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Static configurations of cables in cable stayed bridges
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1. Introduction

Long stay cables in cable-stayed bridges may have large sag under their weight. In this paper, a

precise catenary of stay cables is deduced. Furthermore, in order to simplify the calculation, an

approximate configuration of parabola is presented. Compared with former studies, the parabola has

higher precision.

2. Static solutions to inextensible cable

It is assumed that the bending stiffness of a uniform inextensible cable is small enough to be

neglected. Fig. 1 denotes the inclined cable stayed at two fixed points A and B which have the

coordinates (0, 0) and (l, h), respectively. Considering a differential segment at (x, z) in Fig. 2, the

vertical equilibrium under its self-weight requires (Irvine 1981)
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where H is the horizontal component of cable tensile force T, being a constant everywhere; mg is

the self-weight per unit length of cable. The boundary conditions at the cable supports A and B are

z(0) = 0 and z(l) = h, respectively. Substituting  into Eq. (1), the nondimensional

solution to cable sag f can be expressed as 

(2)

In Eq.(2), , and a are non-dimensional variables which are defined as f/l, x/l and mgl/H,

respectively; θ is the inclination of cable chord with respect to the horizontal direction. Furthermore

the tensile force T and nondimensional cable length , namely, S/l, can be derived as 

(3)

(4)

where  

The above expressions can not be used directly due to the unknown parameter H in them. In fact,

in cable-stayed bridge design the vertical component of the tensile force at the support B, i.e., VB, is

confirmed firstly and then the cable tension is determined. Therefore Eq. (5) is deduced by the

relationship between VB and the horizontal component H at the support B. From Eq. (5) the tensile

force at the support B comes out by iterative calculations. Then the key parameter H and the others

in Eq. (2) to Eq. (4) are obtained 

(5)

3. Static solutions to extensible cable

In actual case, stay cables are extensible. In the strained profile the length of the differential cable

segment becomes ds1, and its unit weight changes into m1g which equals to mg × ds/ds1 owing to

conservation of mass. Substituting the cable tensile force expressed by Hooke’s law into Eq. (1)

leads to the differential equation for the strained profile as 

(6)

where b = H/EA, E is the Young’s modulus of cable, A is the uniform cross-sectional area in the

unstrained profile; and the definitions of the other parameters are the same as those in the former

section. Eq. (6) may be solved by setting . Considering the boundary conditions, the

solutions for nondimensional variables  and  are

(7)
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where, , .

As for the support B, Eq. (7) may be rewritten as 

 (8)

It is also assumed that VB is known beforehand. By solving Eq. (8), TA and TB can be obtained.

The other parameters, may be derived out. Moreover, the iteration is involved in Eqs. (5) and (8), so

simplified methods are necessary to be derived.

4. Simplified static solutions

Since the sag at stay cable’s mid span is usually small, it is assumed that the length of differential

segment, namely ds, is equal to . Consequently Eq. (1) may be rewritten as

(9)

It may be deduced that the nondimensional solution to Eq. (9) is

(10)

Eq. (10) points out that the sag curve is a parabola. Now by introducing the given parameter VB

through the formula  the constant parameter H may be obtained as

(11)

Consequently the tensile force and cable length are respectively 

(12)

(13)

All the parameters can be derived directly once H is known by Eq. (11). Thus the solving

efficiency can be greatly improved.

5. An example

An actual cable (J34), which is the longest one in Sutong Yangtze River Bridge with main span of

1088 meters, is adopted to testify the precision of the above formulas. The main parameters of the

cable are: VB = 2478.824(kN); mg = 98.8 (kN/m); l = 532.626 (m); h = 220.564 (m); L(chord length

of a cable) = 576.488 (m) ; A = 0.012046 (m2); E = 1.95e8 (kN/ m2). The Newton-Raphson method

and Broyden method are adopted to solve the nonlinear equation (Eq. (5)) and nonlinear equation

set (Eq. (8)), respectively. The computed results are listed in Table 1, in which fl/2 is the sag at mid

span of the cable; fmax. is the maximum sag at the point (xmax., zmax.) which satisfies ; and

θA and θB represent the tangent inclinations at the ending points A and B, respectively. Method 1,
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Method 2 and Method 3 in Table 1 mean those in Sections 2, 3 and 4, respectively. Moreover, some

results using the methods by Irvine (1981) and by Wei (1998) are also listed and the two methods

are denoted as Method 4 and Method 5, respectively. Cable profile in Method 4 is described by the

equations set using curvilinear coordinates which are less convenient than Cartesian coordinates in

the paper. As for Method 5, static equilibrium equations are just the same with those in Method 2.

But there is some difference of the solving process and as a result the expressions for cable

parameters are different. It can be seen from Table 1 that all the results are almost the same.

Thereby the validities of the methods in the three sections above are well proved. 

From the above discussion, it can be found that the parabolic configurations are very close to the

real profiles of stay cables because their sag ratio is small. However with the development of bridge

engineering, cables will become longer and longer. Thus discussion of the applicability of parabola

and the relevant simplified solutions in more extensive situations are made here.

As for a given cable, the cable nonlinearity induced by cable sag effect is determined by cable

tension. Therefore by changing the value of VB from 500 kN to 5000 kN, cable stress varies from

115 MPa to 1100 MPa accordingly. The solutions to extensile cable by Method 2 are taken as the

precise reference to testify the validity of the simplified Method 3. TA1, TB1 and f1 are the results by

Method 3 and TA2, TB2 and f2 by Method 2. f1 and f2 denote sag value at the cable midpoint. The

results indicate that all the differences increase with the decrease of cable tension. But they are no

more than 0.5% for the cable tension and 1% for the cable sag. Hence the parabola and the relevant

simplified solutions are applicable in more extensive situations.

6. Conclusions

The precise and simplified solutions for sag and cable parameters are both derived in this paper.

The solutions show cable tension decreases monotonously along the cable from the top end to the

low one. The parabola is very close to the actual sag curve of stay cables by considering chord

component of cable weight. Based on the parabola, cable parameters could be obtained conveniently.
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Table 1 Static solutions with different methods and comparisons

TA (kN) TB (kN) S (m) fl/2 /L fmax /L xmax /l tanθΑ tanθB

Cable J34

Method 1 7333.834 7115.952 576.616 1/101.439 1/101.439 0.499 0.4570 0.3717

Method 2 7331.219 7114.005 576.616 1/101.725 1/101.725 0.499 0.4569 0.3717

Method 3 7336.789 7119.051 576.616 1/101.439 0.5 0.4568 0.3714

Method 4 7331.231 7114.020 578.388 1/101.694 1/101.685 0.499 0.4569 0.3717

Method 5 7331.219 7114.005 576.615 1/101.689 1/101.689 0.499 0.4569 0.3717




