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Nonlinear free vibration of heated corrugated annular 
plates with a centric rigid mass
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Abstract. A computational analysis of the nonlinear free vibration of corrugated annular plates with
shallow sinusoidal corrugations under uniformly static ambient temperature is examined. The governing
equations based on Hamilton’s principle and nonlinear bending theory of thin shallow shell are established
for a corrugated plate with a concentric rigid mass at the center and rotational springs at the outer edges.
A simple harmonic function in time is assumed and the time variable is eliminated from partial
differential governing equations using the Kantorovich averaging procedure. The resulting ordinary
equations, which form a nonlinear two-point boundary value problem in spatial variable, are then solved
numerically by shooting method, and the temperature-dependent characteristic relations of frequency vs.
amplitude for nonlinear vibration of heated corrugated annular plates are obtained. Several numerical
results are presented in both tabular and graphical forms, which demonstrate the accuracy of present
method and illustrate the amplitude frequency dependence for the plate under such parameters as ambient
temperature, plate geometry, rigid mass and elastic constrain.

Keywords: corrugated annular plate; nonlinear vibration; temperature change; elastic constraint; central
rigid mass; shooting method.

1. Introduction

The corrugated thin plates are extensively used in engineering structures. The corrugations

reinforce the plates and improve their strength to weight ratio, these distinct mechanical features

make the structures more cost-efficient, and lead the corrugated plates more popular in decking,

roofing and sandwich plate core structures in order to economize on the plate materials or lighten

the plates, especially when used in the precision instruments and sensors as very sensitive elastic

elements. Due to their high strength and large flexibility, the corrugated plates are usually required

to withstand large amplitude of vibration. In such situations, it is necessary to include the

geometrically-induced non-linearity when investigating the structural dynamic behavior.

In most of the studies carried out on the geometrically nonlinear flexural vibrations of plates and

shells with various geometries and boundary constraints, the common approach has been to use an

assumed space or time function (Huang and Huang 1989, Huang and Aurora 1979), it being

supposed that the space and time functions can be separated (Haterbouch and Benamar 2003, 2004).
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In the assumed space mode method, a spatial function which satisfies the related boundary

conditions is assumed to eliminate the space co-ordinate, the nonlinear partial differential governing

equations are then reduced to a set of nonlinear ordinary differential equations, with time as an

independent variable (Dumir et al. 1984, 1985). For example, the finite element method (Huang

1998, Rao et al. 1993, Stoykov and Ribeiro 2008) and the Galerkin method (Dumir 1986) have

been to use an assumed space mode. In the assumed time mode method, the dependence on time is

assumed to be harmonic. Then, by utilizing the Kantorovich time-averaging procedure, the nonlinear

partial differential governing equations are converted into corresponding ordinary ones, which form

a nonlinear boundary value problem in spatial variable (Huang and Walker 1988). Several numerical

methods have been proposed for solving this problem. The shooting method is more popular among

them. In this case, the boundary value problem is converted to an initial value one, by integrating it

using the Runge-Kutta method and at the same time, by performing the successive corrections

according to the Newton-Raphson method, an assumed-time-mode solution can be achieved (Li and

Zhou 2001, Li and Zhou 2002, 2003, Allahverdizadeh et al. 2008). It should be mentioned that the

shooting method is applicable not only in the spatial domain like what follows here, it has also been

successfully applied in the time domain to investigate the nonlinear vibration of plates and shells.

Further information about this time domain procedure can be found in Ribeiro’s works (Ribeiro

2004, 2005, 2006, 2008) and references therein. From the view of past literature available on the

topic of large amplitude vibration modeling and analysis for plates and shells, it is found that a

variety of numerical and analytical methods have been proposed and adopted. Extensive literature

reviews on the nonlinear vibration of plates and shells have been reported in (Chia 1980,

Sathyamoorthy 1987, Liew et al. 1997). Among the commonly used computational approaches, the

shooting method has been proved to be an efficient method. This method is extended here to the

nonlinear vibration problem of a heated sinusoidally corrugated annular plate with a rigid mass at

the center and rotational springs at the outer edges.

Although the geometrically nonlinear problem of a corrugated plate has received a great attention,

problems involved are quite difficult to solve satisfactorily and adequately because of the

complicated geometry of the plates as well as the nonlinear mathematics. Review of the literature

indicates that different investigators studied the nonlinear problems in a corrugated plate,

analytically and numerically, based on two nonlinear bending theories: isotropic shallow shell theory

and anisotropic plane plate theory. The consideration in nonlinear bending theory of thin shallow

shells was first forwarded by Panov (1941) who studied the large deflection problem of shallow

corrugated membrane. Axelrad (1964) solved the membrane with deep sinusoidal corrugations using

Galerkin’s method. Hamada et al. (1968) discussed the bending problem of a diaphragm with a

boundary corrugation using the finite difference method. Bihari and Elbert (1978) obtained the

deflection and radial displacement of a corrugated plate by directly solving 6 coupled first-order

differential equations. Chen (1980) solved the large deflection equations of shells for a corrugated

circular plate with shallow sinusoidal corrugation using the modified iteration method. Liu and Yuan

(1997, 2003) investigated the bending problem of a corrugated plate with a large boundary

corrugation under actions of various loads based on the simplified Reissner’s equation of

axisymmetric shells of revolution by means of the integral equation method. The second theory

assumes a corrugated plate as an anisotropic plate and the large deflection theory of thin anisotropic

plane plates had been adopted. The pioneer treatment in this theory was suggested by Haringx

(1956) who developed a new means to transform a corrugated circular plate into an equivalent

orthotropic circular plate. Employing this theory, Liu and Li (1989, 1990) studied the nonlinear
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bending and free vibration for corrugated circular plate with or without plane central regions via

Galerkin’s method and modified iteration method. Wang et al. (1987) dealt with the nonlinear free

vibration of corrugated circular plates and gained the analytical solutions for the amplitude-

frequency relationship through perturbation-variation method. Generally, the nonlinear bending

theory of plates based approach is applicable to corrugated circular plate with dense corrugations of

various types, e.g., toothed corrugations and sinusoidal corrugations, while the shells based way

proves to be independent of the density of corrugations (Chen 1980, Zheng 1994).

The studies on geometric nonlinearity in a corrugated plate referred to in the previous paragraph

and a few more are devoted mainly to the problem of large deflection bending, where the plate

undergoes various laterally static loadings (Liew et al. 2007, Peng et al. 2007). However, only

limited attention has been given to the large amplitude vibration of these plates due to the more

complex nature of resulting governing equations when time variable is involved. Some, but much

fewer, attempts have been made to predict the nonlinear vibration behavior of corrugated plates in

an environment of changing temperatures. More recently, Wang et al. investigated the nonlinear

vibrations for heated clamped circular plates with full sinusoidal corrugations based on isotropic

shallow shell theory using the perturbation-variatiom method (Wang et al. 2008) and shooting

method (Wang et al. 2009).

The objective of present paper is to investigate the axisymmetrically nonlinear vibration of a

uniformly heated sine-shaped corrugated annular plate with a concentric mass attached rigidly at the

inner edge and rotational springs restrained elastically at the outer edge. The corrugated plate is

assumed to be a thin plate with small initial deflection under a distributed time-independent

temperature load, and the partial differential equations governing the nonlinear free vibration of

corrugated annular plates are formulated from Hamilton’s principle in terms of Von Kármán’s

theory. Assuming the existence of harmonic vibration, the time variable is eliminated by means of

the Kantorovich time-averaging method (Huang and Walker 1988, Li and Zhou 2001, 2002, 2003,

Allahverdizadeh et al. 2008). The governing equations thus reduce to a pair of nonlinear ordinary

differential equations with two-point boundary conditions. A numerical analysis is then

accomplished by shooting method. The comparison with available published results shows that the

proposed approach is of good reliability. A detailed parametric study is conducted involving the

dependency of nonlinear frequency on the depth and density of corrugations, temperature change,

central mass and radius, along with the edge constraints. Effects of these variables on the trend of

nonlinearity are plotted and discussed.

2. Dynamic governing equations

Consider a corrugated annular plate with shallow sinusoidal corrugations having an outer radius a,

inner radius b, constant thickness  h, corrugation semi-wave length l, wave height f, and an attached

concentric rigid mass Mc. The outer edge of the plate is immovably simply supported, restrained

elastically against rotation by rotational springs of stiffness kϕ . Let  denote a set of

cylindrical co-ordinates, as shown in Fig. 1, then the wave of plate can be expressed as

(1)

r θ z, ,( )

w r( ) fcos
π

l
---r ϕ+⎝ ⎠
⎛ ⎞

=
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The corrugated plate is taken as a thin plate with small axisymmetric initial deflection , and

its material is presumed to be elastic, homogeneous and isotropic. On the basis of Von Kármán’s

theory, the partial differential equations governing the axisymmetrically large amplitude vibration

for a corrugated annular plate under a uniform temperature change T can be derived from

Hamilton’s principle, when neglecting the longitudinal and rotary inertias (Wang and Dai 2004,

Haterbouch and Benamar 2005, Gupta and Ansari 1998, 2002), as follows

(2)

(3)

with the associated boundary conditions (Huang 1998)

(4)

(5)

In the foregoing expressions, t is the time variable,  and  signify the transverse

deflection and the radial membrane force respectively.  is the flexural rigidity,

ρ designates the mass density of the plate material, E, ν and α indicate the elastic modulus,

Poisson’s ratio and thermal expansion coefficient of the plate respectively.  and  are two partial

differential operators with respect to r in the following forms

,

It is convenient to introduce the dimensionless variables as follows

these quantities, in conjunction with Eq. (1), result the governing equations and the boundary

conditions in the following non-dimensional forms

(6)
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Fig. 1 Corrugated annular plate with shallow sinusoidal corrugations
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(7)

(8)

(9)

here, J and , that are similar to the former defined operators  and , are partial differential

operators with respect to R

,

The initial conditions are taken to be

, when (10)

3. Method of solution

An exact solution to the problem defined by governing Eqs. (6)-(10) is not yet available because

of the coupled membrane force and transverse deflection as well as the nonlinear terms. Herein, the

space and time functions are supposed to be separable and the motion is assumed to be harmonic,

the approximate solutions to large amplitude vibration of corrugated annular plates are obtained by

the aforementioned assumed-time-mode method along with shooting method.

3.1 Kantorovich averaging method

Assuming that the vibration is prior to the buckling of the plate, and that the harmonic temporal

function for W(R, τ) exists, the approximate solutions are taken in the following form (Huang and

Walker 1988, Wang et al. 2002)

(11)

(12)

in which  has already satisfied the initial conditions (10). Here ω is the dimensionless

radian frequency,  denotes the shape function of vibration, S1 and S2 designate the membrane

forces due to the geometric corrugations and the geometric nonlinearity of the plate, respectively,

while S0 denotes the membrane force related to the following static thermal stress problem of the

heated plate
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at (14)

In case of uniform temperature change, one obtains analytically the solution of S0 without any

difficulty

(15)

In addition to the boundary conditions, a normal relationship is imposed on the system, i.e.

(16)

where ε is the dimensionless amplitude of the inner edge of the plate.

Substituting Eqs. (11) and (12) into Eqs. (6)-(10), and applying Kantorovich time-averaging

method to Eq. (6), taking Eqs. (15)-(16) into account and noting δy can be arbitrary, one

summarizes the following nine coupled set of first-order, nonlinear ordinary differential equations

relating to the field equations together with the boundary condition and normalization condition
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The problem concerned comes down to solve the nonlinear ordinary differential equations with

two-point boundary conditions. For a full corrugated circular plate without a central rigid mass, to

avoid the singularity in numerical computation when R tends to zero, a very small positive quantity

∆R is introduced approximately to take the place of R = 0 (Li and Zhou 2001, Allahverdizadeh et

al. 2008). Moreover, because of the continuity conditions for deflections and membrane forces at

the center of the plate, there exists  and   when ∆R is

sufficiently small.

3.2 Shooting method

The resulting nonlinear spatial boundary value problem (17)-(18) is solved numerically by the

shooting method. The related initial value problem may be expressed as William et al. (1986)

, (19)

(20)

with

,

where V is an unknown vector related to the missing initial values of Y at . Thus a solution

of initial value problem (19)-(20) can be symbolically indicated by

(21)
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V, such that solution (21) also satisfies the four finial conditions at R = 1, namely 
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Clearly, if  is a root of Eq. (22), the solution for two-point boundary value problem is

then obtained as
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and consequently, for known parameters, λ, K, η, γ, c, and Kϕ , the characteristic relation of

frequency versus amplitude is obtained as

(24)

For the linear vibration problem of heated corrugated plates, the natural frequency ω = ω0 can be

achieved by setting the amplitude parameter ε to be a very small value. Especially, one has ω0 = 0

when λ = λ
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. It is obvious that λ
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 is a critical dimensionless temperature parameter at which

buckling occurs in the plate.
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The above process of numerical computation is carried out by applying the fourth order Runge-

Kutta integration method with variable steps to integrate Eq. (21) and, at the same time, by using

the Newton-Raphson iteration method to find the root V
* of algebraic Eq. (22). The ε-dependent

family of solution for Eqs. (17)-(18) is obtained by the analytical continuation method (Huang and

Aurora 1979, Huang and Walker 1988), if ε is repeatedly increased by a small step with given

values of λ, K, η, γ, c, and Kϕ . These measures permit us to get the solutions of two-point

boundary value problem (17)-(18), and further the nonlinear characteristic relations of the frequency

versus amplitude or nonlinear mode shape with no difficulties.

4. Numerical results and discussions

Numerical investigations for a corrugated annular plate with shallow sinusoidal corrugations are

now performed when Poisson’s ratio ν = 0.3 and ϕ = π throughout the following computation. The

numerical integration of Eq. (21) and the successive correction of Eq. (22) are carried out until the

error norm become less than 10−6, and ∆R takes 10−5 to remove the singularity at the center of the

plate for a full corrugated plate without a central rigid mass, ε takes 10−5 to deal with the

corresponding linear vibration problem. The classical boundary conditions for simply supported and

clamped edge are obtained by taking the flexibility parameter Kϕ = 0 and Kϕ = 1020 ≅ ∞, respectively.

4.1 Comparison with published results

To validate the present formulation and ensure the accuracy and convergence of the proposed

solution method, the following special cases have been examined by the comparison of present

results with those that are available in the open literature.

First, the present numerical method is verified by the consideration of the linear free vibration for

a uniformly heated shallow sinusoidally corrugated annular plate. A clamped immovable corrugated

plate with its geometrical parameters a = 25 mm, h = 0.1 mm, l = 5 mm, and f/h = 1.0 is examined.

For this case, one has the non-dimensional parameters η = 5π, K = 51.91. The characteristic

Fig. 2 Characteristic curves of the square of linear fundamental frequency  vs. the temperature parameter λ
for a corrugated annular plate with shallow sinusoidal corrugations

ω 0

2
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relations of the square of fundamental frequency  versus the temperature parameter λ for some

assigned values of rigid mass parameters γ when c = 0.2 are computed and plotted in Fig. 2, in

which, λ = 0 indicates the square of natural frequency of an unheated plate, = 0 defines the

critical temperature parameter λ
cr

 of a heated plate. It is noted from this figure that the square of

natural frequency decreases monotonically and almost linearly with the increment of the

temperature parameter, this qualitative result is the same as that obtained by the perturbation-

variation method (Wang and Dai 2003) and shooting method (Li and Zhou 2001) for a heated plane

plate. It is also indicated that, at the same λ, the natural frequency with a lower γ is higher than that

with a higher γ. As expected, the critical temperature parameter λ
cr

 is independent of the rigid mass

parameter γ.

The aforementioned natural frequencies are now compared quantitatively for K = 0. Under this

circumstance, the corrugated plate considered degenerates into a plane one. The first three natural

frequencies for an unheated circular plate without a central rigid mass are compared with those

obtained by Ritz method (Gupta and Ansari 2002) for various values of rotational flexibility

parameters Kϕ and presented in Table 1. Good agreements can be seen between the present values

and existing results.

Comparisons concerning the relation between the central non-dimensional amplitude and the

nonlinear vibration frequency for an unheated circular plane plate without rigid mass are also made.

ω0

2

ω0

2

Table 1 Comparison of the first three natural frequencies ω0i (i = 1, 2, 3) of an unheated circular plate for
various values of flexibility parameters Kϕ

ω0i / Kϕ 0 10 102 1020

ω01 04.9351 04.9351† 08.7519 08.7519† 10.0193 10.0192† 10.2158 10.2158†

ω02 29.7200 29.7200† 35.2190 35.2190† 39.0288 39.0288† 39.7711 39.7711†

ω03 74.1561 74.1560† 80.6870 80.6869† 87.4901 87.4900† 89.1041 89.1041†

†Values taken from Gupta and Ansari (2002)

Table 2 Comparison of the ratios between the nonlinear and linear fundamental frequencies ω /ω0 for various
dimensionless vibration amplitudes of an unheated circular plate

w(0,0)/h

Simply supported plate (Kϕ = 0) Clamped plate (Kϕ = 1020)

Present
Haterbouch and 
Benamar (2005)

Yamaki 
(1961)

Present
Haterbouch 

and Benamar 
(2003)

Haterbouch 
and Benamar 

(2004)

Huang and 
Al-Khattat 

(1977)

0.2 1.0268 1.0268† 1.0267‡ 1.0273 1.0075 1.0072 1.0075 1.0075

0.4 1.1034 1.1034† 1.1025‡ 1.1047 1.0296 1.0284 1.0296 1.0296

0.5 1.1578 1.1577† 1.1557‡ / 1.0459 1.0439 / 1.0459

0.6 1.2209 1.2209† 1.2172‡ 1.2217 1.0654 1.0623 1.0654 1.0654

0.8 1.3694 1.3693† 1.3606‡ 1.3677 1.1135 1.1073 1.1135 1.1135

1.0 1.5402 1.5401† 1.5244‡ 1.5342 1.1724 1.1615 1.1724 1.1724

1.5 2.0288 2.0288† 1.9887‡ / 1.3567 1.3255 1.3568 1.3568

2.0 2.5664 2.5664† 2.4962‡ / 1.5787 1.5147 1.5790 1.5790

†Multidimensional model solutions; ‡Single-mode solutions 
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A set of central dimensionless amplitude defined here by w(0,0)/h, and the ratio of the

dimensionless nonlinear fundamental frequency ω to the corresponding linear one ω0 is summarized

in Table 2. The available published results that were based on various analytical assumptions and

numerical solution techniques are found to have very close agreement to present result.

When a rigid mass occupying a finite area is concentrically added to a thin annular plate, it

produces a change in kinetic energy which must match with a change in potential energy due to the

additional stiffening effect at the inner boundary. Besides, the stiffness of an annular plate depends

on the radius ratio. Thus, the behavior of the plate-mass system depends upon not only the specified

rigid mass but also the radius ratios of the system under consideration (Huang and Huang 1989). An

examination of the nonlinear vibration characteristics is carried out for various mass parameters γ

and radius ratios c. Taken the relative amplitude w(c, 0)/h = 1.0, or ε = 3.3045, the fundamental

frequencies of an unheated simply supported annular plate with some specified central rigid masses

are presented as functions of radius ratio in Fig. 3. The results agree identically with previous

findings (Huang and Walker 1988).

Thus, one can confirm from these comprehensive numerical tests that the present approach can

yield accurate and reliable solutions for the heated corrugated annular plate with a centric rigid

mass.

4.2 Amplitude frequency dependence

Numerical examples are now demonstrated. A sine-shaped corrugated annular plate, with its

geometries being the same as what has already been analyzed above, is investigated.

The characteristic curves of ω vs. ε for the heated clamped as well as simply supported

corrugated annular plates under some specific values of temperature parameter λ are displayed in

Fig. 4, in which, ε = 0 indicates the natural frequencies of a heated plate. Pronounced influences of

the ambient temperature changes on the nonlinear vibration behavior of plates are observed from

this figure. It is found that the vibration of a heated corrugated annular plate with shallow sinusoidal

corrugations possesses a hardening spring behavior on the whole; moreover, owing to the reduction

in the flexural rigidity of the plate due to the presence of a compressive membrane force induced by

Fig. 3 Characteristic curves of the fundamental frequency ω vs. radius ratio c for an unheated simply
supported annular plate with some prescribed values of central rigid mass γ
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the temperature rise, the nonlinear fundamental frequency decreases with the increase in temperature

parameter, and vice versa. The effect of the temperature parameter λ on the nonlinear frequency ω

when amplitude ε is smaller is more significant as compared to that when ε is larger for both

boundary constraints. In addition, the fundamental frequency for a clamped plate is always greater

than that for a simply supported one, other plate parameters being fixed.

Fig. 5 illustrates how the effects of the rigid mass γ and radius ratios c influence the fundamental

frequency parameter ω of the corrugated plate carrying a concentric rigid mass. The unheated

simply supported corrugated annular plate with its central mass parameter specifies as γ = 1, 2, 3, 4

and 5 are computed when varying the radius ratio c from 0.1 to 0.5. The dimensionless amplitude

of the inner edge of the plate takes ε = 3.3045 (i.e., relative amplitude w(c,0)/h = 1.0) to involve the

nonlinear consideration. Unlike the change curve of fundamental frequency versus radius ratio in

Fig. 3 for a annular plane plate with a rigid core, the ω~c curve here changes in a wavelike form,

this may be attributed to the simultaneously increase in stiffness and mass of the plate-mass system

when a rigid core is inserted. In addition to this, at different radial position, the plate possesses

different height of corrugation, which leads the stiffness vary with the radius ratio. So the

Fig. 4 Characteristic curves of the fundamental frequency ω vs. amplitude ε under various temperature
parameters λ for (a) clamped and (b) simply supported corrugated annular plates with shallow
sinusoidal corrugations

Fig. 5 Influences of radius ratio c on the fundamental frequency ω for unheated simply supported corrugated
annular plates with shallow sinusoidal corrugations under some given values of central rigid mass γ
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fundamental frequency increases if the influence of the stiffening effect produced by insertion of a

rigid core becomes dominant over any addition of mass, in opposition to this, it decreases if the

effect of additional mass has more influence than the increase in stiffness on the frequency. The

alternant increase or decrease in the effect of stiffness and additional mass makes the frequency

changing sinuously. 

Fig. 6 is plotted for frequency parameter ω versus amplitude parameter ε with different values of

flexibility parameter Kϕ . The frequency ω is found to increase with the increasing values of

flexibility parameter Kϕ as well as dimensionless inner edge amplitude ε, keeping all other plate

parameters fixed. It is seen that the influence of flexibility parameter on frequency parameter for

large Kϕ is less pronounced than that for small one.

Profile of nonlinear normalized fundamental mode shape y(R)/y(c) for a corrugated plate with the

same parameter conditions as those used in Fig. 6 at ε = 3.0 is displayed in Fig. 7. It is evident that

the shapes vary with the flexibility parameter Kϕ , which is equivalent to stating that they vary with

the frequencies of vibration. The nonlinear fundamental frequencies in this case are ω = 10.367,

11.830, 12.713, 12.904, 13.130 corresponding to five boundary flexibility parameters Kϕ 
= 0, 10, 50,

100, 1020. It can also conclude that the flexibility parameters have a minor effect on mode shape

when they become large.

The influences of the depth and density of corrugations on the vibration behaviors of the

corrugated annular plate, which are not exhibited here, are also investigated by examining the

characteristic relationships of K-dependent and η-dependent ω/ω0 vs. ε. As a general rule, the

nonlinear effect for the vibration of a corrugated annular plate weakens when the corrugations

become deeper, and strengthens when the corrugations become shallower; the increase of the

density parameter of corrugations has an effect of increasing the hardening spring behavior for the

vibration of a corrugated annular plate. Such an observation has been mentioned in the previous

literatures (Liu and Li 1989, Wang et al. 2008, 2009) for a corrugated circular plate with full

corrugations.

Fig. 6 Characteristic curves of the fundamental
frequency ω vs. amplitude ε under various
flexibility parameters of outer edge Kϕ for a
corrugated annular plate with shallow
sinusoidal corrugations

Fig. 7 Normalized nonlinear fundamental mode
shape y(R)/y(c) of a corrugated annular plate
with shallow sinusoidal corrugations under
various flexibility parameters of outer edge Kϕ
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5. Conclusions

This paper has introduced the assumed-time-mode method in conjunction with shooting method

for the nonlinear free vibration analysis of a uniformly heated thin corrugated annular plate with

rigidly attached concentric mass and elastically restrained outer edge rotational springs. Numerical

results obtained by present approach are compared with those from the available published

literatures and a good agreement is found.

Considering the nonlinear characteristic relation of frequency versus amplitude, a hardening spring

effect has been observed. Increase in dimensionless amplitude results in an increase in nonlinear

frequency, which decreases with an increase in depth of corrugation while increases with an

increase in density of corrugation. Decrease in central rigid mass and increase in outer edge stiffness

of rotational springs induce an increased fundamental frequency. In general, the nonlinear

fundamental frequency is found to decrease with the increasing temperature parameter and vice

versa. Parametric study reveals that the radius of central rigid mass influences the vibration

frequency of a corrugated annular plate in a wavelike form if all other plate parameters being fixed.

When K = 0, the problem involved degenerates into the large amplitude vibration analysis for a

heated plane plate with a rigid mass at the center and elastic constraints at the outer edge. 
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