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Abstract. A novel system identification and structural health assessment procedure of steel framed
structures with semi-rigid connections is presented in this paper. It is capable of detecting damages at the
local element level under normal operating conditions; i.e., serviceability limit state. The procedure is a
linear time-domain system identification technique in which the structure responses are required, whereas
the dynamic excitation force is not required to identify the structural parameters. The procedure tracks
changes in the stiffness properties of all the elements in a structure. It can identify damage-free and
damaged structural elements very accurately when excited by different types of dynamic loadings. The
method is elaborated with the help of several numerical examples. The results indicate that the proposed
algorithm identified the structures correctly and detected the pre-imposed damages in the frames when
excited by earthquake, impact, and harmonic loadings. The algorithm can potentially be used for structural
health assessment and monitoring of existing structures with minimum disruption of operations. Since the
procedure requires only a few time points of response information, it is expected to be economic and
efficient.

Keywords: structural health assessment; semi-rigid connections; system identification; unknown
dynamic force.

1. Introduction

The current state of practice in seismic design such as, UBC-97 (1997), Eurocode 8 (1998),

IBC2006 (2000), and AASHTO (1998), infers that preventing collapse and loss of life is its main

objective. However, economic losses due to seismic hazard are extensive and have never been

addressed in current codes. Therefore, new design methodologies are emerging to account for

design objectives other than loss of life, one such method is performance-based seismic design

(PBSD). Primarily, PBSD is to design a structure to achieve preselected performance objectives in

correspondence to certain seismic hazard levels. PBSD is not limited to design of new buildings,

rather can be used to evaluate existing structures and/or retrofit, to reliable performance objectives.

The decision of whether the structure is in need for rehabilitation or not after a major loading event,

such as major earthquake, requires information about the health of the structure afterwards. Existing

structures can also deteriorate as they age due to other dynamic loadings such as, wind gusts,
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explosions and machine excitations, which all can cause stiffness and/or strength degradation to a

certain level. Therefore, health monitoring of existing structures to identify the state of the structure

and to detect the damage when it occurs has recently become an important and challenging issue to

the engineering profession. Extensive review of the literature on health monitoring can be found in

(Doebling et al. 1996, Housner et al. 1997).

The state of the structural system can be identified using a system identification (SI) technique.

The available SI techniques can be broadly divided into two categories: frequency domain and time

domain. 

In the frequency domain approaches (Vestroni and Capecchi 2000, Lam et al. 2004, Kanwar et al.

2007), the structural parameters can be described in terms of dynamic properties, such as

frequencies and mode shapes; the changes in these dynamic properties can be utilized to detect level

of deterioration. Since frequency represents a global structural property, frequency domain

procedures cannot predict the structural health at the element level, rather than are appropriate to

predict whether the overall structure is damaged or not. It has been observed that local damage is

not always sensitive to the identified modal properties. In addition, for large, complicated structural

systems, the higher order modes are difficult to evaluate accurately.

In the time domain approaches (Ma et al. 2005, Koh et al. 2006, Rutherford et al. 2005, Ta et al.

2006), dynamic output response measurements can be used to identify the structural parameters,

such as stiffness, and detect damages by tracking the changes in these responses. The least square-

based approaches are very common in the time domain (Yang and Lin 2005, Yang et al. 2007),

where the unknown parameters of structural systems are estimated by minimizing the sum of

squared errors between the predicted and the measured outputs. Extended Kalman filter (EKF) is

another successful technique for structural identification in time domain approaches, however it

requires a known dynamic excitation force (Wang and Haldar 1997, Yang et al. 2006, 2007). EKF

is an optimal recursive data processing algorithm which processes the available response

measurements, regardless of their precision. The algorithm uses the prior knowledge about the

system and limited response information to produce an estimation of the desired variables by

statistically minimizing the error.

In 1994, Wang and Haldar (1994) established a conceptual framework for a SI approach without

knowing the dynamic excitation force. They called it the iterative least square with unknown input

(ILS-UI) method. They identified shear type buildings (girders/floors are assumed to be infinitely

rigid compared with the columns), which is the simplest mathematical representation of complicated

structural systems. The total mass of the structure is lumped at the floor levels, assigning one degree

of freedom (DOF) for each floor corresponding to the horizontal displacement. Ling and Haldar

(2004) improved the efficiency of the identification process, proposed by Wang and Haldar (1994)

particularly for large shear type buildings through the use of Rayleigh type damping, i.e., the

damping is proportional to mass and stiffness. They called it the modified ILS-UI method or MILS-

UI. 

Katkhuda et al. (2005) proposed the generalized ILS-UI or GILS-UI to identify damages at the

local level using only dynamic output response information for more complicated two dimensional

steel framed structures with rigid joints. Although the available literature on the health monitoring is

very extensive; there is a very limited research on SI techniques and damage detecting in steel

framed structures with semi-rigid joints. Wong et al. (1995) identified the stiffness of semi-rigid

connections for different types of beam-column connections (T-stub, web-seat angle and web-T).

Their identification technique was based upon experimental data extracted from response quantities
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in the frequency domain. They concluded that the inertia of the member affects the stiffness value

of the beam-column connections and that shear deformation cannot be neglected under dynamic

loading.

In this paper, the (GILS-UI) method is extended to identify the stiffness of each member in two

dimensional frames with semi-rigid connections and to detect the degradation of the stiffness

induced in some members without knowing the dynamic excitation force. The concept is based on

the axiom that the extent of degradation will be reflected in the changes in the behavior of the

structure, i.e., changes in recordable dynamic output responses, and in turn is dependent on the

changes in the structural parameters at the element level in terms of local stiffness and damping

characteristics. The response of the structure to any dynamic loading is obtained by using finite

element software. The structure is modeled as a two dimensional frame, where the connections are

modeled as linear elastic rotational spring elements with a rotational stiffness analogous to the

Eurocode 3 (2003) definition. The amplitude of the dynamic loads is assumed to be small enough to

cause the structure to respond under its serviceability limit state. The hysteretic loops of the semi-

rigid connection under the serviceability limit state are very small; therefore it is warranted to

assume that the equivalent stiffness of the rotational spring is linear. The acceleration, velocity and

displacement or rotation time histories for each node are expected to provide the necessary signature

to identify the structure and detect damages in two dimensional framed structures with semi-rigid

connections. It was demonstrated that the type of the force, whether blast, harmonic or earthquake is

not important in the identification process. The proposed SI technique can be used to identify

members’ stiffness as well as to detect any degradation in the stiffness which might occur due to

any dynamic loading.

2. Modeling of semi-rigid frame structures

The connection beam-to-column of framed structures is usually considered either pinned or rigid

joint connection. The pinned joint allows free rotation, while the rigid joint restrains rotation. In

actual construction most of connections possesses a moment capacity intermediate between those

two cases, thus such connections are classified as semi-rigid joints. Historically, many standards

have always accepted joints as either totally pinned or rigid to simplify the analysis and design of

steel structures. Modern design codes, such as Eurocode 3 (2003), classify joints according to their

actual behavior and incorporated the use of semi-rigid joints. Eurocode 3 (2003) relates the joint

stiffness to the attached beam through γ value as in the following equation

 (1)

where kj is the stiffness of the joint, i.e., spring; E, Ib, Lb are the material modulus of elasticity; the

second moment of area of the cross-section, and the element length, respectively. The subscript ‘b’

refers to the beam. 

Joints are classified as nominally pinned if γ < 0.5; nominally rigid in braced frames if γ > 8; and

in unbraced frames if γ > 25. Flexible joints are the ones with γ value between 0.5 and 8. However,

many researchers (Monforton and Wu 1963, Kassimali 1999, Cabrero and Bayo 2005) adapted a

more attractive parameter named, the end-fixity factor Pi as given in Eq. (2). The advantage of this

definition is that it directly relates the joint’s rotational behavior with the rotational degrees of

kj γ
EIb

Lb

-------=
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freedom of the beam.

 (2)

This parameter has a null value for theoretically pinned joint and a value of one for theoretically

rigid joint. Relating the end-fixity factor to the γ factor proposed by the Eurocode 3 (2003) yields 

 (3)

Thus, unbraced semi-rigid frames as defined by the Eurocode 3(2003) have end-fixity factors

between 0.14 and 0.73.

Consider a beam of length Lb, moment of inertia Ib, and mass per unit length  with flexible

Pi
1

1
3EIb

Lbkj

-----------+

-------------------=

Pi
γ

3 γ+
----------=

m

Fig. 1 Modeling of a beam element with semi-rigid connections
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joints at its both ends ‘e’ and ‘f’, as shown in Fig. 1. The joints are modeled as infinitesimal

rotational springs with rotational stiffnesses of ke and kf, respectively. Due to the infinitesimal length

of the springs, the displacement of the spring ends; ui, are equal; that is 

 (4a)

 (4b)

In terms of the joint flexibility, the relationship between the rotations  of the two ends

of the spring at end ‘e’ can be depicted as follow 

 (5a)

Similarly for end ‘f ’ 

 (5b)

For the dynamic analysis of a beam element, the field of displacements w(x, t) can be defined in

terms of four shape functions  and of the nodal displacements   at time

t, that is 

 (6)

The displacement functions, , could be taken as an arbitrary shapes which satisfy nodal and

internal continuity requirements, such shapes are hermitian polynomials which may be expressed as

proposed by Clough and Penzien (1993). The formulation of the consistent mass matrix and

stiffness matrix is traditional and can be found in many references, such as (Kassimali 1999, Filho

et al. 2004, Ochoa 2001). For the purpose of this paper, the formulation of Filho et al. (2004) has

been adopted.

The conventional consistent matrix (beam element with rigid ends) modified for the presence of

semi-rigid connections with end-fixity factors at end ‘e’ and end ‘f ’ to be Pe and Pf, respectively, is

shown below 

(7)
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Where 

The stiffness matrix of an arbitrary beam with semi-rigid connection is also given in Eq. (8)

below  

(8)

where

Eq. (8) can be rewritten as 

(9)

where ki = EiIi/Li, and  is the 6 × 6 matrix shown in Eq. (8) in the square bracket for the ith

member.
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3. GILS-UI method formulation for elements with semi-rigid connections

The equation of motion for structural system of N degrees of freedom (DOF) can be written in

matrix form as 

(10)

Where M, C, K are the global mass, damping and stiffness matrices of the structure, respectively.

, u(t) are acceleration, velocity and displacement vectors at time t, respectively, and F(t) is

the dynamic excitation force vector. 

In this method, it is assumed that the mass of each member and the dynamic responses in terms

of acceleration, velocity and displacement for each DOF are known. While the stiffness of each

member, damping and dynamic excitation force are unknown.

Rayleigh-type damping is used in this method and the damping matrix C can be represented as

(11)

where factor α is the mass-proportional damping coefficient and β is the stiffness-proportional

damping coefficient.

Eq. (10) can be rewritten as 

(12)

For the purpose of system identification, Eq. (12) can be reorganized in a matrix form as 

(13)

where B(t) is a matrix composed of the system response vectors of velocity and displacement at

each DOF at time t, N is the total number of DOFs at time t, m is the total number of sample

points, h is the total number of unknown parameters, D is a vector composed of the unknown

system parameters to be identified, and G(t) is a vector composed of dynamic excitations and inertia

forces at each DOF at time t.

The B matrix for two dimensional steel plane frames with semi-rigid connections can be

expressed as

(14)

where ne is total number of members in the structure and  as defined in Eq. (9).

The unknown system parameters D vector in Eq. (13) can be expressed as

(15)

where ki = EiIi /Li is the unknown stiffness parameter for the ith beam element that needs to be

identified.

The G(t) vector in Eq. (13) can be defined as 

(16)

where F(t) is the unknown excitation force vector, M is the known global consistent mass matrix

that can be assembled from Eq. (7), and  is the vector containing the dynamic responses in

terms of acceleration as stated earlier.

The least-square technique is used to solve for the system parameter vector D, i.e., Eq. (13); by
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starting an iteration process. It is based on minimizing the total error, Er, in the identification of the

structure as shown below

(17)

To minimize the total error, Eq. (17) can be differentiated with respect to each one of the Dp

parameters as 

(18)

It is relatively simple to solve Eq. (13) to obtain the unknown system parameters (vector D)

provided that the matrix B(t) and vector G(t) are known. However, as mentioned earlier, the

dynamic excitation is not known; thus, the vector G(t) becomes a partially unknown vector. To

overcome this issue; the iteration process is started by assuming the unknown dynamic excitation

vector F(t) to be zero at all time points m. This assumption will assure a non-singular solution of

Eq. (13) without compromising the convergence or the accuracy of the method. It is observed that

the method is not sensitive to this initial assumption.

With this assumption, the G(t) vector in Eq. (13) can be obtained and a first estimate of the

unknown system parameters D. Using Eq. (12) and the estimated system parameters D, the

information on the dynamic excitation force F(t) can be generated at all time points m. Using the

information on the generated dynamic excitation force and Eq. (13), the estimate of the system

parameters D can be updated. The algorithm will iterate until the system parameters are evaluated

with a pre-determined accuracy. The convergence criterion is set with respect to the evaluated

dynamic excitation force. At least one constraint to the unknown dynamic excitation force needs to

be available; this constraint has to be related to the locations of the forces.

3.1 Summary of the GILS-UI iterative algorithm

The basic steps for the iterative algorithm are shown in Fig. 2 and can be summarized as follows:

Step 1: Assemble the global consistent mass matrix M for the frame from the local mass matrices

from Eq. (7) of all the elements with semi-rigid connections by considering their connectivity. 

Step 2: Formulate the local semi-rigid stiffness matrix  for each element from Eq. (8).

Step 3: Formulate the B(t) matrix from Eq. (14) which is composed of global consistent mass

matrix M, the local semi-rigid stiffness matrices of each element , and the velocity  and

displacement u(t) responses of the system as at each DOF. 

Step 4: Formulate the G(t) vector from Eq. (16) and assume the dynamic excitation force vector

F(t) to be zero at all time points m. 

Step 5: Obtain the first estimation of the system parameter vector D by solving Eq. (13) using the

least-square concept.

Step 6: Substitute system parameters D estimated from Step 5 into Eq. (12) to obtain the unknown

dynamic excitation force vector F(t) at all time points m.

Step 7: Apply force constraints to the dynamic excitation force F(t) estimated in step 6. For

example, if the force is exactly zero at the ith DOF, Fi(t) = 0 need to be introduced and if input

force at the jth DOF is equal to the input force, Fi(t) = Fj(t). 
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Step 8: Obtain the updated estimation on the system parameter vector D by solving Eq. (13).

Step 9: Update the dynamic excitation force vector F(t) using Eq. (12) and the updated system

parameter vector D.

Step 10: Continue the iterative process until the convergence in the dynamic excitation force F(t)

is obtained with a predetermined tolerance (ε). The tolerance (ε) is set to be 10-6 in this paper. 

Fig. 2 Flow chart of the iterative algorithm GILS-UI for elements with semi-rigid connections
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4. Numerical studies

Nine numerical examples are presented in this section to demonstrate the applicability, and assess

the effectiveness of the proposed SI algorithm. In these examples the structural parameters were

identified and damages were detected for two-dimensional steel framed buildings with semi-rigid

connections. A one-bay semi-rigid frame (denoted as 1B) as shown in Fig. 3 and a two-bay semi-

rigid frame (denoted as 2B) as shown in Fig. 4 were used in these examples. In the 1B frame the

connections of the beam to the columns are assumed to be semi-rigid. The end-fixity factor P for the

beam (i.e., member 3) at node 1 and node 2 are assumed to be 0.20 and 0.40, respectively as shown

in Fig. 3. W14 × 53 steel sections are used for all the members. The masses of the beam and

columns are assumed to be known and are equal to 696 kg and 271 kg, respectively. The stiffness of

the beam and columns (k = EI/L), are calculated to be 4,924 kN/m and 12,311 kN/m, respectively. 

In the 2B frame all the connections are assumed to be semi-rigid where the end fixity factor P for

each connection is shown in Fig. 4. W18 × 71 steel sections are used for all the members. The

masses of each beam and column are assumed to be known and are equal to 932 kg and 362.5 kg,

respectively. The beam and column stiffnesses (k = EI/L) are calculated to be 10,650 kN/m and

26,625 kN/m, respectively. 

Three cases were considered for each frame, namely, no damage (denoted ND), damage one

(denoted D1), and damage two (denoted D2). Damage one (D1) was resembled in the 1B frame by

a 10% reduction in the stiffness of the beam; whereas in the 2B frame it was resembled by a 10%

reduction in the stiffness of the second beam, i.e., member 2, and 25% stiffness reduction in the

third column, i.e., member 5. Damage two (D2) was resembled in the 1B frame by a 20% reduction

in the stiffness of the beam; whereas in the 2B frame it was resembled by a 20% reduction in the

stiffness of the second beam, i.e., member 2, and 50% stiffness reduction in the third column, i.e.,

Fig. 3 Structural details of one-bay frame (1B)

Fig. 4 Structural details of two-bay frame (2B)



System identification of steel framed structures with semi-rigid connections 361

member 5. Three types of loadings were considered, namely, earthquake load (E), impact load (I),

and harmonic load (H) as shown in Fig. 5. A total of 9 cases were studied; details of all these cases

are shown in Table 1.

The responses of all the cases given in Table 1, i.e., the acceleration, velocity and displacement of

all DOFs, subjected to the specified dynamic loadings, shown in Fig. 5, were obtained using

RAUAMOKO (Carr 1996), a nonlinear finite element software package. These responses resemble

the recorded data of a real structure under the effect of the dynamic loadings.

After the theoretical responses are evaluated, the information on the dynamic loadings is

Fig. 5 Dynamic loads used in the numerical study, (a) Impact loading, (b) Hamonic loading, (c) Earthquake
loading 

Table 1 Details of the numerical cases

Case ID One-bay Two-bay Earthquake Impact Harmonic No damage Damage 1 Damage 2

1B-E-ND √ √ √

1B-E-D1 √ √ √

1B-E-D2 √ √ √

2B-I-ND √ √ √

2B-I-D1 √ √ √

2B-I-D2 √ √ √

2B-H-ND √ √ √

2B-H-D1 √ √ √

2B-H-D2 √ √ √
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completely ignored, and the nodal responses are used in the algorithm to identify the stiffness of the

elements. The responses used in the algorithm are from 0.02 sec to 0.83 sec at a time interval of

0.01 sec, yielding 82 time points. The theoretical and identified stiffness parameters (EI/L) of all

members for cases 1B-E-ND, 1B-E-D1, and 1B-E-D2 are shown in Table 2. The results indicate

that the algorithm identified the parameters almost exact for all three cases. In case 1B-E-D1 the

algorithm identified a 9.98% stiffness reduction in the beam, whereas in case 1B-E-D2 a 20.06%

stiffness reduction was identified. These values are almost equal to the pre-imposed reduction of

10% and 20% for cases 1B-E-D1 and 1B-E-D2, respectively.

Table 3 shows the theoretical and identified stiffness parameters (EI/L) of all members for cases

2B-I-ND, 2B-I-D1, and 2B-I-D2. The algorithm identified correctly the parameters for the

undamaged case and identified correctly the members with the pre-imposed damage. Finally,

Table 4 shows the theoretical and identified stiffness parameters (EI/L) of all members for cases 2B-

H-ND, 2B-H-D1, and 2B-H-D2. The algorithm identified correctly the parameters for the

Table 2 Stiffness (k = EI/L) identification for earthquake loading cases

Members
Theoretical 

(kN/m)

1B-E-ND 1B-E-D1 1B-E-D2

Identified
 (kN/m)

Error %
Identified 
(kN/m)

Effect %
Identified 
(kN/m)

Effect %

k1 12311 12309.4 −0.013 12309.3 −0.014 12291.1 −0.16

k2 12311 12310.8 −0.0016 12310.7 −0.0024 12292.8 −0.14

k3 4924 4923.8 −0.0041 4432.4 −9.98 3936.2 −20.06

Table 3 Stiffness (k = EI/L) identification for impact load cases

Members
Theoretical 

(kN-m)

2B-I-ND 2B-I-D1 2B-I-D2

Identified
(kN-m)

Error %
Identified 
(kN-m)

Effect %
Identified 
(kN-m)

Effect %

k1 10650 10563.8 −0.809 10477.4 −1.62 10015.7 −5.95

k2 10650 10568.8 −0.762 9583.6 −10.01 8852.7 −16.87

k3 26625 26405.2 −0.826 26156.3 −1.76 24874.7 −6.57

K4 26625 26413.5 −0.794 26431.4 −0.72 26210.4 −1.55

K5 26625 26419.9 −0.770 19882.3 −25.32 13805.2 −48.15

Table 4 Stiffness (k = EI/L) identification for harmonic load cases

Members
Theoretical 

(kN-m)

2B-H-ND 2B-H-D1 2B-H-D2

Identified
(kN-m)

Error %
Identified 
(kN-m)

Effect %
Identified 
(kN-m)

Effect %

k1 10650 10569.3 −0.757 10322.2 −3.070 10012.6 −5.98

k2 10650 10567.9 −0.770 9798.8 −7.990 9480.3 −10.98

k3 26625 26419.2 −0.772 25575.9 −3.940 24765.5 −6.98

K4 26625 26419.1 −0.773 26641.3 +0.061 27003.7 +1.42

K5 26625 26416.7 −0.782 20769.3 −21.990 14823.5 −44.32
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undamaged case and identified correctly the members with the pre-imposed damage. In case 2B-H-

D2, the pre-imposed damage was identified in member 2 and members 5.

5. Disscussion

For the cases studied in this paper, the GILS-UI method for steel frames with semi-rigid

connections identified the stiffnesses of the damage-free members very well with an error less than

1%. The responses used in the algorithm were 82 time points, i.e., from 0.02 to 0.83 sec. Although

the algorithm used a small number of time points, the results of identification are considered to be

accurate. It has been observed by the authors that the number of sample points does not have major

impact on the accuracy of the identified stiffnesses. This can be considered as an advantage since

most of time domain methods available in the literature are very sensitive to the number of sample

points used in identification. 

All the cases showed clearly that the method was able to identify the damages pre-imposed in the

frames. The most accurate identification process was in the 1B frame, which was subjected to

Victoria earthquake acceleration time-history. The results showed that there is a stiffness reduction

of 9.98% and 20.06%, respectively in the beam and no damage in the remaining members. For the

2B-I frame cases; the results showed that the method detected the pre-imposed damages in one of

the beams and columns when the damages were relatively small and large. However, in the largely

damaged case, i.e., 2B-I-D2, there was a false detection of damages in two members where the

algorithm identified a stiffness reduction of almost 6% in member 1 and member 3. As mentioned

earlier; the location and amount of stiffness reduction were selected randomly and the damages

were simulated theoretically. In this case a stiffness reduction of 20% and 50% were pre-imposed in

two members and the other members were kept damage-free. Usually, in a real case with a major

blast load there will be a large damage in some members and minor in others and that is exactly

what the algorithm identified.

The results showed that the method was able to identify the stiffnesses and detect damages for the

frames that are subjected to different types of loading whether earthquake, blast or harmonic. Also

as a by-product, the method identified the unknown dynamic forces subjected to the structures very

accurately since it is the convergence criteria used in the algorithm as shown in Fig. 6. This can be

considered another advantage of the method since most of the methods available in the literature

need the time-history of the dynamic force, and for the methods that does not require a pre-

knowledge of the dynamic force, the type of the force is very important in the identification

process.

The responses used for identification in all the cases presented are considered noise-free. Many

procedures were proposed by researches in the last decade to overcome the issue of noise in the

responses. For instance, Cooper (2004) proposed a weighted least-square approach that can be

applied to a wide range of different time domain system identification algorithms and models. At

different stages in developing the GILS-UI method, it was verified theoretically by adding noise in

the responses (Wang and Haldar 1994, Ling and Haldar 2004, Katkhuda et al. 2005) and lately Vo

and Haldar (2008) verified the method experimentally on beams, whereas Martinez-Flores et al.

(2006), Martinez-Flores and Haldar (2007), and Haldar et al. (2008) verified it experimentally on a

two-dimensional steel frame with rigid connections. The authors decided not to consider noise since

the issue of noise is not a problem in the method as verified by others.
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6. Conclusions

A system identification procedure is presented to identify the structural parameters at the local

element level of damaged and undamaged framed structures with semi-rigid connections. The

procedure detects damages by tracking the changes in stiffness properties of each element based

upon the response data for all the degrees-of-freedom of the frame structure. The most attractive

feature of the procedure is that it does not require dynamic excitation force information as an input

for the identification process. With the help of several numerical examples it is shown that the

method can accurately identify structures and detect damages for frames excited by different types

of dynamic loadings including impact, harmonic, and earthquake. Damages can be small or

relatively large, yet correctly detected. In all cases presented, the algorithm identified the structures

correctly and the error in the identification is reasonably small. The procedure has the potential to

be used as a structural health assessment and monitoring technique. It is expected to be simple and

economic, yet reliable and accurate.
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