
Structural Engineering and Mechanics, Vol. 34, No. 5 (2010) 549-561 549

Free transverse vibrations of an elastically connected 
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Abstract. In this paper, free vibration analyses of a parallel placed twin pipe system simulated by
simply supported-simply supported and fixed-fixed Euler-Bernoulli beams resting on Winkler elastic soil
are presented. The motion of the system is described by a homogenous set of two partial differential
equations, which is solved by a simulation method called the Differential Transform Method (DTM). Free
vibrations of an elastically connected twin pipe system are realized by synchronous and asynchronous
deflections. The results of the presented theoretical analyses for simply supported Euler-Bernoulli beams
are compared with existing ones in open literature and very good agreement is demonstrated.
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1. Introduction

Beam-type structures are widely used in many branches of modern aerospace, mechanical and

civil engineering. In civil engineering, there are numerous studies dealing with problems related to

soil-structure interaction; such as railroad tracks, highway pavements, strip foundations and

continuously supported pipelines, in which the structure is modeled by means of a beam on an

elastic foundation.

There are different types of beam models. One of the well known models is the Euler-Bernoulli

beam theory that works well for slender beams. According to the Euler-Bernoulli beam theory, the

length of each beam section is much greater than the height of each section and the shear and rotary

inertia effects are ignored.

Besides beam models, there are also various types of foundation models such as Winkler,

Pasternak, Vlasov, etc. A well known and widely used mechanical model is the one devised by

Winkler. According to the Winkler model, the beam-supporting soil is modeled as a series of

closely spaced, mutually independent, linear elastic vertical springs which provide resistance in

direct proportion to the deflection of the beam. In the Winkler model, the properties of the soil are

described only by the parameter k, which represents the stiffness of the vertical springs (Winkler

1867, Avramidis and Morfidis 2006).
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Free vibrations of single beams on continuous elastic foundations have been analyzed by a

number of investigators. However, there are only few contributions dealing with the vibrations of

double-beam systems. An elastically connected double-beam system is a typical model of a complex

continuous system of two one-dimensional solids attached together by a Winkler elastic soil. But,

the general vibration analyses of an elastically connected double-beam system are complicated and

laborious in view of a large variety of possible combinations of boundary conditions, and thus, the

solution of the governing coupled partial differential equations is difficult (Abu-Hilal 2006,

Oniszczuk 2000, 2002, 2003).

Seelig and Hoppman’s studies appear to be the first on the vibration of elastically connected

double beam systems (Seelig and Hoppmann 1964a, b). Then, different aspects of dynamics of an

elastically connected double-beam system have been treated by many authors: Kessel (1966), Saito

and Chonan (1969), Kessel and Raske (1971), Hamada et al. (1983), Kukla and Skalmierski (1994),

Kukla (1994), Oniszczuk (1999), Vu et al. (2000), Oniszczuk (2000, 2003), Erol and Gurgoze

(2004) and Abu-Hilal (2006). 

In this paper, the free vibration analyses of a parallel placed twin pipe system are studied. The

system consists of two identical, parallel placed, elastic, homogeneous, isotropic Euler-Bernoulli

beams connected continuously by Winkler elastic soil. In the first part of the analyses, the beams

are supposed to be simply supported; and in the second part they are supposed to be fixed at both

ends. The motion of the system is described by a homogenous set of two partial differential

equations, which are solved by a simulation method called the Differential Transform Method

(DTM); and the natural frequencies of the system are determined. In general, an elastically

connected simply supported double-beam system executes two fundamental kinds of vibrations,

synchronous and asynchronous (Oniszczuk 2000, 2002). The presented theoretical analyses for

simply supported Euler-Bernoulli beams are compared with a numerical example solved by

Oniszczuk (2000), and very good agreement has been achieved.

The Differential Transform Method (DTM) used in the analyses is a semi analytical-numerical

technique based on the Taylor series expansion method for solving differential equations. It is

different from the traditional high order Taylor series method. The Taylor series method

computationally takes long time for large orders. However, with DTM, doing some simple

mathematical operations on differential equations, a closed form series solution or an approximate

solution can be obtained quickly. This method was first proposed by Zhou in 1986 for solving both

linear and nonlinear initial-value problems of electrical circuits (Zhou 1986). Later, Chen and Ho

developed this method for partial differential equations (Chen and Ho 1999) and Ayaz studied two

and three dimensional differential transform method of solution of the initial value problem for

partial differential equations (Ayaz 2003, 2004). Arikoglu and Ozkol extended the differential

transform method to solve the integro-differential equations (Arikoglu and Ozkol 2005). Catal used

DTM for free vibration analyses of both ends simply supported beam resting on elastic foundation

(Catal 2006). Recently, the second author used the DTM method successfully to handle various

kinds of rotating beam problems (Kaya 2006, Ozdemir and Kaya 2006a, b).

2. The equations of motion and boundary conditions

 

In this study, a vibrating twin pipe system which is represented by two parallel, slender, prismatic

and homogenous Euler-Bernoulli beams resting on a Winkler elastic soil is investigated. In the
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analyses, it is assumed that both beams have the same length; and two kinds of boundary conditions

are studied: simply supported (Fig. 1(a)) and fixed at both ends (Fig. 1(b)). 

Free transverse vibrations of the system under consideration are described by the following

differential Eq. (1)

(1)

where  is the transverse beam deflection;  are the spatial co-ordinate and the time;

Ei is the Young modulus of elasticity; Ai is the cross-sectional area of the beam; Ii is the moment of

inertia of the beam cross-section; Ki is the flexural rigidity of the beam; k is the stiffness modulus of

a Winkler elastic layer; L is the length of the beam, and ρi is the mass density.

K1

∂4
w1

∂x
4

----------- m1

∂2
w1

∂t
2

----------- k w1 w2–( )+ + 0=

K2

∂4
w2

∂x
4

----------- m2

∂2
w2

∂t
2

----------- k w2 w1–( )+ + 0=

Ki EiIi= mi, ρiAi, i 1 2,= =

wi wi x t,( )= x t,

Fig. 1 Physical models of elastically connected twin pipe systems
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The associated boundary conditions considered in this paper are given as follows:

Simply supported-simply supported

(2)

Fixed-fixed

(3)

In order to make free vibration analyses of the Euler-Bernoulli beam on the Winkler foundation,

let us assume the solution is in the form of a sinusoidal variation of  with circular

frequency ω

, (4)

Substituting Eq. (4) into Eq. (1), equations of motion are expressed as follows

 (5)

3. Nondimensionalization

The non-dimensional parameters are defined as

(6)

Using these parameters, the nondimensional form of Eq. (5) can be written as

(7)

where,  and , respectively.
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Fixed-fixed

(9)

4. Differential transform method

The differential transform method (DTM) is a transformation technique based on the Taylor series

expansion and is a useful tool to obtain analytical solutions of the differential equations. In this

method, certain transformation rules are applied and the governing differential equations and the

boundary conditions of the system are transformed into a set of algebraic equations in terms of the

differential transforms of the original functions. The solution of these algebraic equations gives the

desired solution of the problem. It is different from high-order Taylor series method because Taylor

series method requires symbolic computation, and is laborious for large orders.

Consider a function  which is analytic in a domain D and let  represent any point in

D. The function  is then represented by a power series whose center is located at . The

differential transform of the function  is given by

 (10)

where  is the original function and  is the transformed function.

The inverse transformation is defined as

 (11)

Combining Eqs. (10) and (11) gives

 (12)

Considering Eq. (12), once more it is noticed that the concept of differential transform is derived

from Taylor series expansion. However, the method does not evaluate the derivatives symbolically.

In actual applications, the function  is expressed by a finite series and Eq. (12) can be

written as follows

 (13)

which means that  is negligibly small. Here, the value of m depends

on the convergence rate of the natural frequencies.

Theorems that are frequently used in the transformation of the differential equations and the

boundary conditions are introduced in Table 1 and Table 2, respectively.
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5. DTM formulation and solution procedure

In order to derive DTM form of Eq. (7), we will quit using the bar symbol on  and instead, W

will be employed. If Table 1 is referred the following expression can be written easily.

(14)

If Eq. (14) is arranged, a simple recurrence relation can be obtained as follows

(15)

The boundary conditions can be written from Table 2 as follows:
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 (16)

 (17)

Fixed-fixed 

 

 (18)

 

The solution procedure of DTM will be shown for simply-supported-simply supported conditions

and the values are set to A1 = 0.25, B1 = 250, A2 = 0.25, B2 = 500. 

(19)

(20)

Eq. (19) and Eq. (20) represent the left end boundary condition. The W1(1), W1(3), W2(1) and

W2(3) values are set as unknowns such as 

(21)

 

W1(k) and W2(k) values for  can now be evaluated in terms of constants c1, c2, c3 and c4,

respectively. Substituting all W1(i) and W2(i) terms into boundary condition expressions, the

following equation is obtained. 

,  (22)

where  are polynomials of ω corresponding to nth term. 

When Eq. (22) is written in matrix form, we get 
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(24)

Solving Eq. (24), we get  where . Here,  is the jth estimated

eigenvalue corresponding to n. The value of n is obtained by the following equation

 (25)

where ε is the tolerance parameter. 

If Eq. (25) is satisfied, then we have jth eigenvalue . In general,  are conjugated complex

values, and can be written as . Neglecting the small imaginary part bj, we have the

have jth natural frequency. In this study the value of n = 50 was enough.

6. Numerical examples

The computer package Mathematica is used to solve recurrence relations with associated boundary

conditions. The free transverse vibrations of two simply supported-simply supported and fixed-fixed

beams are considered to establish the effect of physical parameters characterizing the vibrating

system on the natural frequencies. Results of the simply supported double-beam system are

compared with Oniszczuk’s study which is solved by using the classical Bernoulli-Fourier method

(Oniszczuk 2000). The following values of the parameters are used in the numerical calculations:
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results of the calculations for simply supported beams at both ends are compared with Oniszczuk

(2000); and very good agreement is observed. The results for the simply supported-simply

supported beams are presented in Tables 3-5 and in Fig. 2; and the results for fixed-fixed beams are

given in Tables 6-8 and in Fig. 3. Following Oniszczuk (2000), the natural frequencies ωin in the
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Table 3 Natural frequencies of double-beam system  ω in (s
-1); c = 0.5, (Simply supported)

Method k × 10-5 n 1 2 3 4 5

DTM 0 ωin 19.739 78.957 177.653 315.827 493.478

Bernoulli-Fourier 19.7 79.0 177.7 315.8 493.5

DTM 1 ω2n 58.221 96.095 185.905 320.542 496.509

Bernoulli-Fourier 58.2 96.1 185.9 320.5 496.5

DTM 2 ω2n 79.935 110.608 193.805 325.187 499.521

Bernoulli-Fourier 79.9 110.6 193.8 325.2 499.5

DTM 3 ω2n 96.900 123.427 201.396 329.768 502.515

Bernoulli-Fourier 96.9 123.4 201.4 329.8 502.5

DTM 4 ω2n 111.309 135.034 208.712 334.286 505.491

Bernoulli-Fourier 111.3 135.0 208.7 334.3 505.5

DTM 5 ω2n 124.055 145.720 215.779 338.743 508.450

Bernoulli-Fourier 124.1 145.7 215.8 338.7 508.5

Table 4 Natural frequencies of double-beam system  ωin (s
-1); c = 1.0, (Simply supported)

Method k × 10-5 n 1 2 3 4 5

DTM 0 ωin 19.739 78.957 177.653 315.827 493.478

Bernoulli-Fourier 19.7 79.0 177.7 315.8 493.5

DTM 1 ω2n 48.884 90.742 183.195 318.978 495.500

Bernoulli-Fourier 48.9 90.7 183.2 319.0 495.5

DTM 2 ω2n 66.254 101.164 188.575 322.098 497.515

Bernoulli-Fourier 66.3 101.2 188.6 322.1 497.5

DTM 3 ω2n 79.935 110.608 193.805 325.187 499.521

Bernoulli-Fourier 79.9 110.6 193.8 325.2 499.5

DTM 4 ω2n 91.595 119.307 198.898 328.248 501.519

Bernoulli-Fourier 91.6 119.3 198.9 328.2 501.5

DTM 5 ω2n 101.930 127.413 203.864 331.281 503.509

Bernoulli-Fourier 101.9 127.4 203.9 331.3 503.5

Table 5 Natural frequencies of double-beam system ωin (s
-1); c = 2.0, (Simply supported)

Method k × 10-5 n 1 2 3 4 5

DTM 0 ω in 19.739 78.957 177.653 315.827 493.478

Bernoulli-Fourier 19.7 79.0 177.7 315.8 493.5

DTM 1 ω2n 43.470 87.944 181.826 318.193 494.996

Bernoulli-Fourier 43.5 87.9 181.8 318.2 495.0

DTM 2 ω2n 58.220 96.095 185.905 320.542 496.509

Bernoulli-Fourier 58.2 96.1 185.9 320.5 496.5

DTM 3 ω2n 69.926 103.606 189.896 322.873 498.017

Bernoulli-Fourier 69.9 103.6 189.9 322.9 498.0

DTM 4 ω2n 79.935 110.608 193.805 325.187 499.521

Bernoulli-Fourier 79.9 110.6 193.8 325.2 499.5

DTM 5 ω2n 88.824 117.193 197.637 327.486 501.020

Bernoulli-Fourier 88.8 117.2 197.6 327.5 501.0
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Fig. 2 General mode shapes of vibration of an elastically connected simply supported-simply supported
double beam complex system corresponding to the first five pairs of the natural frequencies

Table 6 Natural frequencies of double-beam system ω in (s
-1); c = 0.5, (Fixed-Fixed, (DTM))

k × 10-5 n 1 2 3 4 5

0 ω in 44.747 123.346 241.807 399.710 597.000

1 ω2n 70.727 134.960 247.932 403.454 599.509

2 ω2n 89.455 145.651 253.910 407.155 602.006

3 ω2n 104.891 155.609 259.751 410.823 604.492

4 ω2n 118.331 164.967 265.463 414.458 606.969

5 ω2n 130.393 173.822 271.054 418.061 609.435

Table 7 Natural frequencies of double-beam system ω in (s
-1); c = 1.0, (Fixed-Fixed, (DTM))

k × 10-5 n 1 2 3 4 5

0 ω in 44.747 123.346 241.807 399.719 597.002

1 ω2n 63.263 131.203 245.908 402.213 598.674

2 ω2n 77.474 138.615 249.941 404.691 600.342

3 ω2n 89.455 145.651 253.910 407.155 602.006

4 ω2n 100.011 152.362 257.819 409.604 603.665

5 ω2n 109.555 158.790 261.669 412.038 605.319
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ω1n are not dependent on the stiffness modulus k unlike ω2n; and there is a general tendency to

increase the natural frequencies ωin in the case of increasing the layer stiffness modulus k. The

results also show that, the simultaneous proportional variation of flexural rigidity and mass of the

second beam implies that the synchronous quantity ω1n is not dependent on an assumed constant c

and layer stiffness modulus k unlike the asynchronous quantity ω2n. Their values diminish when

parameter c grows. 

Table 8 Natural frequencies of double-beam system ω in (s
-1); c = 2.0, (Fixed-Fixed, (DTM))

k × 10-5 n 1 2 3 4 5

0 ω in 44.747 123.346 241.807 399.719 597.002

1 ω2n 59.180 129.283 244.889 401.591 598.257

2 ω2n 70.727 134.960 247.932 403.454 599.509

3 ω2n 80.637 140.407 250.939 405.309 600.759

4 ω2n 89.455 145.651 253.910 407.155 602.006

5 ω2n 97.480 150.712 256.847 408.993 603.250

Fig. 3 General mode shapes of vibration of an elastically connected fixed-fixed double beam complex system
corresponding to the first five pairs of the natural frequencies 
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7. Conclusions

In this study, the free transverse vibration analyses of elastically connected simply supported-

simply supported and fixed-fixed double-beam complex systems are studied by a new and semi-

analytical technique called the Differential Transform Method (DTM) in a simple and accurate way.

The essential steps of the DTM application includes transforming the governing equations of motion

into algebraic equations, solving the transformed equations and then applying a process of inverse

transformation to obtain any jth natural frequency. All steps are very straightforward, and the

application of DTM to both the governing equations of motion and the boundary conditions are

very easy. The simplicity of the solutions of the algebraic equations are remarkable because

equations can be solved very quickly using the symbolic computational software, Mathematica. In

this study, using DTM, the natural frequencies of the double beam complex systems are calculated,

and the related graphics are plotted. The calculated results of simply supported-simply supported

beam analyses are compared with Oniszczuk (2000), in which the differential equations of motion

are formulated by classical Bernoulli-Fourier method. When the comparisons are made with the

studies in the literature, a very good agreement is observed. Thus, it can be seen that, the solutions

obtained for a double beam system can be helpful in the investigations of more complicated multi-

beam systems.
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