discretisation error,  is not the

exact solution to the problem, and the computed error includes not only the error introduced by

geometric simplification but also a number of discretisation error effects. In order to test

discretisation influence, this same information was related using a thinner mesh (Table 4); using

both meshes, the error estimators yield a good assessment of error after each simplification. The

coarser mesh offers greater precision, while the user can compare and evaluate the influence of each

feature removal thanks to the two tables.

U1

Table 3 Comparison between the relative error (ε) and its estimation (εest) for each removed feature
(see in Fig. 5 the location and shape of each feature) 

a = relative error ε b = error estimator εest  Robustness index a/b

Feature 1 0, 28% 0, 22% 1, 27

Feature 2 0, 61% 0, 6% 1, 01

Feature 3 1, 4% 1, 64% 0, 85

Feature 4 0, 65% 0, 78% 0, 83

Feature 5 4, 6% 4% 1, 15

Table 4 Comparison between the relative error (ε) and its estimation (εest) for each removed feature 
(see in Fig. 5 the location and shape of each feature), F.E. computation on a finer mesh 

a = relative error ε b = error estimation εest  Robustness index a/b

Feature 1 0, 13% 0, 16 % 0, 81

Feature 2 0, 67% 0, 8 % 0, 8

Feature 3 1, 4% 1, 64 % 0, 85

Feature 4 0, 95% 0, 78 % 1, 3

Feature 5 5, 2 % 3, 3 % 1, 57
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3.2 Thermal shell problem

For the second test of adopted error estimator effectiveness, let’s consider a linear thermal

problem with stationary conduction. This simulation makes use of a shell element (see Fig. 6). The

temperature is given on edge 1 and a conduction flux is imposed on edge 2. Table 5 lists the

various feature-specific influences and robustness indices: good correlation between the error and its

estimation can be observed.

3.3 Three-dimensional problem

The last test is a three-dimensional problem of the linear static type (Fig. 7), in the form of a

machine part. The FE problem boundary conditions are a clamped zone (bottom surface) and a

uniform pressure zone (left-hand side surface), as depicted in the figures. Table 3 presents the

results for each removed detail. It can be remarked that the error and its estimation produced very

close results (of the same order of magnitude), and the user can note the limited influence of certain

feature removals. It can therefore be assumed that the proposed indicator εest enables estimating the

influence of each shape simplification with good accuracy.

Fig. 4 Neighbouring sub domains, Ω5 and Ω6, for the FE local computations around Ω3 and Ω4 respectively,
used for the simplified problem Ω2 of Fig. 1 

Fig. 5 Two dimensional static problem, initial problem with related form features (1, 2, 3, 4, 5) (at left) and
conditions and simplified problem (at right initial part) 
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4. Adaptive simplification process

The a posteriori FE error estimator may be incorporated into an adaptive process of shape

simplification. The shape of the simplified part can then be refined after an initial FE simulation,

depending on the influence of its removed details on FE analysis results. Fig. 8 summarises the

complete adaptive modelling process. A simulation is first conducted on a very coarse modelling of

Fig. 6 Shell thermal problem, initial problem with related form features (1, 2) (at left) and and simplified
problem (at right initial part) 

Table 5 Comparison between the relative error (ε) and its estimation (εest) for each removed feature
(see in Fig. 6 the location and shape of each feature) 

a = relative error ε b = error estimation εest Robustness index a/b

Feature 1  0.64%  0.69% 0.93

Feature 2  2.1%  2.2% 0.96

Fig. 7 Three dimensional static problem, initial problem with related form features (1, 2, 3, 4) (at left) and
with prescribed boundary conditions and simplified problem (at right) 
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the structure, with the user responsible for inputting the accuracy bounds. According to the

influence indicator of each simplification and the given accuracy, a selected feature is subsequently

added to the first coarse domain.

Such an adaptive process has been illustrated in Fig. 9, which displays the initial CAD model

along with the related boundary conditions. This problem is still three-dimensional and of the linear

static type. The boundary conditions are as follows: all four feet of the table are clamped, and a

force is applied on cylinder 1. Fig. 10 shows the initial simplified model. During the first stage of

simplification, 26 shape sub-domains, of both the subtractive and additive types, are suppressed.

The initial model cannot be meshed directly because some of the details are too small. After

performing a simulation on the simplified domain, the influence indicator for each removed shape

feature could be computed. For this example, if the user requires an accuracy of 20%, the simplified

model would not need to be readapted. Otherwise, if a 5% accuracy were required, three details

Fig. 8 Preparation of models for the FE analysis, adaptive modelling process

Fig. 9 Adaptive modelling process, initial CAD model 
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would need to be reinserted into the simplified domain in order to obtain the new adapted domain,

as indicated on the top of Fig. 11; moreover, if an accuracy of 1% were required, nine shape

features would have to be reintroduced to produce the new adapted domain (bottom of Fig. 11).

To be useful, such an adaptive process needs to be automatic. The adaptive modelling platform

requires a different set of tools for each step of the process (Fig. 8).

For the simplification step or to define the adaptive domain, automatic tools are relied upon to

suppress or add features. In the example presented, the history tree has been used manually.

For the indicator computation, several tools are introduced for purposes of:

- locating each simplified feature,

- identifying a domain around each simplified feature,

- meshing the feature and its surrounding domain,

- transporting the FE result onto the domain boundary to obtain boundary conditions for the local

computation.

Fig. 10 Adaptive modelling process, simplified model 

Fig. 11 Adaptive simplified domain following the accuracy given by the user, 5% on the top domain and 1%
on the bottom domain 
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For this example, the tools on hand use commercial CAD software and the process involves:

- conducting Boolean operations between the simplified and initial CAD models (Fig. 12),

- meshing the Boolean operation result,

- partitioning this mesh in the various feature meshes,

- using both the simplified mesh and the feature mesh to define a new mesh around the feature

(Fig. 13). For this local problem, we used an FE mesh of the removal detail along with a subset

of the FE mesh of the simplified problem; this subset was formed by the subset of FE elements

from this mesh lying closest to the boundary of the suppressed feature and could be defined

using a finite number of FE element layers in the vicinity of this feature. However, since FE size

in the vicinity of a removed sub-domain is typically large, a small number of layers should

always enable achieving a correct transmission of the mechanical fields, in accordance with

Table 6 Comparison between the relative error (ε) and its estimation (εest) for each removed feature
(see in Fig. 7 the location and shape of each feature) 

a = relative error ε b = error estimation εest  Robustness index a/b

Feature 1  0, 014%  0, 009% 1, 56

Feature 2 0, 27% 0, 26% 0, 96

Feature 3 8, 4%  8, 3% 1, 01

Feature 4 16% 18% 0, 89

Fig. 12 Results of the Boolean operations, Ω1-Ω2 on the left and Ω2-Ω1 on the right 

Fig 13 Examples of mesh around simplified feature for the local computation
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Saint-Venant’s principle. According to tests performed in the past, the use of 2 or 3 FE layers

appears to offer an acceptable solution.

- The two meshes introduced for the local computation are non-conforming (note: an FE mesh is

considered conforming if the intersection result of two distinct elements is either empty or a

vertex or an edge or a face - should the FE elements be volumes - common to the considered

elements). A kinematic linear relation can then be defined to link the FE meshes. Tests have

shown that the accuracy of error estimation is not significantly influenced by this non-

conformity.

Let’s also point out that the goal here is to simply evaluate the order of magnitude of the

influence of each shape detail. The various examples presented have indicated that these orders of

magnitude differ greatly, implying that the error estimation does not need to be extremely accurate.

5. Conclusions

Result accuracy monitoring represents one of the main problems associated with numerical

simulations. This accuracy depends on a number of factors, including discretisation, boundary

condition modelling, the constitutive law and geometric simplifications. We have proposed an a

posteriori error estimator to quantify the influence of geometric simplification. Several tests have

shown that this error and its estimation yield very similar results, i.e., of the same order of

magnitude. It can therefore be assumed that the proposed indicator enables estimating the influence

of each shape simplification with good accuracy. Use of this indicator in an adaptive modelling

process helps define the appropriate adaptive domain for the level of accuracy prescribed by the

user. 
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