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Abstract. The objective of this paper is to apply a new proposed accuracy indicator to quantify the true
and false modes for Eigensystem Realization Algorithm using output-based responses. First, a discrete
mass-spring system and a simply supported continuous beam were modelled using finite element method.
Then responses are simulated under random excitation. Natural Excitation Technique using only response
measurements is applied to compute the impulse responses. Eigensystem Realization Algorithm is
employed to identify the modal parameters on the simulated responses. A new accuracy indicator,
Normalized Occurrence Number-NON, is developed to quantitatively partition the realized modes into true
and false modes so that the false portions can be disregarded. Numerical simulation demonstrates that the
new accuracy indicator can determine the true system modes accurately.
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1. Introduction

Modal identification is the process of estimating modal parameters from vibration measurements

obtained from different locations of a structure. The modal parameters of a structure include the

natural frequencies, mode shapes and the damping ratios that influence the response of the structure

in a frequency range of interest. Classically, one applies an artificial, measurable input to the system

and one measures the output. From these input-output measurements, the experimental modal

analysis can be applied to obtain the modal parameters by using different estimation methods.

However, cases exist where it is rather difficult to apply an artificial force and where one has to rely

upon available ambient excitation sources. It is practically impossible to measure this ambient

excitation and the outputs are the only information that can be used by the system identification

algorithms. Output-only modal identification is just using structure responses for extracting modal

parameters and thereby more complicated due to unknown input and the noisy measurements

(Desforges et al. 1995). 

There are a variety of available approaches to estimate structural modal parameters using output

responses. One category is based on time series theory (Pandit and Wu 1983, Andersen 1997) or

stochastic subspace technique (Van Oerschee and De Moor 1996, Bodeux and Golinval 2003) which
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directly utilizes the output response signals. Another category uses the free decaying responses

where techniques of Ibrahim Time Domain (Ibrahim and Mickulcik 1977) or Eigensystem

Realization Algorithm (Juang and Pappa 1985, Mohanty and Rixen 2006) can be adopted to identify

the modal parameters of the structure.

Due to measurement noises, excitation type and level, the realized model will be redundant. The

interference of spurious numerical modes that result from noises and computation error occurs

inevitably in estimated results. Therefore, it is necessary to completely identify and remove spurious

modes (Zhang et al. 2005). And it is generally much more difficult to establish reliable confidence

values for these results. The objective of this paper is to apply a new proposed accuracy indicator to

quantify the system and noise modes for Eigensystem Realization Algorithm using output-based

responses. First, a discrete mass-spring system and a simply supported continuous beam were

modelled using finite element method. Then responses are simulated under random excitation.

Natural Excitation Technique (James et al. 1993) using only response measurements is applied to

compute the impulse responses. Eigensystem Realization Algorithm (ERA) is employed to identify

the modal parameters on the simulated responses. A new accuracy indicator, Normalized

Occurrence Number-NON, is developed to quantitatively partition the realized modes into true

system and spurious modes so that the false portions can be eliminated.

2. Basic formulation

2.1 Modal identification using eigensystem realization algorithm

In the Eigensystem Realization Algorithm (Juang and Pappa 1985), the block hankel matrix 

is formed as

(1)

in which  is the l × r dimensional impulse response matrix of the kth time step. The parameters

α and β, correspond to the number of columns and rows of the Hankel matrix, respectively.

Theoretically, the rank of  is constant, equivalent to the dimension of the system. For the real

systems contaminated by noise, however, there exists rank deficiency. The rank of  will be

constant only when the parameters α and β are increased to an extent.

The ERA solution to the system realization problem uses singular value decomposition (Klema

and Laub 1980) at k = 0, i.e.

(2)

in which  is a diagonal matrix whose diagonal elements are the singular values in decreasing

order. Retaining the N largest singular values of  and corresponding vectors of  and , Eq. (2)

may be written as
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(3)

Therefore an N dimensional realization is computed as follows

, , (4)

where  is a matrix of the same form as  but whose data are shifted in time by one

additional sample. U and V are matrices formed by the first N columns of  and , respectively.

, , where  are unity and zeros matrices of m

dimension, respectively, and  with r dimension. 

Transform the realization into modal coordinate using the eigenvlues Z and eigenvector matrix Ψ

of 

, ,  (5)

The modal damping rates  and damped modal frequencies  are the real and imaginary parts

of the eigenvalues after transformation back to the continuous domain.

 (6)

where  is the sampling interval. Modal participation factors and mode shapes are the

corresponding rows of B' and columns of C', respectively. 

2.2 Acquiring the impulse responses using NExT

As stated in the above section, the ERA uses the impulse responses of the system to construct the

hankel matrix. Conventional modal analysis utilizes inverse Fourier transform of Frequency

Response Function (FRF) to compute the impulse responses, which requires measurements of both

the excitation and the corresponding responses. However, ambient excitation doesn’t lend itself to

FRF calculation because the ambient loads can’t be measured. James et al. (1993) showed that the

cross correlation functions between the responses of the system are a solution to the homogenous

equation of motion.

For an n-degree of freedom (DOF) linear, time invariant dynamic system, the vibration equation

can be represented by the motion equation

(7)

Where M, C, K are the mass, damping and stiffness matrices, respectively,  is the

displacement response vector,  is the excitation force. 

For stationary uncorrelated input force, the correlation function between two measured

displacement responses  and  can be showed to be (James et al. 1993)

(8)

In Eq. (8),  is the cross correlation function between  and a chosen reference response

, and is defined as  where E[·] denotes for expected value. Thus the

cross correlation function has the same form as the free response solution of Eq. (7) for some initial

conditions. Note that the mode shapes of the acceleration responses are identical to those of the
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Â S
1/2–

U
T
H 1( )VS

1/2–

= B̂ S
1/2

V
T
Er= Ĉ Em
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displacements, so the acceleration responses can be used as well.

2.3 Indicators for distinguishing the system and noise modes

Because of noise contamination of the measurements, non-linearity, and computer round-off, the

block matrix H(k) will usually be of full rank which doesn’t, in general, equal to the true order of

the system under test. A realization which closely represents the underlying linear dynamics of the

system is more desirable. In modal parameter identification, several indicators (Richard et al. 1993)

such as extended modal amplitude coherence (EMAC), modal amplitude coherence (MPC) and

consistent mode indicator (CMI) have been investigated to quantitatively partition the realized mode

into system and noise portions so that the noise modes can be disregarded.

3. New accuracy indicator

Wang et al. (2005) introduced statistical method to deal with the identified modal frequencies. In

the paper, Statistically Averaging Modal Frequency Method (SAMFM) is developed to distinguish

the system and noise modes. The basic idea of SAMFM is as follows. The dynamic characteristics

of the system are always reflected in the dynamic responses and are most expressive of themselves.

For noise-contaminated data, there maybe exist noise modes in the realized modes for the Hankel

matrix of a certain order used for identification and it is difficult to be distinguished. However,

when the order of the hankel matrix is varied, the noise modes may not occur though some different

noise modes may appear. In any case, the system modes would be exhibited as readily as possible.

Hence one can change the order of the hankel matrix and statistically accumulate the identified

modes. It is reasonable to consider the modes with the most accumulated number as the system

modes. And the modal frequency is the accumulated value divided by the corresponding

accumulated number. Since modal frequency was statistically averaged, the effect of noise

contamination can be effectively restrained. The computation process is summarized as follows.

Step 1: Determine the highest frequency to be identified  and frequency interval , and divide

the frequency axis into m segments: . And set two

vectors  and nj ( j = 1, …, m) to zeros initially.

Step 2: For a certain value of α, β, construct the Hankel matrix and the modal frequencies fi
(i = 1, …, nf ) are identified with ERA. Assume  where  means

integer. Determine which segment fi is located in and add 1 to the corresponding counter,

i.e., ,  (i = 1, …, nf ).

Step 3: Increase the numbers of column and row of hankel matrix and repeat step 2 until end.

Step 4: Finally the corresponding occurrence number of each segment is nj ( j = 1, …, m). And

the identified modal frequency of each segment is (j = 1, …, m) if nj is not

equal to zero. 

In Wang’s (Wang et al. 2005) paper, the modes corresponding to higher occurrence are considered

to be the true system modes of the structure. However, it is still artificially random to determine the

exact occurrence as the critical value.

In the present paper, we establish more robust classification criteria for true modal identification.

The true system modes of the structure are selected on the basis of a rejection of hypotheses in the

statistical sense. Firstly, the occurrence number nj associated with each segment is treated as a

fh f∆

0 f∆–  f∆ 2 f∆–  …  m 1–( ) f∆ fh–,, ,

ffj

k int fi/ f∆( )= int •( )

ffk ffk fi+= nk nk 1+=

fj ffj/nj =



     New accuracy indicator to quantify the true and false modes for eigensystem realization algorithm 629

realization of a random variable n. In other words, the collection of the occurrence value, nj,

represents a sample population. For purposes of making a consistent comparison, we wish to

classify a mode into one of two groups. We first normalize the values of occurrence nj, according to

the rule

 (9)

in which the terms  and  represent, respectively, the mean and the standard deviation of the

collection of nj values and  denotes normalized occurrence number corresponding to the j-th

segment of frequency. 

Our next problem is to develop an algorithm that would classify  into system and noise

modes using hypothesis testing (Gibson and Melsa 1975). The null hypothesis (i.e., H0) is: The

mode is a noise mode. The alternate hypothesis (i.e., H1) is: The mode is system mode. 

 
choose H1: when  > K

choose H0: when  < K

in which K is a number that reflects the level of significance of the test. For K = 2, the level of

significance is 0.023. Hereby, a new accuracy indicator, , normalized occurrence number, is

defined to distinguish the system and noise modes. In the following numerical study, K = 2 is

chosen for the critical threshold.

4. Numerical examples

Numerical examples are given below to illustrate the procedure of applying the new accuracy

indicator to determine the system modes. Two structural models-a simple discrete mass-spring

system and a simply supported beam model-are chosen for numerical demonstration. Two cases,

noise-free and random noise with noise-to-signal ratio (NSR) equal to 10%, are studied to

investigate the sensitivity of noise level to the identification accuracy.

4.1 Discrete mass-spring system

We will begin by illustrating the application of the new accuracy indictor to a simple mass-spring

system. The system consists of 5 inertias joined together by 5 springs to form a chain, as shown in

Fig. 1. Each spring has a stiffness of 2900 kN/m and each inertia has a mass of 260 kg except the

end one with 220 kg. When simulating the responses, 1% damping ratios for all five modes were

added to system to form the damping matrix.

NONj

nj n–

σn

------------=

n σn

NONj

NONj

NONj

NONj

NONj

Fig. 1 The discrete mass-spring example 
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Modal analysis was conducted to get the modal frequencies of the system. And gaussian random

excitations acting on the five masses are assumed to compute the responses. The sampling interval

is 0.01s and totally 2048 data points are acquired for each mass. Shown in Fig. 2 are the

acceleration responses at the five masses. 

Using the impulse responses from NExT as the input of ERA and varying the rows and columns of

the Hankel matrix, the modal frequencies based on the new accuracy indicator- NON, are identified.

In applying the new indicator, the maximum numbers of columns and rows of the block hankel

matrix are 40 and 8, respectively. Fig. 3 shows the occurrence number for noise-free measurements

before normalizing. From Fig. 3 one can see that the modal frequencies whose occurrence numbers

are greater than 80 are supposed to be the true modes. However, when the maximum numbers of

columns and rows of the block hankel matrix are changed, 80 may be changed either, i.e., it is not a

relatively stable value. One can also see that there are spurious frequencies which occurrence

numbers are close to 20. The normalized occurrence number (NON) of the identified modes is

shown in Fig. 4 for noise free measurements. The theoretical, the identified frequencies, damping

ratios and the corresponding errors are listed in Table 1 for comparison. It is clearly seen that the

errors for modal frequencies are negligible. The identification of damping ratios is not as easily as

eigenfrequencies. The relative errors of the identified damping ratios are more larger than those of

the identified modal frequencies. However, the results may be considered reasonable since it is more

difficult for damping identification than frequency identification.

An important aspect in the development of modal identification is its sensitivity to uncertainties in

the measurements. To study the effect of measurement noise, it is assumed that the simulated

acceleration responses are contaminated with Gaussian random noise with noise-to-signal ratio

(NSR) equal to 10%. Similarly applying the procedure, the NON of the realized modes with noise

is shown in Fig. 5 and the modal frequencies are listed in Table 2. For comparison, the theoretical

values and the relative errors are also listed in Table 2. It can be seen that the effect of noise on the

NON for modal frequencies is negligible. However, the effect of noise on the identification of

damping coefficients can not be neglected when comparing the results of Tables 1 and 2. From

Fig. 2 Acceleration responses at the five masses Fig. 3 The occurrence number for noise-free
measurements (before normalizing)
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Figs. 4 and 5, one can set the threshold (K) to a higher value (three for example) if one needs a

higher confidence level.

4.2 Simply supported beam model

We next illustrate the application of the new accuracy indicator to a discrete model of a

continuous structure. The structure considered is a simply supported beam, as shown in Fig. 6. The

Table 1 Comparison of modal frequencies and damping ratios without measurement noise

Mode

Modal frequencies Damping ratios

Theoretical 
(Hz)

NON
 (Hz)

Relative error 
(%)

Theoretical 
(Hz)

NON
 (Hz)

Relative error 
(%)

1
2
3
4
5

4.9197
14.311
22.417
28.567
32.350

4.9026
14.290
22.366
28.526
32.222

-0.349
-0.151
-0.226
-0.144
-0.397

0.01
0.01
0.01
0.01
0.01

0.0138
0.0138
0.0097
0.0130
0.0096

38.10
37.80
-2.64
30.90
-4.22

Table 2 Comparison of modal frequencies and damping ratios with 10% measurement noise

Mode

Modal frequencies Damping ratios

Theoretical 
(Hz)

NON
 (Hz)

Relative error 
(%)

Theoretical 
(Hz)

NON
 (Hz)

Relative error 
(%)

1
2
3
4
5

4.9197
14.311
22.417
28.567
32.350

4.9060
14.289
22.368
28.532
32.214

-0.280
-0.157
-0.219
-0.124
-0.421

0.01
0.01
0.01
0.01
0.01

0.0206
0.0175
0.0199
0.0122
0.0095

106.60
74.98
99.30
21.60
-4.86

Fig. 4 NON of the system for noise-free measure-
ments

Fig. 5 NON of the system with 10% measurement
noise 
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simulated beam of 6 m length is equally divided into 15 two-dimensional beam elements as shown

in Fig. 6. The density and elastic modulus of the material of the beam are 2500 kg/m3 and

3.2 × 1010 N/m2, respectively. Similarly area of cross section and moment of inertia of simulated

beam are 0.05 m2 and 1.66 × 10−4 m4, respectively. 

Modal analysis is carried out to get the FE frequencies and acceleration responses in the

transverse direction at the 14 nodes are calculated assuming that the beam is excited by random

loading in transverse direction at node 3, 6 and 12. The sampling time interval is 0.003s and 2048

data points are acquired for each DOF.

The similar identification procedure as explained above is carried out. Cases with no noise and

with 10% noise are studied. Shown in Fig. 7 is the NON of the system modes in case of noise free

acceleration responses. And the first four theoretical frequencies from FE model, the identified

frequencies and the corresponding errors are listed in Table 3. The maximum error that appeared in

frequencies is 0.37% in the 3rd mode.

Fig. 8 shows the NON of the modal frequencies in case of 10% measurement noise for

acceleration responses. For comparison, the corresponding theoretical frequencies, identified values

and relative errors are listed in Table 4. It can be seen that the maximum error in frequencies is

0.44% in the 1st mode.

Fig. 6 The simulated simply supported beam 

Fig. 7 NON of the beam model for noise-free
measurements 

Fig. 8 NON of the beam model with 10% measure-
ment noise
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5. Conclusions

Modal parameters identification using output-only measurements has received much attention over

the past decades. And there are a variety of available approaches to estimate structural modal

parameters. Due to measurement noises, the realized modes will unavoidably include fictitious

computational modes. And it is generally much more difficult to establish reliable confidence values

for these results. In the present paper, a new accuracy indicator, Normalized Occurrence Number

(NON), is proposed to distinguish the system and noise modes for Eigensystem Realization

Algorithm. This new accuracy indicator reliably indicates the relative confidence of each identified

mode on the basis of hypothesis testing. A critical value is predetermined which reflects the level of

significance of the test. Modes with NON greater than this critical value can generally be accepted

as system modes. 

For verifying the effectiveness and robustness of the new accuracy indicator, two examples are

illustrated. Two cases, noise-free measurements and random noise contaminated responses with

noise-to-signal ratio (NSR) equal to 10%, are studied to investigate the sensitivity of noise level to

the identification accuracy. Numerical simulation demonstrates that the new indicator can determine

the system modes properly. The precision of the identified eigenfrequencies is very high and the

effect of noise on the NON for modal frequencies is negligible. However, the identification of

damping ratios is not as easily as eigenfrequencies. The relative errors of the identified damping

ratios are larger than those of the identified modal frequencies. And the effect of noise on the

identification of damping coefficients can not be neglected. Further investigation is still needed to

improve the damping identification using NON.
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Table 3 Comparison of modal frequencies of the beam model without measurement noise

Mode Theoretical (Hz) NON (Hz) Relative error (%)

1
2
3
4

8.9948
35.980
80.962
143.97

8.9746
36.066
80.659
143.94

-0.224
0.240

-0.374
-0.018

Table 4 Comparison of modal frequencies of the beam model with 10% measurement noise

Mode Theoretical (Hz) NON (Hz) Relative error (%)

1
2
3
4

8.9948
35.980
80.962
143.97

8.9552
36.0689
80.6871

143.9357

-0.441
0.247

-0.339
-0.020
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