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Influence of lateral motion of cable stays on 
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Abstract. The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including
the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is
the OECS (one element cable system) model in which one single element per cable stay is used and the
other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A
finite element computation procedure has been set up for the nonlinear analysis of such kind of structures.
For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is
presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of
the catenary function method to discretize each single cable stay. After the convergent initial shape of the
bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges
influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the
natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show
that the MECS model offers the real shape of cable stays in the initial shape, and all the natural
frequencies and modes of the bridge including global modes and local modes. The global mode of the
bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local
mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model
can only offers global mode of tower and girder without any motion of cable stays, because each cable
stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the
MECS model can offer the lateral displacement response of cable stays and the axial force variation in
cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-
models have no great difference.
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1. Introduction

Due to developments in the fields of computer technology, high strength steel cables, orthotropic

steel decks and construction technology, rapid progress in the analysis and construction of cable-

stayed bridges has been made in the last half century (Leonhardt and Zellner 1991, Gimsing 1997).

Because of its aesthetic appeal, economic grounds and ease of erection, the cable-stayed bridge is

considered as the most suitable construction type for mid- and large bridges spanning from 200 m

to about 1000 m. The Tatara Bridge across the Seto Inland Sea, linking the main islands Honshu

and Shikoku in Japan was the world’s longest cable-stayed bridge before 2008. The Tatara Bridge
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was opened in May 1, 1999 and has a center span of 890 m and a total length of 1480 m. The

tallest cable-stayed bridge in the world, Millau Viaduct with the tallest pier 341 m tall and roadway

270 m high, spanning the Tarn River in France has been completed in December 2004. Millau

Viaduct has a total length of 2460 m with seven towers and eight spans. The bridge has the longest

cable-stayed suspended deck in the world. The Sutong Bridge crossing the Yangtze River in China

is newly completed in June 2008 and includes a cable-stayed section with a 1088 m span. It is the

longest cable-stayed bridge today and the first one exceeding 1000 m span in the world

(Wikipedia).

A cable-stayed bridge consists of three principal components, namely girders, towers and inclined

cable stays. The girder is supported elastically at points along its length by inclined cable stays so

that the girder can span a much longer distance without intermediate piers. The dead load and

traffic load on the girders are transmitted to the towers by inclined cables. High tensile forces exist

in cable stays which induce high compression forces in towers and part of girders. The sources of

nonlinearity in cable-stayed bridges mainly include the cable sag, beam-column and large deflection

effects. Since high pretension force exists in inclined cables before live loads are applied, the initial

geometry and the prestress of cable-stayed bridges depend on each other. Therefore the initial shape

has to be determined correctly prior to analyzing the bridge. Only based on the correct initial shape,

a correct deflection and vibration analysis can be achieved (Tang 1971, Morris 1974, Fleming 1979,

Khalifa 1993, Au et al. 2001).

A lot of papers concerning analysis and construction of cable-stayed bridges have been published

in last half century, but few of them concern with lateral motion of cable stays (Abdel-Ghaffar and

Khalifa 1991, Pinto da Costa et al. 1996, Gattulli and Lepidi 2007). Abdel-Ghaffar and Khalifa

(1991) indicated the importance of cable vibration and classified first finite element models of

cable-stayed bridges into two catrgories: the one element cable system (OECS) and the multi-

elements cable system (MECS). In the former, each cable stay is represented by a single cable

(truss) element and multi-cable (truss) elements are used for each cable stay in the latter. MECS

model can exhibits the lateral motion of cable stay of the bridge, but the OECS model can not. The

purpose of this paper is to investigate the dynamic behaviors of cable stays of such kind of bridges.

Both OECS- and MECS-models of the cable-stayed bridge are built up in the study. The MECS

model is used for investigating the motion of cable stays, in which a single cable stay is represented

by multi-cable elements, say 10 or 20 elements. And an efficient finite element computation

procedure will be also set up for shape finding of the cable-stayed bridge with MECS model. The

initial shape of the bridge with MECS model will be determined by the two-loop iteration method

with the help of using catenary function for cable stay discretization. In the two-loop iteration

method, the shape finding procedure is performed with both the equilibrium iteration and the shape

iteration. Through equilibrium iteration, a convergent nonlinear equilibrium configuration can be

achieved and through the shape iteration, a shape satisfied the requirements of architectural design

can be found. The initial shape of each cable stay in MECS model is determined efficiently by

using catenary function method. Based on the convergent initial shape determined, the static

deflection, the vibration frequencies and modes, and seismic responses of the bridge are examined.

2. Finite element formulation of cable-stayed bridges

Based on the finite element concept, a cable-stayed bridge can be considered as an assembly of a
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finite number of cable (for cable stays) and beam-column (for girder and tower) elements. In this

study, some assumptions are made as follows. The material is homogeneous and isotropic. All

material remains within the linear elastic range during the nonlinear responses. The external loads

are displacement independent. Large displacements and large rotations are allowed, but strains are

small. All cables are fixed to the tower and to the girder at their joints of attachment which are

considered as frictionless hinges. The nonlinearities of cable sag, beam-column and large

displacement effects are taken into consideration.

The elastic cable element possesses only tension stiffness. Under action of its own dead load and

axial tensile force, a cable supported at its end will sag into a catenary shape. The axial stiffness of

a cable will change with changing sag. The sag effect is taken into account by using an equivalent

straight cable element with an equivalent modulus of elasticity. The concept of a cable equivalent

modulus of elasticity was first introduced by Ernst (1965). If the change in tension in a cable during

a load increment is not large, the axial stiffness of the cable will not change significantly and the

equivalent modulus of elasticity of the cable can be considered constant during the load increment,

and is given by

in which Eeq = equivalent cable modulus of elasticity, E = effective cable material modulus of

elasticity, A = cross-sectional area, w = cable weight per unit length, L = horizontal projected length

of the cable, and T = tensile force in the cable.

The towers and part of the girders are subjected to large compression due to high pretension

forces in inclined cable stays. This induces the beam-column effect and has to be taken into

consideration in the cable-stayed bridge. The towers and girders are represented by an assembly of

beam-columns. The beam-column element used in the paper is straight and has uniform cross

section. The engineering beam theory is employed for the beam-column element and no shear strain

is considered. In a beam-column element, the bending stiffness depends on the element axial forces,

and the presence of bending moments will affect the axial stiffness. In general, the beam-column

effect is evaluated by using the stability functions (Gimsing 1997, Fleming 1979).

Cable-stayed bridges have a larger span and less weight than those ones of conventional steel and

reinforced concrete bridges. Large deflections may easily appear, hence the large displacement effect

has also to be considered in the analysis, and the equilibrium equations must be set up for the

deformed position. The motion of structural elements during large deflections is described by the

nonlinear coordinate transformation coefficients that relate the local element coordinates to the

global system coordinates (Schrader 1969, 1978, Wang et al. 1993, 2004, Wang and Yang 1996).

2.1 Linearized system equation

The finite element linearized system equation for a small time (or load) interval can be derived

from the Lagrange’s virtual work principle (Schrader 1969, 1978) as follows
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where = system mass matrix, = system damping matrix, = tangent system stiffness

matrix, = unbalanced forces in dynamics, =

load increments, = displacement increments, and = time increments,

= generalized external forces, = generalized internal forces, = generalized system

coordinates, = generalized velocities, = generalized accelerations, t = time, =

summation over all elements, and N = number of degree of freedom (D.O.F.). The subscripts

 denote the number of the system coordinate. The index summation convention is used

here for the subscripts. The superscript “n” denotes the number of time (or load) step, e.g.,

 or , and the “2” means iteration matrix of second order.

2.2 Linearized system equation in statics

In nonlinear statics, the linearized system equation becomes

, for

where  is the unbalanced forces at n-th load step. The linearized static system

equation represents a set of linear algebraic equations and is solved step-by-step incrementally in

nonlinear statics. An incremental-iteration procedure is recommended in order to get more accurate

solutions.

2.3 Linear system equation in statics

In linear statics where all nonlinearities are naglected the system equation has the following linear

form

where = generalized initial internal force, = linear constant system stiffness matrix.

3. Nonlinear analysis of cable-stayed bridges 

3.1 Initial shape analysis

The initial shape of a cable-stayed bridge provides the geometric configuration as well as the

prestress distribution of the bridge under action of dead loads of girders and towers, and under

pretension force in inclined cable stays. The relations for the equilibrium conditions, the specified

boundary conditions, and the requirements of architectural design should be satisfied.

3.1.1 Shape finding of the cable-stayed bridge with OECS model

In the OECS model of the cable-stayed bridge one element cable system (OECS) is used for cable

stays, i.e., one single cable element per cable stay is used in the bridge. The single cable element is

considered as a straight element including nonlinear sag effect described by the equivalent cable

modulus of elasticity Eeq given by Ernst (1965). In most of papers published the OECS model has

be used for analysis of cable-stayed bridges. The computation procedure for shape finding of the
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cable-stayed bridge with OECS model by using the two-loop iteration method is briefly described in

the following.

For shape finding computations, only the dead load of girders and towers is taken into account,

and the dead load of cables is neglected, but cable sag nonlinearity is included. The computation for

shape finding is performed by using the two-loop iteration method, i.e., equilibrium iteration and

shape iteration loop. This can start with an arbitrary tension force in inclined cable stays (Wang et

al. 1993, 2004, Wang and Yang 1996). Based on a reference configuration (the architectural

designed form), having no deflection and zero prestress in girders and towers, the equilibrium

position of the cable-stayed bridge under dead load is first determined iteratively (equilibrium

iteration). Although the first determined configuration satisfies the equilibrium conditions and the

boundary conditions, the requirements of architectural design are, in general, not fulfilled. Since the

bridge span is large and no enough pretension forces exist in inclined cables, quite large deflections

and bending moments may appear in the girders and towers. Another iteration then has to be carried

out in order to reduce the deflection and to smooth the bending moments in members and finally to

find the correct initial shape. Such an iteration procedure is named the shape iteration. The element

axial forces determined in the previous step will be taken as initial element forces for the next

iteration, and a new equilibrium configuration under the action of dead load and such initial forces

will be determined again. During shape iteration, several control points (nodes intersected by the

girder and the cable or by the tower and the cable) will be chosen for checking the convergence

tolerance. In each shape iteration the ratio of the lateral displacement at control points to the main

span length or tower height will be checked, i.e. 

The shape iteration will be repeated until the convergence tolerance , say , is achieved.

When the convergence tolerance is reached, the computation will stop and the initial shape of the

cable-stayed bridge with OECS model is found.

The initial shape analysis can be performed in two different ways: a linear and a nonlinear

computation procedure. In the linear procedure all nonlinearities of cable-stayed bridges are

neglected and only the linear elastic cable, beam-column elements and linear constant coordinate

transformation coefficients are used. And the shape iteration is carried out without equilibrium

iteration. In the nonlinear procedure all nonlinearities of cable-stayed bridges are taken into

consideration during the computation process. The nonlinear cable element with sag effect and the

beam-column element including stability coefficients and nonlinear coordinate transformation

coefficients are used. Both the shape iteration and the equilibrium iteration are carried out in the

nonlinear computation procedure. 

3.1.2 Shape finding of the cable-stayed bridge with MECS model

In the MECS model of the cable-stayed bridge multi-elements cable system (MECS) is used for

cable stays, e.g., ten cable elements per cable stay are used for each cable stay in the bridge, in

order to describe the lateral motion of cable stays. The weight of each cable element is lumped at

the node between the elements. A convergent solution is difficult to obtain when the two-loop

iteration procedure is directly used for shape finding of the bridge with MECS model. Hence the

shape finding procedure of the bridge with MECS model will be carried out in a different way as

follows: 

laetral displacement at control points

main span or tower height
---------------------------------------------------------------------------------------- εs≤

εs 10
4–



724 P.H. Wang, M.Y. Liu, Y.T. Huang and L.C. Lin

Step 1: The initial shape of the cable-stayed bridge with OECS model will be first found by the

procedure described in section 3.1.1, in which all the node coordinates and element

preforces of the bridge are determined. From the results of the found initial shape the

pretension force and the coordinates of end points of each cable stay can be picked out.

Step 2: Based on the found end node position and pretension force of each cable stay, its initial

shape acted by the dead load and the pretension force will be determined by using the

cable catenary function method which is briefly described in the following section 3.1.2.

Step 3: After determining the initial shape of each discretized cable stay in the MECS model by

the catenary function method, all the coordinates of the interior nodes and the element

preforces of cable stays are known. Then put them onto the cable-stayed bridge with the

configuration determined by the OECS model and then carry out the equilibrium iteration

and the shape iteration again to find its final initial shape of the MECS model.

A convergent solution can be achieved efficiently by using the computation procedure described

above for finding the initial shape of the cable-stayed bridge with MECS model.

3.1.3 Catenary function method for single cable discretization

A single cable as shown in Fig. 1, is discretized into n straight segments with n + 1 nodes. The

cable weight is lumped at the nodal points with the magnitude of Wi for the i-th node. The

coordinates of the i-th node are denoted as (Xi, Yi), where i = 1, 2, 3, … , n + 1. The horizontal pre-

force H is given. The initial shape of a discrete cable can easily determined by the method of joints

in statics, but large numerical error may appear when the cable is not fine enough discretized. 

Here, a more accurate (quasi-exact) method, the catenary function method, for finding the initial

shape and pre-stress distribution of a discrete cable under its own weight will be presented. The

advantage of this method is accurate and highly efficient, in which no simultaneous equations

solving and no iteration are required during shape finding of cables. For a single cable, the

analytical solution for its shape is a catenary under the conditions of no axial deformation and the

assumption of uniform body weight. Here, we directly use the analytical solution of a cable

catenary and perform numerical analysis to obtain the initial shape of a single discrete cable.

Assume the horizontal perforce H and the uniformly distributed body weight of the cable denoted as

w(s) = w = constant are given, where s is the arc-length. The shape of the cable is described by a

catenary function (Ernst 1965) as 

Fig. 1 Schematic of a discrete cable
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where h = H/w = ordinate of the apex of the catenary function, H = horizontal preforce and w =

weight per length of the cable. Let’s assume the cable AB is hinged at point A and B with a span

L', and the level difference between the two ends is b. To determine the positions of A and B of the

cable on a catenary in Fig. 2, we define two dimensionless parameters φ, ψ to describe the

relationship between the horizontal projection of L' and h, and the relationship between coordinate

of the midpoint of the span Xm and h, respectively, i.e. 

When w, H, L' and b are given,  and  are known, but not ψ. The value of ψ

has to be first determined as follows. Since , , and , the location

of the end points A, B of the cable on the catenary curve can be expressed as

The level difference between the end supports is

Since , , the total length of the cable is obtained by

integration

Y hcosh X/h( )=

ψ Xm/h and φ L′/2h= =

h H/w= φ L′/2h=

Xm ψh= L′ 2hφ= Ym hcoshψ=

XA Xm L′/2– ψ φ–( )h, XB Xm L′/2+ ψ φ+( )h= = = =
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b YB YA– h cosh ψ φ+( )h cosh ψ φ–( )h–[ ] 2hsinhψsinhφ= = =

Y hcosh X/h( )= dY/ Xd sinh X/h( )=

L sd∫ 1 dY/ Xd( )
2

+ Xd
X
A

X
B

∫= =

   1 sinh
2

X/h( )+ xd
ψ φ–( )h

ψ φ+( )h

∫= hsinh X/h( )[ ] ψ φ–( )h

ψ φ+( )h
=

   h sinh ψ φ+( ) sinh ψ φ–( )–[ ]= 2hcoshψsinhφ=

Fig. 2 Catenary function
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Divide L by b, one obtains ,and , where  is

calculated from .

After determining , the coordinates of the midpoint m and end points A, B of the

cable on the catenary are found here.

 

The following items of the cable AB are determined: 

 
Angle for the inclined chord of the cable AB

 
Chord length c of the cable AB

 
Sag of the cable AB

 
Here, we define the sag of the cable is the vertical distance between the cable and its chord at the
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3.2 Static deflection analysis

Based on the determined initial shape, the nonlinear static deflection analysis of cable-stayed

bridges with OECS- and MECS-models under live load can be performed incrementwise or

iterationwise. An increment-iteration procedure is highly recommended, in which the load will be

incremented, and the iteration will be carried out in each load step. Newton-Raphson iteration

procedure is employed in the paper.

3.3 Vibration frequency analysis

Based on the concept of linearized vibration the natural frequencies and modes of cable-stayed

bridges are examined. In the linearized vibration, the system vibrate with small amplitude around a

certain nonlinear static state, where the change of the nonlinear static state induced by the vibration

is small and negligible. For the cable-stayed bridge, its initial shape is the nonlinear static state .

Based on the nonlinear static state  the system matrices are established and the linearized system

equation has the form as follows 

 

 
where the superscript “A” denotes the quantity calculated at the nonlinear static state . This

equation represents a set of linear ordinary differential equations of second order with constant

coefficient matrices  and . When damping effect and load terms are neglected, the

system equation of free vibration becomes

 

 
The natural vibration frequencies and modes can be obtained from the above equation by using

eigensolution procedures, e.g., transformation methods or subspace iteration methods (Wilkinson

and Reinsch 1971). When the cable-stayed bridge vibrates with small amplitude based on the initial

shape, the natural frequencies and modes can be found by solving the above equation.

4. Symmetric harp cable-stayed bridge

The symmetric harp cable-stayed bridge is taken from Tang (1971) with a modified form of

cantilever supported towers as shown in Fig. 3. Its geometric and physical properties are also given

in the figure. As shown in Fig. 4, the bridge with OECS model consists of NE = 34 elements (12

cable elements and 22 beam-column elements for girder and tower), NJ = 23 nodes, NU = 69 D.O.F.

and the semi-band width of the system matrix ISB = 21. In the bridge with MECS model, ten cable

elements per cable stay are used and the MECS model has NE = 142 (120 cable elements and 22

beam-column elements), NJ = 131, NU = 285 and ISB = 243.

4.1 Initial shape analysis

The initial shape of the bridge with OECS- and MECS-models are first determined by using two-

loop iteration method with help of the catenary function method described in previous section and

plotted in Fig. 5. It is obviously seen in Fig. 5 that the sagged shape of cable stay appears in the
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Fig. 3 Symmetric harp cable-stayed bridge

Fig. 4 Node and element numbering of harp cable-stayed bridge
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MECS model, while the cable stay is straight in the OECS model.

4.1.1 Shape finding of the bridge with OECS model

The shape finding procedure described in section 3.1.1 is performed for the harp cable-stayed

bridge with OECS model. A convergence tolerance  is used for both the equilibrium

iteration and the shape iteration. The nodes of number 7, 9, 12, 16, 19 on the girder and number 5,

14 on the tower are chosen as the control points for checking the convergence tolerance.

Convergent initial shape is obtained and plotted in Fig. 5, where cable stays are straight. The

deflection of girder and tower measured from the architectural designed position has relatively small

values, i.e., maximum vertical displacement qv = −0.129 ft in girder and maximum horizontal

displacement qh = −0.034 ft in tower. The shape finding computation converges rapidly and four

times of shape iteration is performed.

4.1.2 Shape finding of the bridge with MECS model

The shape finding procedure described in section 3.1.2 is performed for the harp cable-stayed

bridge with MECS model as follows:

Step 1: Shape finding of the bridge with OECS model is done first by the procedure described in

section 3.1.1.

Step 2: Shape finding of each single cable stay

The pretension force and coordinates of end nodes in each cable stay are picked out from

ε 10
4–

=

Fig. 5 Initial shape of harp cable-stayed bridge
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the results obtained in step 1. Then the initial shape of each single cable stay represented

by multi-elements are determined one by one by using the catenary function method

described in section 3.1.3.

Step 3: Shape finding of the bridge with MECS model

One can put the determined pretension force, coordinates and nodal load of interior nodes

of each cable stay into the bridge with MECS model, and carry out again the equilibrium

and shape iterations for finding the final convergent initial shape of the bridge. In this step,

only one shape iteration is required to get the final convergent solution and the final initial

shape of the bridge with MECS model is plotted in Fig. 5. In Fig. 5, it can be seen that the

maximum deflection measured from architectural designed position is about qv = −0.159 ft

in girder and qh = −0.03 ft in tower, and the sagged shape of cable stays can obviously be

observed.

4.2 Static deflection analysis

Based on the convergent initial shape, the static deflection is examined. The static deflection of

the harp cable-stayed bridge under a concentrated load P at mid-span is determined by incremental-

iteration procedure using the Newton-Raphson method. The load-deflection curves determined with

the OECS- and MECS-models are plotted in Fig. 6, where the vertical load P is positive when it

acts downwards, and the vertical deflection is positive when it displaces upwards. When the load

acts downwards, the deflections at mid-span have almost the same value for both OECS- and

MECS-models. When the load acts upwards and increases till P = −2700 kips, the deflections

determined by both models have the same value, however, when P exceeds −2700 kips, small

deviation in the deflection curves can be seen in Fig. 6. The slackness of cable stay R3 occurs at

about P = −2700 kips and the axial force in cable stay R1 approaches zero when P = −6000 kips, see

the load-element force curve in Fig. 7. The member forces in girder element 135 at mid-span and

Fig. 6 Load-deflection curve of harp cable-stayed bridge
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Fig. 7 Load-element force curve of harp cable-stayed bridge
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Fig. 8 Vibration frequencies and modes of harp cable-stayed bridge (OECS: one element used per cable stay,
MECS: ten elements used per cable stay)
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tower element 122 between nodes 3 and 4 are also plotted in Fig. 7. After the slackness of cable

stay R3 occurs, the results of both OECS- and MECS-models deviate slightly from each other and

large difference appears only in bending moment of tower element 122.

4.3 Vibration frequency analysis

Based on the convergent initial shapes determined, the natural vibration frequencies and modes

are examined by using OECS- and MECS-models. The frequencies and mode shapes of the first 8

modes of OECS model and the first 12 modes of MECS model are found by the Rutishauser

method (Wilkinson and Reinsch 1971) and shown in Fig. 8.

4.3.1 Vibration modes of the bridge with OECS model

The first 8 modes of the harp cable-stayed bridge with OECS model are shown in Fig. 8. All the

modes exhibit the global mode of girder and tower motion without motion of cable stays. Most of

them are the coupled mode of girder and tower. The vibration frequencies are between 0.3851 Hz.

to 1.9076 Hz from modes 1 to 8.

4.3.2 Vibration modes of the bridge with MECS model

The first 12 modes of the harp cable-stayed bridge with MECS model are determined and plotted

in Fig. 8, in which modes 1, 2, 7, 8, 9, 10 exhibit the global mode of the bridge and are

corresponding to modes 1 to 6 of OECS model. All the global modes of MECS model exhibit

coupled motion of cable stays, girder and tower. The global coupled modes are marked with star *

in Fig. 8. They are listed in Table 1 with the results of OECS model for comparison. The vibration

frequencies of the global modes of MECS model are between 0.4075 Hz to 1.3128 Hz. The

frequency values have a little bit larger than that of OECS model and have a difference of 6% in

mode 1 and 2.2% in mode 7. It may be explained that the use of cable equivalent modulus of

elasticity Eeq causes an over reduction of the axial stiffness of cable stays. All the modes except the

global modes mentioned above belong to local mode of cable stay motion, i.e., modes 3, 4, 5, 6 of

MECS model in Fig. 8. The mode 11, 12 exhibits the second cable mode of cable stay R6 and L1 on

side span. It has been seen that the MECS model can offer all the vibration modes of the bridge

including the global coupled modes and the local modes of cable stays, while the bridge with OECS

Table 1 Natural frequencies and mode shapes of global modes of harp cable-stayed bridge

OECS model MECS model

Mode 
No.

Frequency
 (Hz)

Mode Shape Dominated by
Transversal Motion of

Mode 
No.

Frequency
 (Hz)

Mode Shape Dominated by
Transversal Motion of

1 0.3851 Tower and Girder 1 0.4075 Tower, Girder and Cable Stays

2 0.3996 Same as above 2 0.4181 Same as above

3 0.6763 Same as above 7 0.7119 Same as above

4 0.7779 Same as above 8 0.8017 Same as above

5 0.9987 Same as above 9 1.0138 Same as above

6 1.0170 Same as above 10 1.0324 Same as above

7 1.4926 Same as above

8 1.9076 Same as above
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model can only offers the global modes with girder and tower motion of the bridge, but not the

local modes of cable stays.

4.4 Seismic analysis

The nonlinear dynamic responses of the harp cable-stayed bridge under uniform seismic excitation

will be examined here. The accelerogram of Chi-chi earthquake, recorded at Shih-Gang station No.

TCU068 on September 21, 1999 in Taiwan (Lee et al. 2001), as shown in Fig. 9, is taken as the

input data of seismic loading. Only the strong part from the period of 30 to 60 sec. of the vertical

component of the accelerogram is used, in which the maximum and minimum acceleration are

498.96 gal and −279.73 gal, respectively. The nonlinear dynamic responses are determined by using

the Newmark-β = 1/4 direct integration method, where the time step size ∆t = 0.001 sec. is used, the

total number of time steps is NT = 30000, and no damping is considered.

The displacement responses of the bridge with both OECS- and MECS-models are plotted in

Figs. 10 and 11. The dynamic displacement responses of cable stays can only be determined in the

bridge with MECS model. Three nodal displacement responses of the most exterior cable stays L1

and R3 are shown in Fig. 10, where nodes 28, 73 are the mid-point of the cable stay L1, R3,

respectively. The vertical displacement response has the maximum value approaching 4 ft occurred

at the mid-point of the most exterior cable stay L1 and R3. The nodal displacement responses of

girder and tower determined by both OECS- and MECS-models are plotted in Fig. 11. Both

response curves of OECS- and MECS-models agree well with each other and have no great

difference. The nodes 5 and 14 are located at the top of the towers and the maximum horizontal

displacement at tower top approaches 0.8 ft. The nodes 8, 11, 12 and 13 are on the girder and have

maximum vertical displacement about 3.38 ft at node 12 on the mid-point of the girder.

The dynamic cable force responses of cable stays L1 and R3 for both OECS- and MECS-models

are plotted in Fig. 12. The bridge with OECS model offers only a mean value of axial force in

cable stays and its cable force response is plotted with dash line in Fig. 12. The element axial force

responses obtained in the bridge with MECS model are plotted with solid line in Fig. 12, in which

the axial force of three cable elements located at one fourth of length of the cable stay L1, R3 are

shown. The results show the variation of axial force along the cable stay is small. The maximum

Fig. 9 Ground acceleration history of Chi-chi earthquake (Station No. TCU068)
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axial force appear in the most exterior cable stay L1 and has the value of 4.833 × 103kips. The

dynamic member force responses of tower element 16 between nodes 1 and 2 and girder element

Fig. 10 Displacement response of cable stays of harp cable-stayed bridge under vertical seismic excitation
(MECS: ten elements used per cable stay)

Fig. 11 Displacement response of girder and tower of harp cable-stayed bridge under vertical seismic
excitation (OECS: one element used per cable stay, MECS: ten elements used per cable stay)
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27 between nodes 11 and 12 in OECS model are plotted in Fig. 13. The results determined by both

models agree well with each other and have no great difference.

Fig. 12 Member force response of cable stays of harp cable-stayed bridge under vertical seismic excitation
(OECS: one element used per cable stay, MECS: ten elements used per cable stay)

Fig. 13 Member force response of girder and tower of harp cable-stayed bridge under vertical seismic
excitation (OECS: one element used per cable stay, MECS: ten elements used per cable stay)
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5. Conclusions

Two analytical models for the cable stay system of cable-stayed bridges are built up in the study.

One is the OECS (one element cable system) model in which one single element per cable stay is

used and the other is MECS (multi-elements cable system) model, where multi-elements per cable

stay are used. A finite element computation procedure has also been set up for the nonlinear

analysis of such kind of structures including initial shape, static deflection, vibration frequency and

seismic analysis. The dynamic structural behaviors of the bridge influenced by the cable vibration

have also been examined by the MECS model. Based on numerical experiments in the study, some

conclusions are summarized as follows:

1. The two-loop iteration method can be well used for shape finding of cable-stayed bridges with

the MECS model as it is conventionally used in the OECS model, and a converged initial shape

can be found efficiently.

2. The catenary function method works efficiently for shape finding of individual cable stays in

the bridge of MECS model. With its help, a convergent initial shape of the bridge of MECS

model can be easily determined. The MECS model offers the real sagged shape of cable stays

in initial shape analysis.

3. The results of static deflection analysis determined by the OECS- and MECS-models are almost

the same. Attention must be paid only, when the slackness of cable stays occurs, slight

deviation will appear between the results determined by both models. The OECS model works

much more efficiently in general, and is accurate enough for static deflection analysis of cable-

stayed bridges.

4. The results of vibration frequency analysis show that the modes of cable-stayed bridges consist

of global modes and local modes. The global mode of the bridge consists of coupled girder,

tower and cable stays motion and is a coupled mode, while the local mode exhibits only the

motion of cable stays and is uncoupled with girder and tower.

5. The MECS model offers all modes of the bridge including global modes and local modes in

vibration frequency analysis. The OECS model offers only the global modes, but no local

modes of cable stays.

6. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement

response of cable stays and the axial force variation in cable stays. The responses of towers and

girders of the bridge determined by both OECS- and MECS-models have no great difference.

7. The MECS model is much more time consuming than OECS model, especially in nonlinear

dynamic response analysis. For only investigating the global girder and tower behaviors of

cable-stayed bridges, the OECS model performs well enough and is much more

computationally efficient.

Acknowledgements

The research was sponsored by a grant under No. NSC 92-2211-E-033-009, form the National

Science Council, Taiwan, R.O.C.



738 P.H. Wang, M.Y. Liu, Y.T. Huang and L.C. Lin

References

Abdel-Ghaffar, A.M. and Khalifa, M.A. (1991), “Importance of cable vibration in dynamics of cable-stayed
bridges”, J. Eng. Mech-ASCE, 117(11), 2571-2589.

Au, F.T.K., Cheng, Y.S., Cheung, Y.K. and Zheng, D.Y. (2001), “On the determination of natural frequencies and
mode shapes of cable-stayed bridges”, Appl. Math. Model., 25(12), 1099-1115.

Ernst, H.J. (1965), “Der E-Modul von Seilen unter Beruecksichtigung des Durchhanges”, Der Bauingenieur
40(2), 52-55 (in German).

Fleming, J.F. (1979), “Nonlinear static analysis of cable-stayed bridge structures”, Comput. Struct., 10(4), 621-
635.

Gattulli, V. and Lepidi, M. (2007), “Localization and veering in the dynamics of cable-stayed bridges”, Comput.
Struct., 85(21-22), 1661-1678.

Gimsing, N.J. (1997), Cable Supported Bridges: Concept and Design, 2nd edition, John Wiley & Sons Ltd.,
Chichester.

Khalifa, M.A. (1993), “Parametric study of cable-stayed bridge response due to traffic-induced vibration”,
Comput. Struct., 47(2), 321-339.

Lee, W.H.K., Shin, T.C., Kuo, K.W., Chen, K.C. and Wu, C.F. (2001), “CWB free-field strong-motion data from
the 21 September Chi-Chi, Taiwan, Earthquake”, B. Seismol. Soc. Am., 91(5),  1370-1376.

Leonhardt, F. and Zellner, W. (1991), “Past, present and future of cable-stayed bridges”, Proceedings of the
Seminar of Cable-Stayed Bridges: Recent Developments and Their Future, Yokohama, December.

Morris, N.F. (1974), “Dynamic analysis of cable-stiffened structures”, J. Struct. Div-ASCE, 100(5), 971-981.
Pinto da Costa, A., Martins, J.A.C., Branco, F. and Lilien, J.L. (1996), “Oscillations of bridge stay cables

induced by periodic motions of deck and/or towers”, J. Eng. Mech-ASCE, 122(7), 613-622.
Schrader, K.H. (1969), Die Deformationsmethode als Grundlage einer Problemorientierten Sprache, BI-

Taschenbuch, 830, Bibliographisches Institute, Mannheim, Zurich.
Schrader, K.H. (1978), MeSy Einfuehrung in das Konzept und Benutzeranleitung fuer das Programm MESY-

MINI, Technisch-Wissenschaftliche Mitteilung Nr. 78-11, Institut Fuer Konstruktiven Inginieurbau, Ruhr-
Universitaet Bochum.

Tang, M.C. (1971), “Analysis of cable-stayed girder bridges”, J. Struct. Div-ASCE, 97(5), 1481-1496.
Wang, P.H. and Yang, C.G. (1996), “Parametric studies on cable-stayed bridges”, Comput. Struct., 60(2), 243-

260.
Wang, P.H., Tang, T.Y. and Zheng, H.N. (2004), “Analysis of cable-stayed bridges during construction by

cantilever methods”, Comput. Struct., 82(4-5), 329-346.
Wang, P.H., Tseng, T.C. and Yang, C.G. (1993), “Initial shape of cable-stayed bridges”, Comput. Struct., 46(6),

1095-1106.
Wilkinson, J.H. and Reinsch, C. (1971), Handbook for Automatic Computation, Vol. 2, Linear Algebra (Eds.

Householder, A.S. and Bauer, F.L.), Springer Verlag, New York.
Wikipedia, http://en.wikipedia.org/wiki/cable-stayed_bridge




