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On the accuracy of estimation of rigid body inertia 
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Abstract. The rigid body inertia properties of a structure including the mass, the center of gravity
location, the mass moments and principal axes of inertia are required for structural dynamic analysis,
modeling of mechanical systems, design of mechanisms and optimization. The analytical approaches such
as solid or finite element modeling can not be used efficiently for estimating the rigid body inertia
properties of complex structures. Several experimental approaches have been developed to determine the
rigid body inertia properties of a structure via Frequency Response Functions (FRFs). In the present work
two experimental methods are used to estimate the rigid body inertia properties of a frame. The first
approach consists of using the amount of mass as input to estimate the other inertia properties of frame.
In the second approach, the property of orthogonality of modes is used to derive the inertia properties of
a frame. The accuracy of the estimated parameters is evaluated through the comparison of the
experimental results with those of the theoretical Solid Work model of frame. Moreover, a thorough
discussion about the effect of accuracy of measured FRFs on the estimation of inertia properties is
presented.

Keywords: rigid body; inertia properties; frequency response functions; mode shapes; transformation
matrix.

1. Introduction

Estimation of the inertia properties of rigid bodies is important in the design of structures which
rotate during their motion such as airplanes or satellites. In most cases an accurate analytical model
of structure is not available and therefore the computational approaches can not be used to estimate
the inertia properties of structure. The alternative approach resides on the use of experimental data
available from measurements. Currently there are two different approaches to estimate the inertia
properties of a structure from experimental data:

1. Time domain approaches
2. Frequency domain approaches

1.1 Time domain methods

The inertia properties can be obtained by the pendulum methods (Holzweissig and Dresign 1994).
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In this approach the structure is hanged and forced to oscillate within small amplitudes as a
pendulum. The moment of inertia of structure can be obtained by measuring the period of
oscillation. This is an important approach and is being used widely. However, friction, the effect of
surrounding air and the effect of extra masses bias the results.

The experimental modal data can be used in the time domain approaches to calculate the inertia
properties. There is no need to transfer the data from time domain to frequency domain and conduct
the signal processing procedures. Pandit and Hu (1994) obtained the inertia properties of rigid
bodies with damped boundary conditions in the time domain using the rigid body equations of
motion. Pandit et al. (1992) used the transformation matrices to change the only translational
motions to the rotational and translational motions. Hahn (1994) used a 6 Multi-Axis test facility to
measure the accelerations and excitation forces and obtain the inertia properties of rigid body. Hou
et al. (2009) presented an improved approach to identify the inertia parameters of odd-shaped
bodies using a trifilar pendulum. The method is efficient and reliable for the assemblies and
structures with complex shapes. Using this method, the vibration period of body can be measured
simply and accurately.

1.2 Frequency domain methods

There are different approaches to obtain the inertia properties of rigid bodies in frequency domain:
a) Modal parameter methods
b) Direct physical parameter identifications
c) Residual inertia methods
Wei and Reis (1989) developed a method to fit a polynomial to the measured rigid body modes to

determine the rigid body properties. Bretl and Conti (1987) proposed two different methods between
them, the procedure using masslines as input requires the knowledge of the body mass. Mangus et al.
(1992) and Nakamura (1995) presented a least square curve fitting method used to obtain the rigid
body properties from the measured frequency response functions. The method was applied to two
highly damped systems. Link (1985) considered the general methods of the behavior of an elastic
system and does not restrict the methods to ideal rigid systems. One pitfall of the method is that all
the rigid body modes of system are not excited. Link (1996) also proposed a method in which the
inertia properties of the body were identified using the base excitation. The advantage of this method
is that the rigid body responses are separated from the elastic modes. Gatzwiller et al. (2000)
designed the sensors that not only can measure the dynamic forces but also the inertia properties. It
seems that Residual inertia methods have more accurate results compared to the other methods.
Almeida et al. (2008) evaluated and compared three frequency domain methods. This evaluation
showed that none of the frequency domain methods is the superior one and depending on the case,
one of the frequency methods is more efficient than others. It is advised to use more than one
method to obtain the more reliable results. Atchonouglo et al. (2008) proposed an algorithm based on
least square method and conjugate gradient method to evaluate the inertia properties of a structure. 

2. Theory

In the present work the estimation of the inertia parameters of a frame follows closely two
methods in the work of Conti and Bretl (1989) and Almeida et al. (2007). In both methods the
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responses are measured in various points and directions due to the impact excitation. The rotational
degrees of freedom can not be measured easily. However, the measured translational responses and
excitations can be transformed to the equivalent translational and rotational responses and
excitations at the center of gravity. The obtained FRFs at the center of gravity are then used to
extract the natural frequencies, damping ratios and mass-normalized mode shapes using
identification methods (Ewins 1995). The first approach consists of using the amount of mass as
input and evaluates three coordinates of center of gravity and six moments of inertia. The second
method considers that the coordinates of center of gravity is known and evaluates the mass of
structure and six moments of inertia. The inertia properties of frame are evaluated using the
theoretical modeling and the results are compared with those of the experimental approaches. 

2.1 Method 1

Fig. 1 shows a rigid body with the viscously damped elastic supports. The equation of motion at
the center of gravity is 

(1)

 and  are the mass, the stiffness and the damping matrices about the center of gravity
and  is the displacement vector at the center of gravity including three translational  and
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Fig. 1 A rigid body on the elastic supports
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Where  and  are the moments of inertia with respect to x, y and z coordinates
respectively and  and  are the cross moments of inertia. Considering the behavior of a
rigid body, the relation between the rotational and translational motions of the centre of gravity and
translational motions of the measured points can be expressed as

(3)

Where  is the displacement vector of measured translational responses at the measurement
points and is given by

(4)

n is the number of accelerometer locations. Xi is the translational response measured by an
accelerometer in the translational directions at point i.  is the transformation matrix between the
rigid body motion at the center of gravity and the translational measurement.  is formed
depending on the direction of measurement of Xi. For instance if X1 is measured in +X direction, X2

is measured in +Y direction, X3  is measured in +Z direction, X4 is measured in −X direction, X5 is
measured in −Y direction and X6 is measured in −Z direction,  is given by

(5)

Where  are the coordinates of center of gravity and  are the coordinates of ith

accelerometer location. The number of measurement points, n is required to be at least 6. For ,
Xg can be calculated using pseudo inverse as

(6)

Where

 (7) 

The equation of motion with respect to the measurement points is

(8)
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Let the exciting force  be applied to the structure at point , then the
equivalent force vector at the center of gravity can be obtained as

  (13)

Where

  (14)

Therefore

 (15)

It can be shown that

 (16)

Where Tmo is the transformation matrix with respect to the global coordinate system and is the
same as Tmg as shown in Eq. (5) in which the coordinates of center of gravity  are
replaced by the coordinates of origin .

(17)

Where
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And I is a 6 × 6 unit matrix. Gog has an interesting property that
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Then

(23)

From the state space model of a vibrating system

(24)

In which µ is the diagonal matrix of eigenvalues and L is the corresponding mass-normalized
mode shapes or eigenvectors about the measurement coordinate. The complex eigenvalues and
eigenvectors can be arranged in conjugate pairs as 

 (25)
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In which  and  are conjugate pairs. Therefore Eq. (24) can be written as

(27)

Thus

(28)

 (29)

Therefore from Eq. (22) and Eq. (29)
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Where  is the conjugate of . Eq. (30) shows that Q can be determined if
the location of measurement points and the modal parameters are known. If the number of
measurement points is greater than 6, Q can be calculated by substituting  by  in Eq. (30).

From Eq. (23) and Eq. (30) 
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Where m is the mass of structure and M is the inertia tensor relative to the origin O as shown in
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Four equations are obtained

(33)

(34)

(35)

(36)

As K11 is a symmetric matrix, the left hand side of Eq. (33) is also symmetric, it can be concluded
that

(37)

Where qij is the ith row and jth column element of the matrix Q defined in Eq. (30). Therefore the
coordinates of the center of gravity can be calculated from Eq. (36). If the mass of structure m, is
known,  can be calculated from Eq. (33). Thus  is calculated from Eq. (34). As ,
M is calculated from Eq. (35). Finally  is calculated from Eq. (36). Therefore knowing the mass
of system all other 9 inertia properties can be derived. The stiffness matrix can also be determined.
As the location of centre of gravity is known Kg and Mg can be determined. Therefore using this
procedure, the inertia properties with respect to the center of gravity can be determined.

2.2 Method 2

The orthogonality of the mass-normalized mode shapes with respect to the mass matrix can be
expressed as

(38)

where Mg is the mass matrix with respect to the center of gravity as shown in Eq. (2) and Lg is the
mass-normalized mode shape matrix with respect to the center of gravity. Therefore mass matrix Mg

can be obtained as

 (39)

In this method it is assumed that the location of the center of gravity is known from theoretical
modeling or from method 1. Then the moments of inertia of structure are obtained through
calculating Mg from Eq. (39).

3. Experimental test case - steel frame

Fig. 2 shows the experimental case study of a steel frame. The frame is made of 20 × 20 mm steel
bars with the mass of 4.16 kg. The frame was suspended from the elastic supports which control the
motion of structure in all directions. The measurement points were selected taking into due account
the recommendations proposed by Lee et al. (1999) so that all the modes of structure are clearly
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excited. Fig. 3 indicates the locations of excitation and response points. The test setup is presented
in Fig. 4 showing the support conditions of the frame. Table 1 indicates the measurement points and
the direction of measurement at each point with respect to the global coordinates. The force was
applied to the structure via an impact hammer BK 8202. Six accelerometers were attached at the
point of excitation and 5 other points of structure so that they can show all the rigid body modes.
The Frequency Response Functions (FRFs) of frame was measured and processed by a multi
channel BK analyzer allowing for simultaneous acquisition of six responses and one force in a
conventional modal test. The frequency range was chosen to be 0-1.6 KHz, in order to detect the
first elastic mode of frame. 

Fig. 2 The steel frame dimensions

Fig. 3 The location of excitation points and response measurements
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According to the vibration theory if a structure is excited in the free-free condition, all the six
rigid body modes have zero natural frequencies. However, when the structure is hanged from a soft
spring, the rigid body modes appear in low frequencies depending on the stiffness of suspension
springs. Fig. 5 presents the measured frequency response functions of the frame in the frequency
range of 80-430 Hz showing that the first elastic mode of frame is at 100 Hz. Usually the rigid

Fig. 4 Test setup

Table 1 The position of measurement points

Point 
Number

Measurement points Measurement 
DirectionX (mm) Y (mm) Z (mm)

1 0 820 0 +Y
2 800 820 0 +Y
3 800 700 0 +Z
4 800 90 0 +Z
5 820 0 110 +X
6 820 0 -90 +X

Fig. 5 The FRFs of frame showing its first elastic mode
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body modes are in the range of 10-20 percent of the first elastic mode. The FRFs of the frame was
measured again in the frequency range of 0-60 Hz in order to obtain a better resolution. Fig. 6
shows the six rigid body modes of structure in the frequency range of 0-60 Hz. The highest rigid
body mode is at 33.139 Hz which is not close to the first elastic mode at 100 Hz. 

For the set of six measured FRFs, the necessary modal analysis was undertaken in order to extract
the modal parameters (natural frequencies, mass-normalized mode shapes and damping ratios). The
modal analysis software MODENT module of ICATS (1998-2000) was used for this process. The
NLLS (Non Linear Least Square) modal identification method was chosen inside MODENT software.
The results of modal analysis were used in the first method introduced in section 2.1 relative to the
defined coordinates. The mass of structure was required for the first method which was easily
measured by weighting the structure. The coordinates of center of gravity were calculated to be:

ug = 0.4208 mm, vg = 0.4618 mm, wg = 0.000217 mm

The inertia parameters of structure were computed using the Solid Works software for the sake of
comparison. The mass of accelerometers (5 gr each) were considered in the Solid Works model
showing the negligible effects (maximum 1% error) on the calculated inertia properties. To extract
the inertia tensor values from the second method, the coordinate system were transferred to the

Fig. 6 The six rigid body modes of frame

Table 2 Comparison of the inertia properties from method 1, method 2 and Solid Work

Characteristics Test Value (method1) Test value (method 2) Solid work value

Xcg (m) 0.4208 Known 0.4

Ycg (m) 0.4618 Known 0.424

Zcg (m) 0.000217 Known 0.0007641

Ixx (kg.m2) 0.5323(9.7%) 0.52913(9%) 0.485026

Iyy (kg.m2)  0.5729(5.8%) 0.6327(4%) 0.608268

Izz (kg.m2) 1.123(5.3%) 0.8423(21%) 1.0665

Ixy (kg.m2) -0.0008712(8.75%) -0.000975(21.9%) 0.0008

Ixz (kg.m2) -0.004725(18%) -0.00432(8%) -0.004

Iyz (kg.m2) 0.003251(22.6%) 0.003714(11.6%) 0.0042
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center of gravity using the calculated coordinates of center of gravity from Solid Works. The mass-
normalized mode shapes were calculated about the new system of coordinates. Then the moment of
inertia parameters were extracted using Eq. (40). The percentage of difference of results of methods
1 and 2 compared to Solid Work results are given in Table 2. Comparison of the test results and the
theoretical results are also given in Figs. 7 and 8 on the bar graphs.

From the observation of the results in Table 2 and Figs. 7 and 8 it can be concluded that there are
small error percentage between the results. The errors in the experimental methods 1 and 2 are due
to inherent measurement errors of modal testing. The accuracy of measurement in the modal testing
method depends on many parameters such as: 

Fig. 7 Comparison of the test results and the theoretical results (Ixx, Iyy, Izz)

Fig. 8 Comparison of the test results and the theoretical results (Iyz, Ixz, Ixy)
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1. The accuracy of coordinates
2. The quality of FRFs due to the signal processing errors
3. The resolution of the FRFs
4. The direction of force which should be exactly normal to the surface
5. The location and direction of accelerometers
6. Mass loading effect of accelerometers
7. Modal parameter extraction using modal analysis process
On the other hand the accuracy of the moment of inertia properties from Solid Work depends

highly on the geometrical and material properties accuracy of the frame. Also there are some errors
at the joints of steel bars which are welded and can not be exactly modeled theoretically. Therefore
none of the theoretical and experimental methods can be claimed to be the most accurate. However,
Figs. 7 and 8 show that the moment of inertia properties can be obtained using the experimental
methods 1 and 2 with reasonable accuracy for engineering design purposes.

4. Conclusions

In this research work, the inertia properties of a frame were estimated using the frequency
response functions in the hammer test. Two methods were applied in order to extract the moment of
inertia parameter properties of frame. Also Solid Works was used in order to obtain the inertia
properties. The results were compared showing that there are minor differences between the results.
The accuracy of the obtained parameters using experimental methods depends highly on the
accuracy of modal testing method. On the other hand the accuracy of the theoretical method
depends on the accuracy of geometrical and material properties of frame. Due to the inherent errors
both in the experimental and theoretical methods, the accurate results were not available. However,
as there is small error percentage between the results it can be concluded that the experimental
methods have reliable outputs for the engineering computations. Also using method 1 the coordinate
of center of gravity of frame could be extracted with reasonable accuracy compared to the Solid
Work results.

Acknowledgements

The authors would like to thank the office of talented students of Semnan University.

References

Almeida, R.A.B., Urgueira, A.P.V. and Maia, N.M.M. (2007), “Identification of rigid body properties from
vibration measurements”, J. Sound Vib., 299, 884-899.

Almeida, R.A.B., Urgueira, A.P.V. and Maia, N.M.M. (2008), “Evaluation of the three different methods used in
the identification of rigid body properties”, Shock Vib., 467-479.

Atchonouglo, E., Vallée, C., Monnet, T. and Fortuné, D. (2008), “Identification of the ten inertia parameters of a
rigid body”, J. Appl. Math. Mech., 22-25.

Bretl, J. and Conti, P. (1987), “Rigid body mass properties from test data”, Proceedings of the 5th International
Modal Analysis Conference (IMAC), London, England.



On the accuracy of estimation of rigid body inertia properties from modal testing results 65

Conti, P. and Bretl, J. (1989), “Mount stiffness and inertia properties from modal test data”, J. Vib. Acoust. Stress
Reliab. Des., 111, 134-138.

Ewins, D.J. (1995), Modal Testing Theory and Practice, Research Studies Press Ltd., Taunton Somerset,
England.

Gatzwiller, K., Witter, M. and Brown, L. (2000), “New method for measuring inertial properties”, Proceedings of
the 18th International Modal Analysis Conference (IMAC), San Antonio, Texas. 

Hahn, H. (1994), “Inertia parameter Identification of rigid bodies using multi- axis test facility”, Proceedings of
the 3rd IEEE Conference on Control Applications, Glasgow.

Holzweissig, F. and Dresig, H. (1994), “Lehrbuch der maschinedyrnamik; Grundlagenund proxisorientierte
beispiele”, mit 40 Aufgaben mit Losungen und Tabellen, 4, Neubeard Auf1, Fachbuchverlags, leipzig, koln.

Hou, Z.C., Lu, Y.N., Lao, Y.X. and Liu, D. (2009), “A new trifilar pendulum approach to identify all inertia
parameters of a rigid body or assembly rigid body”, Mech. Mach. Theory, 44(6), 1270-1280.

Lee, H., Lee, Y. and Park, Y. (1999), “Response and excitation points selection for accurate rigid body inertia
properties identification”, Mech. Syst. Signal Pr., 13(4), 571-592.

Link, M. (1985), “Application of method for identifying incomplete system matrices from vibration test data”,
Zeitschrift fuer Flugwissenschaften und Weltraumforschung, 9, 110-114.

Link, M. (1985), “Theory of a method for Identifying, Incomplete system matrices from vibration test data”,
Zeitschrift fuer Flugwissenschaften und Weltraumforschung, 9, 78-82.

Link, M. (1996), “Identification of rigid body properties using base excitation and measured interface forces”,
Proceedings of the 1996 ESA Conference on Spacecraft Structures, Materials and Mechanical Testing,
Noordwijk, The Netherlands.

Mangus, J.A., Passerello, C. and Vankarsen, C. (1992), “Direct estimation of rigid body properties from
frequency response functions”, Proceedings of the 10th International Modal Analysis Conference (IMAC), San
Diego, CA.

Modent (1988-2000), “Integrated software for structural dynamics”, ICATS, Imperial College of Science,
Technology and Medicine, University of London, U.K.

Nakamura, M. (1995), “Identification of inertial properties for resiliently supported mechanical system”,
Proceedings of the Design Engineering Technical Conference, Boston.

Okuma, M., Heylen, W. and Matsuoka, M., (2001), “Identification and prediction of frame structure dynamics by
spatial matrix identification method”, J. Vib. Acoust., 123.

Okuma, M., Heylen, W. and Sas, P. (2000), “Identification of rigid body properties of 3-D frame structure by
MCK Identification method”, Proceedings of the 25th International Seminar on Modal Analysis (ISMA), Noise
and Vibration Engineering, Leuven, Belgium.

Pandit, S. and Hu, Z. (1994), “Determination of rigid body characteristics from time domain Modal test data”, J.
Sound Vib., 5, 52-61.

Pandit, S.M., Hu, Z. and Yao, Y. (1992), “Experimental technique for accurate determination of rigid body
characteristics”, Proceedings of The 10th International Modal Analysis Conference (IMAC), San Diego,
Califonia.

Schedlinski, C. and Link, M. (2001), “A survey of current inertia parameter identification methods”, Mech. Syst.
Signal Pr., 15(1), 189-211.

Toivola, J. and Nuutila, O. (1993), “Comparison of three methods for determining rigid body inertia properties
from frequency response functions”, Proceedings of the 10th International Modal Analysis Conference
(IMAC), Kissimmee, Fl.

Wei, Y.S. and Reis, J. (1989), “Experimental determination of rigid body inertia properties”, Proceedings of The
10th International Modal Analysis Conference (IMAC), Orlando, Fl.

Witter, M.C., Brown, D.L. and Blough, J.R. (2000), “Measuring the six dof driving point impedance function
and application to RB inertia property estimation”, Mech. Syst. Signal Pr., 14(1), 111-124.




