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 New formulation for vibration analysis of Timoshenko 
beam with double-sided cracks
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Abstract. It is the intention of this study to synthesize the effects of double-edge cracks on the
dynamic characteristics of a beam. The stiffness matrix is first determined for a Timoshenko beam
containing two same-line edge cracks. The presented model is then developed for elements with two
parallel double-sided cracks, considering the interaction between the stress fields of adjacent cracks.
Finally, a finite element code is implemented, to examine the influence of depth and location of double
cracks, on the natural frequencies of the damaged system. 
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1. Introduction

Fatigue or stress/corrosion cracks which are often found in structural members, can lead to

mechanical failure due to various loading conditions. Since flaws or cracks present a serious threat

to the performance of structures; methods allowing early detection and localization of cracks have

been subject of intensive investigation in the recent decades. Several techniques are available to

detect cracks in such components. The conventional methods like X-ray, ultrasonic or eddy current-

based methods require full scanning of the damaged components. For some particular cases such as

turbo-machine fins or pipes, these techniques are costly and sometimes impossible. Hence it has

motivated development of alternative methods. Vibration-based detection of crack is one of such

techniques. Indeed, cracks alter the dynamic characteristic of structures and can disturb the smooth

operation of the machines. Ideally, it should be possible to infer the location and extent of crack

from indirect measurements or signals.

To facilitate such methods, a mathematical modeling of the object or structure is necessary. A

variety of analytical, numerical and experimental investigations have been done to qualify the crack

detection through vibration analysis for different structures with various crack geometries. Among

them, several studies have addressed the problem of a cracked beam, because beams are frequently

used as design models of some mechanical components. Generally, there are two procedures

proposed in technical literatures to introduce the local flexibility generated by the crack into
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mechanical system. As the first procedure, some researchers such as Chondros and Dimarogones

(1979, 1980) and Dimarogonas and Massouros 1980 simulated the effect of a crack as a massless

spring (local flexibility), that its equivalent stiffness is computed as a function of crack depth using

fracture mechanics methods (Dimarogonas 1976, Boltezar et al. 1998). They showed that changes

of the natural frequencies and mode shapes of the cracked beam follow definite trends depending on

the crack geometry and loading conditions. The trends consequently provide additional information

required for accurate crack detection. This model has been successfully used for crack localization

in simple structures such as shafts and beams. The extension to the above method also prompted

studies of problems related to elastic stability (Anifantis and Dimarogonas 1980), fatigue (Dentsoras

and Dimarogonas 1983) and dynamic behavior of cracked shafts (Gounaris et al. 1991), etc.

The alternative approach of evaluating the dynamic characteristics of cracked structure is based on

the use of finite element method. The second procedure considers the construction of stiffness

matrix corresponding to a cracked element, which is later assembled with the other non-cracked

elements of system (Gounaris and Dimarogonas 1988, Haisty and Springer 1988). Using this

method Qian et al. 1990 obtained the dynamic behavior of an Euler-Bernoulli beam with a crack.

Christides and Barr 1984 and Shen and Pierre 1990 proposed using the singular elements instead of

fine-mesh finite elements, to investigate the free vibration of an Euler Bernoulli beam with double

edge cracks.

Also with the intensive use of materials having relatively high transverse shear modulus and the

need for beam members with high natural frequencies in aerospace, civil and mechanical

engineering applications, a more refined higher-order theory is called for beam structures.

Consequently the Timoshenko beam model, which includes shear deformation and rotary inertia

effects, is preferable to be used in the investigation of dynamic response of beams. The Timoshenko

beam theory has an extended range of applications because it allows treatment of deep beam (depth

is large relative to length), short and thin webbed beams where higher modes are excited. However,

it introduces some complications not found in the elementary Euler-Bernouli formulation. The

dynamic behavior of Timoshenko beam has been studied by various investigators. Among other,

Chen and Chen 1988 and Chen and Jeng 1993 used the finite element techniques to compute local

flexibility matrix of crack region in a rotating pre-twisted Timoshenko beam. Meanwhile, Kisa and

Brandon 2000 adapted the local flexibility procedure for a single edge cracked Timoshenko beam.

Loya et al. 2006 obtained the natural frequencies for bending vibration of Timoshenko cracked

beams with simple boundary conditions. They modeled the beam as two segments connected by

two massless springs. In another attempt, Dansheng et al. 2007 presented a technique for crack

detection in Timoshenko beam based on the first anti-resonance frequency. More recently, an

analytical solution for crack identification in the uniform Timoshenko beam with an open edge

crack based on bending vibration measurements was developed by Khaji et al. 2009. However, to

the best of authors’ knowledge, the free vibration of Timoshenko beam with double-sided edge

cracks has not been addressed in the literature. 

The aim of present paper is to investigate the free vibration of Timoshenko beams containing

double-sided edge cracks. For this purpose, an improved finite element model is developed

analytically for a beam element containing two parallel edge cracks. The following stages are

conducted in this study: First, using the concept of compliance matrix that is derived from the local

flexibility of the cracks, the stiffness matrix of Timoshenko beam element is obtained for the case

of a single edge crack. Next the introduced model is developed for cases that the beam element has

two opposite edge cracks with equal and then unequal lengths. Finally, several numerical case
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studies are carried out to verify the proposed finite element model. In the view of the examples, the

effects of depths and locations of the cracks and the interaction in their stress fields are individually

investigated on the natural frequencies and mode shapes of the beam. The results show that the

proposed finite element model allows an efficient prediction for dynamic behavior of relevant

cracked structures and can be used to improve the reliability of the vibration based techniques for

diagnostic of double edge cracks.

 

2. The finite element formulation

In the following section, first the stiffness and mass matrices are extracted for a typical un-cracked

Timoshenko beam, taking into account the effect of transverse shear and rotary inertia. Consider a

two-noded beam element of length l, where each node has four degrees of freedom (see Fig. 1). Let

its degrees of freedom be noted by the non-dimensional transverse deflection ψ, the pure bending

slope φ and their differentiations with respect to the spatial coordinate ψ' and φ'. Thus, the

displacement vector of element is expressed as

(1)

 

and the strain energy of beam, U can be written as

(2)

 

in which k is the shear correction factor depending on the shape of cross-sections, if the warping

effect is not considered. The shear correction factor for rectangular cross-section is 1.2 and for

circular section is 1.1.

The shape functions for ψ and φ are assumed to be cubic polynomials and are expressed as

, (3)

 

Substituting Eq. (3) into the equation of strain energy and replacing the coefficients a, b and c in

terms of nodal coordinates, Eq. (2) can be rewritten as 
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Fig. 1 Free-body diagram for a Timoshenko beam element



478  M.R. Ayatollahi, R. Hashemi and H. Rokhi

(4)

 

where [Ke] is the element stiffness matrix

(5)

 

 

and s is the shear deformation parameter of beam 

(6)

Considering the defined degrees of freedom for the beam element, the corresponding kinetic

energy of Timoshenko beam, T can be written as 

(7)

 

where  and  are the first derivatives of φ and ψ relative to time t.

Substituting Eq. (3) into above equation, the kinetic energy expression can be represented in the

form of finite element equation 

(8)

 

where  is the first time derivative of the nodal displacement vector and [Me] denotes the mass

matrix of beam element, that its detail expression is 

(9)

 

Here R, the rotary inertia parameter of beam, is defined as 
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(10)

 

However on the basis of Hamilton's principle, the variations of the Lagrangian ,

provide the dynamic governing equations for the Timoshenko beam element 

(11)

Substituting Eqs. (4) and (8) into Eq. (11), the vibration response in the finite element formulation

is provided by the well known matrix equation as follows 

(12)

 

where [K] and [M] are obtained from assembling the element matrices [Ke] and [Me]. ωi and 

are the ith natural frequency and mode shape of the faultless beam. The eigenvalue Eq. (12) can be

solved to derive the vibration characteristics of Timoshenko beam, ωi and .

However, a crack on a structural member introduces a local flexibility which is a function of

crack properties and loading conditions, hence reduces the total strain energy of structure. In order

to study the effect of a crack on the dynamic behavior of an elastic structure, the local flexibility

matrix of the cracked member has to be established under general loading. It should be noted that,

similar to many pervious investigations the crack is considered in the present work as an open crack

model, i.e., the crack in structural element always remains open during vibration. Although several

researchers have addressed the problem of beams with breathing cracks (Abraham and Brandon

1995, Douka and Hadjileontaidis 2005) the assumption of open crack is made to avoid the

complexity that results from the nonlinear behavior by introducing a breathing crack model.

 

2.1 Timoshenko beam with single-sided crack

Consider a rectangular cross section beam element with a single edge crack of depth a, along the

z-axis (see Fig. 2). The cracked cross-section of beam element is subjected to the following internal

forces: an axial force p1, shear forces p2, p3, bending moments p4, p5 and a torsion p6. In addition,

the crack produces an additional local displacement ui between the sections in the right and left

sides of the crack. According to the Castigilano's theorem the displacement ui in the direction i,

under the action of force Pi is given, by the following expression 

(13)

 

in which, g is the strain energy release rate function. Assuming isotropic linear elastic material

behavior, it is possible to derive a closed-form expression for strain energy release rate as 

(14)

 

where E' = E/(1 − v2) for plane strain, E' = E for plane stress and E is the modulus of elasticity. KI,

KII and KIII are the mode I, II and III stress intensity factors respectively. The subscript k (k = 1 to

6) is related to the six different loading conditions mentioned earlier. The stress intensity factors
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corresponding to these loading types can be evaluated from the literature or from finite element

simulation results. It is noteworthy that some of the loading types induce only some specific modes

of crack deformation. For example KIII,1 vanishes because the axial force P1 cannot normally impose

an out of plane sliding. Using a similar argument, only the stress intensity factors KI,1, KI,5, KI,6,

KII,2, KII,4, and KIII,3 are expected to remain in Eq. (14).

The additional flexibility introduced due to the presence of crack is obtained by the definition of

the compliance coefficients as

(15)

 

Hence, under general loading the flexibility matrix of crack can be derived as

(16)

 

which explains the relation between displacement vector and external applied loads.

Consider a crack that is located in a distance from the left end of beam element. The displacement

of both transverse section of the crack are shown by vectors {uL} and {uR} and their corresponding

loads by {PL} and {PR}, where L and R refer to the left and right sections of crack, respectively.

The relations between the loads and the relative displacements between both sections can be

represented as 

(17)

(18)

To determine a cracked finite stiffness matrix, Eqs. (17) and (18) finally can be written in the

convenient form at the crack section as
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Fig. 2 Schematics of (a) the cracked beam element and (b) the internal forces and their coordinate system
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where

(20)

 
is the additional contribution that the crack introduces in the stiffness matrix. In present study the

elastic motion in x and z direction is ignored, hence only the diagonal terms of crack compliance

matrix [C] i.e., C33 and C55, are considered 

(21)

 
Let the crack located between ith and (i+1)th elements be considered as a linear spring of

translational stiffness K1 and rotational stiffness K2. These two constants are the inverse of C33 and

C55 respectively. The relative deflection at the joint point can be expressed in the form of the

constraint equations as 

(22) 

(23) 

(24) 

(25) 

where β1 and β2, the translational and rotational parameters, are defined as 
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(27)

The Eqs. (22)-(25) lead to construction of a constrained matrix [C*], which can be used to reduce

the stiffness and mass matrices as 
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Now, if the matrices [K'] and [M'] are replaced into Eq. (12), our eigenvalue problem takes the

effect of a single crack into account.

 

2.2 Beam element with same-line double-sided cracks

In this section, a beam element with two same-line double-sided cracks is considered (i.e., two

cracks on opposite edges and with arbitrary lengths of a and d, as shown in Fig. 3(a)). The stress

intensity factors of a single edge cracked beam described in the previous section, can be obtained
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length, in order to consider the interaction between stress fields in the vicinity of adjacent cracks,

the stress intensity factors and then the compliance matrix should be calculated independently.

Indeed, it is known that near the crack tip there are large stress concentrations. Therefore over the

cracked zone of beam the stress is not linearly distributed and all components of stress are likely to

be non-zero. Due to complexity of the stress field over the bouble-sided cracks, the closed-form

stress intensity solution is usually not available. Here a procedure is explained for calculating the

compliance matrix of double-sided cracks embedded in a Timoshenko beam element. First, the

effective stress intensity factors for the same-line double-sided cracks are defined in terms of stress

intensity factors for cracks a and d as

 

(30)

(31)

 

Substituting KIeff and KIIeff into Eq. (14), the strain energy release rate g, can be obtained. 

This way, the finite element simulation is implemented in the code Ansys, to calculate numerically

the mode I and II stress intensity factors for each crack. Based on the numerical evaluation of crack

tip parameters and using the Gaussian quadrature integration method, the compliance matrix

coefficient can be expressed in the form of
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Fig. 3 A beam element with double-sided cracks
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where 

(34)

(35)

(36)

 

Similarly, Eq. (32) for the coefficient C55 can be written as

(37)

where

(38)

Eqs. (33)-(36) imply that, in order to calculate the compliance matrix for the same-line double-

sided cracks, the strain energy release rate first should be calculated for typically 12 different

combinations of relative crack lengths and loading conditions. Assuming that linear elastic condition

is dominant at crack section, the applied shear force P and bending moment M can take any

arbitrary values, during the numerical evaluation of g function. 

 

2.3 Beam element with two parallel double-sided cracks

In the following section, the finite element formulation is developed for a Timoshenko beam

element containing two parallel double-sided cracks (Fig. 3(b)). Two parallel cracks have arbitrary

lengths of a and d. The entire element is considered as combination of three individual segments,

i.e., A, B and C, which are connected by two mass less linear springs representing the effect of

cracks, as follows 
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(40)

(41)

Again, no analytical solution could be found in the literature for parallel edge cracks when there

is an interaction between the stress fields. Therefore, one can obtain a relation for the compliance

matrix coefficients Cij at the crack location, using the numerical integration and differentiation

method described in previous section. For example, the coefficient C33 for the second crack of depth

d, can be presented as 

 (42)

where 

(43)

(44)

 

Also, the C55 can be found from

(45)

Hence, to determine the compliance matrix for two parallel double-sided cracks, the strain energy

release rate should be calculated numerically, using the finite element simulation of the cracked

beam for different combinations of crack depth and loading conditions. For example, Eqs. (42) and

(45) indicate that, to calculate C33 and C55 for the second crack, one has to evaluate g function

under conditions, summarized in Tables 1 and 2 respectively.

 

3. Numerical examples

The finite element formulation described in the previous section was implemented in a computer

program to calculate the natural frequencies and mode shapes of the Timoshenko beam containing

cracks. In order to validate the proposed finite element formulation, a series of numerical examples

were studied by the computer program. For some cracked beams of different dimensions, boundary

conditions and crack locations. First, the vibration characteristics of a beam with two same-line

double-sided cracks are verified by the results presented by previous researchers. The numerical

examples then are developed for the case of two parallel double-sided cracked beams. For a more

convenient presentation of the results, the frequency ratio (FR) and the relative crack depth (CR),

are defined as 
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(47)

where fcr and f are the natural frequencies of cracked and un-cracked beam, respectively. It should

be noted that a total number of twelve elements are employed in each finite element analysis of

following numerical examples.

 

3.1 Simply-supported beam with same-line double-sided crack

The first example considers a simply supported beam of length 57.5 cm with a rectangular cross

section of 3.175?  .9525 cm2. It contains two cracks of equal depth, which are located exactly at the

mid span of beam. The assumed material properties are: E = 200 GPa, ρ = 7850 kg/m3 and v = 0.3,

which are taken from research work of Christides and Barr 1984 and Shen and Pierre 1990 for

verification purposes. The boundary conditions for this case at both simply-supported ends are 

 
(48)

 
Figs. 4 and 5 show the variation of frequency ratio for the first and third natural modes, as a

function of the relative crack depth CR. It is seen that in both cases there is a reduction in the

frequency ratio when the increased crack depth lowers the flexural stiffness in the beam. The

obtained results are also compared with similar results presented by Christides and Barr 1984 and

Shen and Pierre 1990. The very good consistency existing between our results and those given in

above references can be used as verification for the finite element formulation described in this paper. 
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3.2 Clamped-free beam with two same-line double-sided cracks

Consider a cantilever Timoshenko beam of length 20 cm and uniform cross-section of 2.5 ×

0.78 cm2, with two edge cracks of unequal depth. In this example the first crack has a fixed depth

of h/2 but the second crack a can take different values. It was assumed that the beam was made of

steel with the following material properties: E = 216 GPa, ρ = 7850 kg/m3 and ν = 0.28. The

boundary condition at the clamped root of this structure can be given by

(49)

Fig. 6 shows the variation of the first relative frequency (FR) as a function of the second crack

depth, normalized as 2a/h. When the depth of second crack vanishes (a = 0) the problem turns into

a single edge cracked beam for which the numerical result have been reported by Kisa and Bandon

2000 as fcr/f = 0.98. Fig. 6 shows the very good agreement existing between the frequency ratio

given in above reference and our results for a = 0.

3.3 Clamped-free beam with two parallel double-sided cracks

For numerical simulation of parallel double-sided cracks, a cantilever cracked beam of length

L = 95.25 cm with rectangular cross section of 3.175?  .9525 cm2 is considered. The material

properties employed in this example are: E = 200 GPa, ρ = 7850 Kg/m3 and ν = 0.3. The first crack

with a varying depth is located at L/3 from the clamped end. The second crack of fixed depth d = h/2

is introduced at a varying distance, ∆ from the first one. Based on the described finite element

formulation, the variation of first frequency ratio of cracked beam is depicted in Fig. 7, as a

function of the distance between cracks and their relative depth (a/d). 

It is seen that for any distance ∆, there is a drop in the frequency ratio FR when the relative crack

length a/d increases. The reduction in FR is more significant when the distance between the two

cracks ∆ tends toward zero. This is because the interaction between the stress fields of two cracks

φ 0   ψ, 0= =

Fig. 4 Variation of the first frequency ratio for the
same-line double-cracked beam, versus relative
depth of cracks 

Fig. 5 Variation of the third frequency ratio for the
same-line double-cracked beam, versus relative
depth of cracks
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and hence the reduction in the beam overall stiffness become more considerable when the crack

lines approach each other. However, for ∆ = L/3 there is only little effect from the cracks

interaction. Fig. 8 shows how the relative crack distance ∆/h affects the frequency ratio FR of the

first mode of vibration for d/h = a/d = 0.5. According to this figure, the distance between the cracks

has no influence on the frequency ratio when ∆ is greater than 10 times the beam depth h. Also

shown in Fig. 8 is the frequency ratio for two independent edge cracks. Because in this case no

interaction is considered between the stress field of the cracks, the distance between the cracks has

no influence on the overall frequency ratio. It is seen that for ∆/h > 10 of two interacting cracks

approach the results obtained for two independent edge cracks.

4. Conclusions

A finite element procedure was formulated for a single-edge cracked Timoshenko beam. The

Fig. 6 Variations of the first frequency ratio for the
same-line double-cracked beam, versus relative
depth of cracks 

Fig. 7 Variation of FR with a/d for different values
of distance between the two double-sided
cracks, Z = ∆/L

Fig. 8 Effect of distance between the two cracks on FR for the first mode of vibration
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formulation was then extended for a beam element containing two double-sided cracks, in which the

interaction between the crack tip stresses was taken into account. This way, a new cracked element

was addressed in this paper, and the methodology was then validated numerically on the same-line

double cracked beams, having cracks of varying depth and different locations. The numerically

calculated natural frequencies of Timoshenko beam with various boundary conditions indicated that

the obtained results fall close to those presented in previous investigations. The application of

present method for the case of parallel double-sided cracks indicated that the relative position of

two cracks affects significantly the change in the beam natural frequencies. Indeed, any decrease in

the natural frequencies is larger, if the interaction between adjacent cracks is considered by the finite

element formulation. Based on the results of this study, when the distance between the cracks

increases, the vibration frequencies tend to those values, which are obtained based on the previous

finite element simulation with two independent cracks. Consequently, one can conclude that,

considering the interaction between the crack tip stresses is important for more accurate prediction

of dynamic charactereristic of beams containing double-sided cracks.
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Notations

 

[C] :  Local flexibility matrix
[C*] :  Constant constraint matrix
[K] :  Stiffness matrix
[K'] :  Reduced stiffness matrix
[Kcr] :  Stiffness matrix of crack
[M] :  Mass matrix
[M'] :  Reduced mass matrix
{P} :  General loading vector
{ξ} :  Nodal coordinate vector
a, d :  Crack depth
A :  Cross-section area of beam
F :  Natural frequency
fcr :  Natural frequency of cracked beam
G :  Modulus of rigidity
H :  Beam height
I :  Second moment of area
G :  Energy release rate
K :  Shear correction factor
K1 :  Translational stiffness
K2 :  Rotational stiffness
L :  Element length
M :  Bending moment
P :  Shear force
R :  Rotary inertia parameter
S :  Shear deformation parameter
T :  Kinetic energy
U :  Strain energy
∆ :  Distance between double cracks
Ε :  Modulus of elasticity
ΚΙ :  Mode I stress intensity factor
ΚΙΙ :  Mode II stress intensity factor
ΚΙΙΙ :  Mode III stress intensity factor
β1 :  Translational flexibility parameter
β2 :  Rotational flexibility parameter
φ :  Bending slope
η :  Non-dimensional coordinate
λ :  Frequency parameter
ν :  Poisson’s ratio
ω :  Natural frequency
ρ :  Mass density of material
ψ :  Non-dimensional deflection




