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Abstract. Parametric and forced non-linear vibrations of an axially moving rotor both in non-resonance
and near-resonance cases have been investigated analytically in this paper. The axial speed is assumed to
involve a mean value along with small harmonic fluctuations. Hamilton’s principle is employed for this
gyroscopic system to derive three coupled non-linear equations of motion. Longitudinal inertia is
neglected under the quasi-static stretch assumption and two integro-partial-differential equations are
obtained. With introducing a complex variable, the equations of motion is presented in the form of a
single, complex equation. The method of multiple scales is applied directly to the resulting equation and
the approximate closed-form solution is obtained. Stability boundaries for the steady-state response are
formulated and the frequency-response curves are drawn. A number of case studies are considered and the
numerical simulations are presented to highlight the effects of system parameters on the linear and non-
linear natural frequencies, mode shapes, limit cycles and the frequency-response curves of the system. 

Keywords: non-linear vibrations; multiple-scale method; axially moving rotor.

1. Introduction

Many technological devices such as drill strings and cardan shafts can be modeled as an axially

moving rotor.

The literature on the vibration and stability of axially moving systems is quite extensive. Wickert

(1992) investigated the non-linear vibration of an axially moving tensioned beam in the sub- and

super-critical transport speed ranges. Stylianou and Tabarrok (1994) investigated the effects of the

system parameters on the stability boundaries of an axially moving beam via finite element method.

Oz et al. (1998) employed a perturbation technique to develop an outer solution, and then examined

the transition behavior of the system from a string model to a beam one. Pellicano and Zirilli (1998)

did not consider the flexural stiffness and carried out an investigation on the non-linear vibration of
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an axially moving beam. Pakdemirli and Ozkaya (1998) used the matched asymptotic expansion to

solve the boundary layer problem of an axially moving beam undergoing a constant axial speed. Oz

and Pakdemirli (1999) used the multiple-scale method to obtain the approximate analytic solution

and stability boundaries of an axially moving beam. The super-critical dynamics of an axially

moving string supported additionally by an elastic foundation was studied by Parker (1999). Ozkaya

and Pakdemirli (2000) investigated the boundary layer problem of an axially moving beam, in which

the flexural stiffness was assumed as a small value. Chung et al. (2001) employed the Galerkin

method to study the vibrations of an axially moving string. Non-linear parametric vibration and

stability of an axially moving visco-elastic Rayleigh beam were investigated by Ghayesh and Balar

(2008). The non-linear vibration of an axially moving visco-elastic string guided by a visco-elastic

foundation was investigated by Ghayesh (2008). Two dynamic models of axially moving beams were

considered by Chen and Yang (2005) to investigate the differences in the dynamical behavior of

these two models. Galerkin’s technique was employed by Zhang and Chen (2005) to investigate the

chaotic motion and bifurcation of a visco-elastic moving string. Chen and Zhao (2005) investigated

the non-linear vibration of an axially moving beam under a low transport speed. Chen et al. (2005)

analyzed the transverse vibrations of an axially moving string via modified finite difference method.

Zhang (2008) used the Galerkin method to analyze the bifurcation and chaos of an axially moving

visco-elastic string. Chen (2006) investigated the coupled planar vibration of axially moving string

via energetics. Chen and Yang (2006) used the multiple-scale method to solve the equation of motion

of an axially moving beam constrained by hybrid supports. Shin et al. (2006) used the Galerkin

method to analyze the dynamical response of an axially moving membrane considering both in-plane

and out-of-plane vibrations. The stability characteristics of an axially accelerating string, additionally

supported by an elastic foundation were investigated by Ghayesh (2009).

In the present study, the non-linear vibration and stability of an axially moving rotor is

investigated. The axial velocity of the rotor is assumed to involve a mean value along with small

harmonic variations. First, the parametric vibration of the system, undergoing the time-dependent

velocity is addressed and the linear and non-linear natural frequencies along with complex

eigenfunctions of the system are obtained via the method of multiple scales. Second, the forced

vibration and the stability of the system are investigated analytically. Numerical results are included

to show the effects of system parameters such as the mean velocity, the amplitude of speed

fluctuation, the detuning parameter and the flexural stiffness on the linear and non-linear natural

frequencies, mode shapes, frequency-response curves and amplitudes of the rotor system.

2. Free vibration
‡

2.1 Equations of motion 

A continuous rotor which is supported simply is shown in Fig. 1. This system is moving axially

with the time-dependent speed , including a mean velocity along with small harmonic

fluctuations.

v* t( )

‡Since the axial speed is time-dependent, “Parametric vibration” may be found as a better title for this section.
The current title is chosen in a way to make clear contrast between this section and Section 3.
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Under Euler-Bernoulli beam theory assumption and the constant rotating speed of the shaft, the

kinetic energy of the system is given by

(1)

 

where ρA,  and Ip are the constant mass per unit length, longitudinal displacement,

harmonic axial speed, the first and the second transverse displacements, rotating speed of the shaft,

and polar moment of inertia of the rotor per unit length, respectively. 

The expression for potential energy, related to the material properties of the rotor can be written

as

(2)

in which, p, EA and EI are respectively the pretension, axial stiffness and flexural rigidity of the

rotor. 

The non-linear strain in Eq. (2) may be expressed as

(3)

Using Eqs. (1)-(3), Hamilton’s principle leads to 

(4)

 

(5)

where the following dimensionless quantities have been used
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Fig. 1 An axially moving rotor under a time-variant axial velocity
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(6)

Under the quasi-static stretch assumption (Wickert 1992, Oz and Pakdemirli 1999), one has 

(7)

Using Eqs. (4), (5) and (7), one gets

(8)

(9)

Introducing the complex variable , Eqs. (8) and (9) may be rewritten in the following

form

(10)

Supposing the transformation , making the non-linear terms in Eq. (10) weak, gives§
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2.2 Multiple-scale analysis 

The method of multiple scales is employed in this section to obtain the solution of the system

equations. In the method of multiple scales, the solution is generally assumed in the following form

(Nayfeh 1981, 1993, Kevorkian and Cole 1981)

 (12)

The axial velocity is assumed to include a mean value, along with small harmonic variations, i.e.

(13)

where ν0, ν1 and Ω are the mean velocity, the amplitude of harmonic fluctuations and the frequency

of fluctuations, respectively.

Substitution of Eqs. (12) and (13) into Eq. (11) leads to the following equations of order one and

epsilon

(14)

(15)

The solution of the equation order one (Eq. (14)) may be assumed in the following complex form 

  (16)

Inserting Eq. (16) into Eq. (14), for a simply-supported system, the spatial functions zn(x) must

satisfy the following equations and boundary conditions
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The solution of Eq. (17) can be assumed as
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(20)

Eqs. (17) and (20) should be solved together numerically to obtain the linear natural frequencies

of the system. 

So, the mode shape equation of the system can be obtained as (from Eqs. (18) and (19)) 

(21)

Substitution of Eq. (16) into (15) gives

(22)

2.3 Solvability condition 

In this section, two possible cases (  and Ω near to zero) are considered and the non-linear

natural frequencies and the limit cycles of the system are obtained.

When the frequency of the axial velocity is away from zero, the displacement, z1, can be assumed

as (Oz and Pakdemirli 1999)
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Substituting Eq. (23) into (24) results in

(25)

Applying the solvability condition (Nayfeh 1981) to the right-hand side of Eq. (25), one gets

(26)

where

(27)

Expressing An in a polar form of

(28)

and substituting it into Eq. (26), the modulation equations can be obtained as
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Numerical verifications show that . Then, solving Eq. (29) gives 
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where  are constant values. Then, the non-linear natural frequencies of the system can be

obtained as

(31)

When the frequency of the axial velocity approaches zero, a detuning parameter, σ, is introduced

such that
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Substituting Eq. (32) into (22) results in

(33)

From applying the solvability condition to Eq.(33), the following equation is obtained 

(34)

in which

(35)

(36)

Numerical verifications show that the imaginary parts of k2 and k3 are equal to zero.

Substituting Eq. (28) into (34) and separating the real and imaginary parts, the following

equations are obtained
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After solving and simplifying Eqs. (37) and (38), one gets
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3. Forced vibration

3.1 Equations of motion

 

Suppose a rotor with magnitude and direction of the eccentricity of the center of gravity constant

with respect to x. Therefore, the virtual work of this eccentricity takes the form**

 (40)

Using Hamilton's principle for Eqs. (1)-(3), (7) and (40), the non-dimensional equations of motion

for the system take the form

(41)

(42)

in which the following new parameters are introduced 

(43)

 

Using Eqs. (7), (41) and (42), and writing , one gets

(44)

Introducing the transformation , one gets‡†
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**The effect of axial motion on the force due to eccentricity has been neglected.
‡†The sign * has been omitted.
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3.2 Method of multiple scales for the primary resonance case

Substituting Eqs. (12) and (13) into Eq. (45), the equations of orders one and epsilon for the

primary resonance case ( ) take the form

(46)

(47)

In the above equations, µ is a detuning parameter showing the deviation of the rotating frequency

from the natural frequency of the system.

Similar to the procedure followed in Section 2.2 (Eqs. (16)-(21)), the mode shapes and the natural

frequencies of the forced system can be obtained via Eq. (46).

Substitution of Eq. (16) into Eq. (47) leads to

(48)

3.3 Solvability condition and stability 

When the axial speed frequency is away from zero, the solvability condition (Nayfeh 1981) of Eq.

(48) leads to
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where

(50)

(51)

(52)

By expressing

(53)

Eq. (49) takes the form

(54)
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where
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where

(60)

Calculating the eigenvalues of the above matrix (Eq. (59)) results in

(61)

Using the Routh-Hurwitz criterion, the stability condition can be obtained as 

(62)

The stability conditions for the first and second detuning parameters, µ1 and µ2, are attainable

from substituting Eq. (57) into (61).

4. Numerical results

In this section, some numerical results are presented to highlight the effects of system parameters

on the linear and non-linear natural frequencies, complex mode shapes, frequency-response curves

and amplitudes of the system.
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Fig. 2 The first natural frequency of the system as a function of the mean velocity for a selection of vf ;
ωp = 0.1
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With increasing the mean velocity, the first linear natural frequency of the system decreases, while

the increasing flexural stiffness of the system increases the first natural frequency of the system, as

seen in Fig. 2.

Figs. 3 and 4 display the influence of the mean velocity, v0, on the real and imaginary components

of the first complex eigenfunction of the system, Re(z1) and Im(z1), respectively, indicating a

travelling wave-form of the oscillation. The increasing mean velocity increases the amplitude of the

vibration of each point of the rotor. 

As seen in Fig. 5, any increase in the angular velocity of the rotor, ωp, increases the first linear

Fig. 4 The imaginary component of the first complex
eigenfunction of the system; vf = 1, ωp = 0.1

Fig. 3 The real component of the first complex
eigenfunction of the system; vf = 1, ωp = 0.1 

Fig. 5 The first natural frequency of the system
versus mean velocity for various ωp ; vf = 0.1

Fig. 6 The first non-linear natural frequency versus
a01 for various v1; ωp = 0.1, v0 = 2, vf = 1,
ε = 0.05
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natural frequency of the system.

The first non-linear natural frequency of the system is illustrated in Fig. 6 for various values of the

speed fluctuation’s amplitude, v1. For v1 = 0, the non-linear natural frequency is independent of a0n; in

fact, the system is linear in this case. By increasing v1, the system displays more non-linearity.

Fig. 7 The linear and non-linear time traces of the
system in the w direction :line: non-linear
vibration, dashed line: linear vibration;
ωp = 0.1, v0 = 2, vf = 1, v1= 1, ε = 0.05

Fig. 8 The linear and non-linear time traces of the
system in the r direction :line: non-linear
vibration, dashed line: linear vibration;
ωp = 0.1, v0 = 2, vf = 1, v1 = 1, ε = 0.05

Fig. 9 The first time-dependent non-linear natural
frequency for a selection of detuning
parameters when the velocity frequency is
near to zero; v1= 1, v0 = 3, vf = 1, ωp = 0.1;
ε = 0.05

Fig. 10 The linear and non-linear time traces of the
system in the w direction for the case where
the velocity frequency is close to zero :line:
non-linear vibration, dashed line: linear
vibration; ωp = 0.1, v0 = 3, vf = 1, v1= 1;
σ = 1, ε = 0.05
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The linear and non-linear time traces in both the transverse directions (w and r) for the first mode

are shown in Figs. 7 and 8, respectively. It is helpful to say that the linear and non-linear limit

cycles are obtained using w1 and (w1)nl, respectively.

Fig. 11 The linear and non-linear time traces of the
system in the r direction for the case where
the velocity frequency is close to zero :line:
non-linear vibration, dashed line: linear
vibration; ωp = 0.1, v0 = 3, vf = 1, v1= 1; σ = 1,
ε = 0.05

Fig. 12 Frequency-response curve of the system in
the first mode for a selection of mean axial
speed; vf = 1, v1 = 1; = 0.0015; = 0.1Ip

*

ω e

Fig. 13 Frequency-response curve of the system in
the first mode for a selection of flexural
rigidity of the shaft; v0= 3, v1 = 1; =
0.0015; = 0.1

Ip
*

ω e

Fig. 14 Frequency-response curve of the system in
the first mode for a selection of ωe; vf = 1,
v0= 1, v1 = 1; = 0.0015Ip

*
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Fig. 9 shows the dependency of the non-linear natural frequency of the system on time for a

selection of detuning parameters, in the case at which the velocity frequency is near to zero. As

seen in Fig. 9, the first non-linear natural frequency varies periodically with time. Moreover, the

extermum values of the non-linear natural frequency seem to be independent of the detuning

parameter chosen, but the time-period of changes in the non-linear natural frequency increases by

decreasing the detuning parameter.

The linear and non-linear time traces of the two transverse displacements, w and r, are illustrated

in Figs. 10 and 11, when the speed frequency is near to zero. It can be concluded that the time-

period of the linear response is larger than the non-linear one. 

As seen in Fig. 12, by increasing the mean value of the axial speed, the amplitude of the response

decreases. Moreover, the distance between the peak of the response and line µ = 0 gets smaller, as

the mean axial speed is increased; the hardening type non-linearity decreases.

Figs. 13 and 14 show that any increase in either the flexural rigidity or the eccentricity increases

the amplitude of the response and makes the peak of the response to tend to right more; the

hardening type of non-linearity increases.

5. Conclusions

The aim of the study described in this paper was to investigate the parametric and forced non-

linear vibration and stability of an axially moving rotor both in the non-resonant and near-resonant

cases. The system was traveling axially under a time-dependent velocity. Hamilton’s principle was

employed to derive the equations of motion. Then, the method of multiple scales was applied

directly to the equations of motion and linear and non-linear natural frequencies along with mode

shapes and frequency-response characteristics were obtained. Any increase in the mean velocity

decreases the linear and non-linear natural frequencies, and the amplitude of the frequency-response

curve, whereas increases both the real and imaginary components of the first complex

eigenfunctions of the system. The linear natural frequencies of the system are increased by

increasing either the flexural rigidity or angular velocity of the rotor. The frequency of vibrations of

the non-linear system is larger than the linear one. Increasing either the flexural rigidity or the

eccentricity, increases the amplitude of the response of the frequency-response curve and makes the

peak of the response to tend to right more.
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