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Abstract. The beam string structure (BSS) has been widely applied in large span roof structures, while
no analytical solutions of BSS were derived for it in the existing literature. In the first part of this paper,
calculation formulas of displacement and internal forces were obtained by the Ritz-method for the most
commonly used arc-shaped BSS under the vertical uniformly distributed load and the prestressing force.
Then, the failure mode of BSS was proposed based on the static equilibrium. On condition the structural
stability was reliable, BSS under the uniformly distributed load would fail by tensile strength failure of
the string, and the beam remained in the elastic or semi-plastic range. On this basis, the limit load of BSS
was given in virtue of the elastic solutions. In order to verify the linear elastic and limit state solutions
proposed in this paper, three BSS modal were tested and the corresponding elastoplastic large deformation
analysis was performed by the ANSYS program. The proposed failure mode of BSS was proved to be
correct, and the analytical results for the linear elastic and limit state were in good agreement with the
experimental and FEM results. 

Keywords: beam string structure; Ritz method; limit state; failure mode; ANSYS; modal test;
elastoplastic large deformation analysis.

1. Introduction

In 1984, Prof. Masao Saitoh first proposed the concept of beam string structure (BSS), which is a
self-balancing system formed by combining compression-bending beam and tension string (Fig. 1)
(Saitoh and Tosiya 1985). Stiffened and prestressed by the high tensile strength string, the members
of BSS can be arranged to achieve the best use of their individual material properties. As a result,
BSS is a light-weight structure which bears the capacity of covering a large span (Levy et al. 1994).
Up to the present, BSS has been widely applied in large span roofs of stadiums, public halls and
aeroplane hangers, mainly in Japan and China. Maehashi Green Dome, Izumo Dome, Anoh Dome
(Saitoh and Okasa 1999), Shanghai Pudong International Airport, Guangzhou International
Exhibition Center and Harbin International Sports, Exhibition Center (Huang 2005) and Shanghai
Yuanshen Arena (Liu 2007) are some typical BSS roof structures.

In the late 1980s, based on a set of model tests, Masao Saitoh found that BSS developed larger
load carrying capacity than the common rigid beam or truss structures (Saitoh and Ohtake 1988,
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Saitoh 1988). In 1994, Some Japanese scholars discussed the role of the string in hybrid string
structure (HSS, including BSS) (Saitoh and Okasa 1999, Hosozawa et al. 1999). In the same year,
Masao Saitoh studied the mechanical characteristics of a light-weight complex structure composed
of a membrane and a beam string structure (Saitoh et al. 1994). With the construction of some
large-span BSS roofs in the last two decades, a series of research work of BSS roofs has been
conducted in China. In 1999, the full-scale static test (Chen et al. 1999) and 1:20 scale model
shaking-table test (Li et al. 1999) were carried out for the BSS roof of Shanghai Pudong
International Airport. Nevertheless, these works mentioned above are all concerned with the
experimental or numerical studies of BSS, yet no analytical solutions have been derived. On the
other hand, the previous works mostly deal with the elastic behavior of BSS, while the topic of
elastic-plastic behavior has been little covered, and the research of failure mode still remains blank
yet.

The so-called Ritz method (1908) is a frequently used variational method in structural analysis.
This method has been applied in solving boundary value and eigenvalue problems especially for
some simple members such as beams, plates and so on. The objective of this paper is to obtain the
linear elastic and limit state solutions via the Ritz method for BSS, which is a complicated structure
composed of the compression-bending beam, tension string and compression struts.

2. Research significance

This paper mainly focuses on the most commonly used arc-shaped BSS. In the first part, the
linear elastic solutions for BSS under the vertical uniformly distributed load and prestressing force
are derived by the Ritz method. Second, the failure mode of BSS under the uniformly distributed
vertical load is analyzed, and the corresponding calculation formulas for the limit load are given in
virtue of the elastic solutions. The solutions proposed in this paper can be applied in the design and
analysis of BSS. 

3. Linear elastic solutions

3.1 Problem definition and the Ritz method

Consider an arc-shaped BSS (as shown in Fig. 2) of span L, rise f1, rag f2. The modules of
elasticity, area and moment of inertial of the beam are E1, A1 and I1, respectively. The modules of
elasticity and area of the string are E2 and A2, respectively.

Generally, in order to control the deformations and internal forces of BSS under the dead load, the
prestressing force is introduced in the string intentionally before extra vertical load applied. The

Fig. 1 Schematic of BSS
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prestressing force T0 (prestressing force in a broad sense) which occurs in a string can be indicated
as the sum of the tensile force Te (existing tensile force) caused by the equilibrium and the tensile
force Tp (prestressing force in a narrow sense) which is introduced intentionally to control the
behavior (Saitoh and Okasa 1999). 

T0 = Te + Tp (1)

The value of Te changes depending on the self weight of BSS during the stretching phase,
structural system and degree of redundancy. Since the structural rigidity and boundary conditions
are quite different under the vertical load (including the load applied during the stretching as well as
the additional load applied after the stretching) and the prestressing force, these two effects should
be analyzed separately and then superimposed together.

The Ritz method is based on the following ideas. The displacement functions of BSS are given as
a certain kind of series 

 (2)

where  and  are linearly independent functions which satisfy the geometric boundary
conditions, and wi and ui are as yet unknown real constants.  and  are also called the base
functions. 

The total potential energy (strain energy plus load energy) of BSS can be given by Π (w1, w2, ...,
wn, u1, u2, ..., un, f )  where f is the external load.

According to the principle of the minimum of the potential energy, the functional Π is minimized
by simply taking the partial derivatives

 (3)

And the system is uniquely solvable (Rektorys 1979).
The following assumptions are adopted in the analysis:
• The materials are linear elastic.
• The struts keep up-right.
• The shear deformation of the beam is not considered.
• The string is not capable of carrying bending loads. 
Note that the positive values denote the upward and rightward displacement, the tensile force and

the upward external force.

3.2 Strain energy

Consider a micro-segment AB in Fig. 3. The initial length is . After
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Fig. 2 Schematic of an arc-shaped BSS
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deformation, the length changes to , the axial strain is given by

(4)

The axial force of the micro-segment is

(5)

And N and ds can be also given by 

 (6)

 (7)

where H is the horizontal component of the axial force N, and  
Hence the axial strain energy is

(8)

The bending strain energy is

(9)

3.3 Solutions under the vertical uniformly distributed load 

Consider a BSS under a uniformly distributed load q, as shown in Fig. 4. The initial shapes of the
beam and string are both arcs: the beam is
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Fig. 3 Schematic of the deformation of a micro-segment
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(10)

and the string is

(11)

where R1 and R2 are the curvature radius of the beam and string, respectively.
By symmetry, the horizontal displacement of the mid-span of the BSS is assumed to be zero.

Consequently, the base functions of the BSS can be given as the following Fourier series

(12)

The single dimensional bases are adopted here, which were quite similar to the deformation of BSS

(13)

As mentioned already, the struts are assumed to be upright, so the horizontal components of axial
forces of each segment of the string are equal. Accordingly

(14)
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Fig. 4 Schematic of a BSS under a uniformly distributed load
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Further, some simplifications are made for Eq. (14)

and  

where, ,  

After the simplification, we have

(15)

where K1, K2 and K3 are some constants as follows

Hence, the strain energy of the strain is

(16)

Simplified by using the Taylor’s series, we obtain

(17)
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Analogously, the axial strain energy of the beam is given by

(18)

where 

The bending strain energy of the beam is

(19)

The load energy is

(20)

So the total potential energy of the BSS can be given by

(21)
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, ,

Further, we have

(23)

As a matter of fact, when the displacement is relatively small, the load and displacement are
almost in a linear relationship. Thus, we neglect the higher-order items  and , and obtain

(24)

where E is the equivalent rigidity of the BSS, .

Applying Eq. (25) in Eq. (15) and Eq. (6), and neglecting the higher-order items, we obtain the
axial force of the beam and string

(25)

and the bending moment of the beam

(26)

3.4 Solutions under the prestressing force

As shown in Fig. 5, the beam is separated as our subject of study, while the effective prestressing
force H in the string and the supporting forces of the struts are considered as external forces applied
to the beam. The supporting forces of the struts are simplified as a uniformly distributed load

, where  is the included angle of H and the horizontal direction.
By symmetry, the horizontal displacement of the mid-span of the BSS is assumed to be zero.
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The strain energy of the beam is given by

(28)

Hence the total potential energy of the beam is

(29)

Applying the principle of the minimum of the potential energy, we have ,
, i.e., the system
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The experimental results showed that when the displacement is relatively small, the prestressing
force and displacement are almost in a linear relationship. Thus, we neglect the higher-order items,
and obtain

(31)

where, E0 is the equivalent rigidity of the beam under the prestressing force 

Since the beam is statically determinated, hence its internal forces can be obtained by static
equilibrium directly.
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Fig. 5 Schematic of a BSS under the prestressing force
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4. Limit state solutions

4.1 Failure mode

From the viewpoint of static equilibrium, BSS is a self-balancing system, i.e., the horizontal
components of the axial forces of the beam and string are equal. Generally, for the sake of
architectural effects, the rise to span ratio of the beam and the rag to span ratio of the string are
conventionally very close to each other. Consequently, the axial forces of the beam and string are
quite close.

On the other hand, in real BSS roof structures, the area of the beam cross section is usually 8 to
20 times the area of the string cross section (Huang 2005, Liu 2007), while the limit strength of the
soft steel used in the beam is commonly about a quarter of the limit strength of the high tensile
cables used in the string. So when the string reaches its strength limit, the end segments of the
beam near the supports, where the moments are relatively low, still remain in the elastic range. And
the middle segments of the beam, whose moments are relatively high, are under the following two
possible states:
• Entirely remain elastic 
• Partially or entirely enter the plastic range
If the beam remains elastic, the BSS will fail by the tensile strength failure of the string. And

then, we only need to consider the latter state. The typical stress-strain curves of the soft steel used
in the beam and the hard steel of the string are presented in Fig. 6. It can be seen that the limit
strain of the soft steel (10% or higher) is much higher than the hard steel (4% to 7%). As a matter
of fact, the commonly used cable in BSS consists of a number of parallel or twisted high-strength
wires. Caused by the possible initial imperfection and uneven distribution of stress, the limit
strength and limit strain of a cable is much lower than those of a single wire. The test results (Fu
et al. 2000) of the cables taken from the Williamsburg Bridge (by Steinman in 1988 and Biebiek in
1990, respectively) showed that the limit strain of those cables was only about 0.03. As mentioned
already, when the string reaches its strength limit, the end segments of the beam remain elastic.
Restricted by the elastic zone, the strain of the plastic zone of the beam is unable to develop freely.
So, the maximum strain of the beam remains in the same order of magnitude as the elastic zone,
and the stress of the beam is much lower than the limit stress.

Fig. 6 The stress-strain curves of soft steel and hard steel 
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Consequently, we can come to the conclusion that, on condition that the structural stability is
reliable after lateral braces applied, the failure mode of BSS is the tensile strength failure of the
string, and the beam remains in the elastic or semi-plastic range.

4.2 Ultimate load

Consider a semi-structure under a uniformly distributed load q, as shown in Fig. 7. 
By equilibrium of bending moments at the support, we have

(32)

so

(33)

Note that, the sectional rigidity of the beam is a small part of the global rigidity of the BSS.
Accordingly, the bending moment of the beam M is much smaller than the bending moment of the
BSS . Thus, although M and the vertical load q are in a nonlinear relationship, N can be
approximately considered linear to q, we obtain

(34)

Further, the ultimate load of the BSS

(35)

where k can be given by the linear elastic solutions proposed already

(36)

and Fu is the ultimate stress of the string.
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Fig. 7 Semi-structure analytical model
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5. Experimental and FEM verification

In order to verify the linear elastic and limit state solutions proposed in this paper, three scaled
BSS specimens (BSS-1~BSS-2 (Xue and Liu 2009) and BSS-3 (Li 2007)) were tested, and
corresponding elastoplastic large deformation analysis was conducted. In addition, the stretching test
of the full-scale BSS specimen (BSS-4 (Chen et al. 1999)) of Shanghai Pudong International
Airport was also served as verification. The design parameters and material properties of specimens
are presented in Table 1 and Table 2, respectively. 

The primary process of the stretching was the following:
• Installation of the equipments for stretching.
• Application of the extra mass load.
• Stretching.
• Anchoring.
The loading installations of the tests are shown in Fig. 8 and Fig. 9. In order to assure the stability

of the specimens, several lateral braces were applied. Load sensors were set under each hydraulic
jack to obtain the accurate load values.

Table 1 Design parameters of specimens

Specimens L
(mm)

f1
(mm)

f2
(mm)

Beam 
(mm)

String
(mm)

Struts
(mm)

E1

(MPa)
E2

(MPa)

BSS−1 7000 280 385 □ 60×40×2 2φ5 φ18 2.06×105 2.08×105

BSS−2 7000 350 385 □ 60×40×2 2φ5 φ18 2.06×105 2.08×105

BSS−3 7000 700 350 φ76×2 1φ5 φ18 1.85×105 2.08×105

BSS−4 84140 5160 6540 □ 600×400×18
+2 □ 300×300×6 241φ5 350×10 2.06×105 1.85×105

Table 2 Measured material properties for specimens

Specimen Members Fy (MPa) Fu (MPa) E1 (MPa) E2 (MPa) Elongation (%)

BSS−1
Beam 322 371

2.06×105 2.08×105
10.0

String 1582 1873 7.0

BSS−2
Beam 370 450

2.06×105 2.08×105
14.3

String 1582 1873 7.0

BSS−3
Beam 224 461

1.85×105 2.08×105
9.5

String 1582 1873 7.0

BSS−4
Beam 325 550

2.05×105 1.85×105
21.0

String 1330 1570 4.0

Note that the beams of BSS-1~BSS-3 composed of cold-rolled forming steel sections, so the elongations of
the beams of BSS-1~BSS-3 are relatively lower than the commonly used soft steel 
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5.1 Verification of linear elastic solutions

Table 3 presents the comparison of the analytical results, experimental results and the FEM results
in elastic stage, and a good agreement can be observed. 

5.2 Verifications of limit state solutions

5.2.1 Failure mode

In order to verify the failure mode and the corresponding calculation formulas proposed in this
paper, specimens BSS-1~BSS-3 were loaded to the limit state. Fig. 10 to Fig. 15 show the
experimental and FEM strain curves of the beam and string of the three specimens. We can see that,

Fig. 8 Loading installation of tests

Fig. 9 Loading test of the specimens
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when the specimens fail, the stresses of the string grow quite close to the ultimate stress (the strains
of the string are larger than 9000 µε, for BSS-1, the strains are even higher than 13000 µε, which
means the stresses are up to 1600 MPa or higher from Fig. 6(b)), the stresses of the beam are still
in the elastic range or slightly higher than the yielding stress (the strains are lower than 2000 µε).
That is in good agreement with the failure mode proposed already.

 

Table 3 Comparison of analytical results, experimental results and FEM results

Specimen Results
Stretching phase Vertical load bearing phase

T0

(kN)
camber
(mm)

Load
(kN/m)

v
(mm)

N1

(kN)
M1

(kN·m)
N2

(kN)

Ana. 7.34 21.18 2.35 -12.45 -21.62 0.09 21.66
Exp. 7.34 20.75 2.35 -13.91 -19.44 0.11 21.76

BSS-1 FEM 7.34 20.50 2.35 -13.98 -18.84 0.12 22.27
Ana./ Exp. - 1.02 - 0.90 1.11 0.82 1.00
Ana./ FEM - 1.03 - 0.89 1.15 0.75 0.97

Ana. 6.76 7.45 2.35 -18.06 -20.23 0.13 19.87
Exp. 6.76 7.21 2.35 -18.89 -17.75 0.15 19.24

BSS-2 FEM 6.76 7.31 2.35 -16.90 -17.82 0.15 19.74
Ana./ Exp. - 1.03 - 0.96 1.14 0.87 1.03
Ana./ FEM - 1.02 - 1.07 1.14 0.87 1.01

Ana. 2.76 17.95 1.40 -7.82 -9.35 0.07 9.49
Exp. 2.76 18.34 1.40 -8.38 -9.90 0.08 9.95

BSS-3 FEM 2.76 17.70 1.40 -8.27 -9.73 0.08 9.75
Ana./ Exp. - 0.98 - 0.93 0.94 0.88 0.95
Ana./ FEM - 1.01 - 0.95 0.96 0.88 0.97

Ana. 620 313 - - - - -
Exp. 620 320 - - - - -

BSS-4 FEM 620 304 - - - - -
Ana./ Exp. - 0.98 - - - - -
Ana./ FEM - 1.03 - - - - -

Fig. 10 Maximum beam strain of BSS-1 Fig. 11 Maximum string strain of BSS-1
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5.2.2 Limit load

Table 4 presents the comparison of the analytical, experimental and the FEM results of the limit
load of the three specimens, and a good agreement can be observed. 

6. Conclusions

The linear elastic solutions of conventional arc-shaped BSS were derived by the Ritz method.
Based on the failure mode analysis, BSS would fail by the tensile strength failure of the string, and
the beam remained in the elastic or semi-plastic range under uniformly distributed load, and on
condition the structural stability was reliable. Further, the calculation formulas of the limit load of
BSS were obtained in virtue of the elastic solutions. 

In order to verify the proposed linear elastic and limit state solutions, this paper conducted the

Fig. 12 Maximum beam strain of BSS-2 Fig. 13 Maximum string strain of BSS-2

Fig. 14 Maximum beam strain of BSS-3 Fig. 15 Maximum string strain of BSS-3

Table 4 Comparison for limit load of analytical, experimental and FEM results

Specimens Ana. (kN) Exp. (kN) FEM (kN) Ana./Exp. Ana./FEM

BSS−1 6.15 6.44 6.14 0.95 1.00

BSS−2 6.79 6.59 6.69 1.03 1.01

BSS−3 4.19 3.89 4.23 1.08 0.99



82 Weichen Xue and Sheng Liu

experimental work on three BSS specimens, and performed the corresponding elastoplastic large
deformation analysis. In addition, the stretching test of the full-scale BSS specimen of Shanghai
Pudong International Airport was also served as verification. Comparisons showed the analytical,
experimental and FEM results were in good agreement.
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