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Abstract. Out of plane behaviors of walls and infills are investigated in this paper, using rigid block
concepts. Walls and infills are sometimes separated from top beams because of in plane movement of the
walls and crumbling mortar layers under the top beams. Therefore, sufficient strength should be supplied
to hold them against out of plane forces. Such walls are studied here under some real and scaled
earthquakes, regarding their out of plane behavior. Influences of some reinforcements, connecting the
walls to frames or perpendicular walls, are also studied. It is shown that unreinforced walls of regular
sizes (3 m high and 4.5 m long) are normally unstable in the earthquakes. However, performing some
reinforced bars that connect them to adjacent elements- frames or perpendicular walls - stabilizes them.
Eventually, it is concluded that supplying 3 reinforced bars at 1/4, 2/4 and 3/4 of the panel’s height
stabilizes the walls in the assumed earthquakes. In this regard, for 20 cm and 35 cm thick walls Φ18mm
and Φ20mm bars are to be used, respectively. For walls with other configurations, the forces and required
areas of the reinforcements can be determined by the developed method of this paper.

Keywords: rigid block; wall; infill; out of plane; seismic behavior; reinforcement.

1. Introduction

Out of plane strength of walls affects structural behavior and earthquake mitigation. Therefore, the

out-of-plane strength of walls should be checked and enough out of plane resistance be supplied

against seismic loads (De Felice et al. 2001).

Top bricks layer inclining of about 45o sometimes improve the gap, but still do not supply enough

connection. On the other hand, X pattern of cracks, resulting from in-plane forces, is similar to the

crack pattern for a square panel subjected to out-of-plane forces. This implies that the transverse

strength can be substantially weakened by in-plane cracking. Therefore, out-of-plane strength of a

cracked infill is often surmised to be quite low (Angle et al. 1994). In this regard, Mendola et al.

(1995) translated the problem into the analysis of a fixed-free ended prismatic column, undergoing

static horizontal forces equivalent to the maximum inertia actions.

To study the effects of transversal earthquake on the masonry infilled frames behavior, Flanagan

et al. (1994) performed a lot of tests, in which the specimens were loaded in two transversal
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directions. The results showed that the specimens subjected to cyclic out of plane drift displacement

were stable, within the range a typical infill might experience. For such specimens, only minimal

degradation of in-plane stiffness and strength would happen if they are loaded in plain. Some other

infill panels were tested using sequential in-plane and out-of-plane pressure. They showed zero to

15% reduction in out-of-plane capacity, after being initially loaded by 75% of ultimate in-plane

strength. Alternatively, another specimen was simultaneously loaded by in-plane and out-of-plane

forces, showing no significant interaction at low to moderate loading levels. 

A shaking table test with bidirectional excitation on two-story, square in plan, concrete frame

structure, showed that infill panels by a clear height of 2.5 m and the thickness of 11.5 or 8.0 cm

would sustain lateral accelerations of about 1.75 g or 1.3 g, respectively, showing no out of plane

expulsion or significant damage (Fardis et al. 1999). Nevertheless, unreinforced masonry (URM)

infill walls have demonstrated poor performance records even in moderate earthquakes and they

need to be strengthened. Adding new structural frames or shear walls, is impractical due to its cost

or its restriction in being used in certain types of structures. Therefore, other strengthening methods,

such as: grout injection, insertion of reinforcing steel, pre-stressing, jacketing and using polymer

laminates (FRP1) were proposed by El-Dakhakhni (2006).

The arching action, a source of infill out of plane resistance, depends on the infill material,

twisting stiffness of frame members and the infill to frame connection status. The gaps are

developed at the top of the walls soon after being constructed, due to the mortar shrinkage. The

walls, with top gaps, cannot withstand the out-of-plane forces in the earthquakes and would collapse

due to the inadequate binding at the top. However, the walls surrounded by rigid supports, can

display high resistance to out-of-plane forces for the development of arching action in flexure.

Therefore, to achieve an optimal load-bearing behavior- or rather stability, the remaining gaps at the

top of the walls are recommended to be filled with non-shrinkable mortar some days after their

construction (Dafnis et al. 2002).

The first author believes that out of plane strength of a masonry infill is overestimated by the

proposed formulas, e.g., the Angel formula- Proposed in FEMA-273 (1997) and FEMA-356 (2000)

- or experimented in the above-mentioned bidirectional excitation. Because they ignore the worst

case, in which the transversal acceleration occurs where the wall has experienced interface cracking

but returns back to its normal position (zero drift). In such a case, integration between infill and

frame is minimum. Therefore, it is highly suggested to ignore the arching action and supply the

required out of plane resistance by reinforced bars or mesh. 

The out-of-plane behavior of masonry walls is studied in this research, assuming walls as rigid

blocks, disregarding their curvature. For the purpose, governing formula are derived and solved for a

rigid block under Manjil, Bam, Taft, Tabas, Tarzana, Kobe and Elcentro earthquake records. For each

earthquake, two cases- natural records and normalized to 0.5 g - are considered (g is ground natural

acceleration). The walls curvature for the lateral loads can disregarded for thick concrete walls or

infills, yet it is not as much erroneous for concrete or even masonry infills of normal thicknesses.

The calculation is based on the equation of a rigid body motion, freely oscillates and topples on

rigid or flexible foundations. This has been studied for many years; in 1963, a rigid block problem

was analyzed by Housner (1963) which was developed by Makris et al. (2000) for sinusoidal

excitation (Zang et al. 2001). The analytical free motion problem for small rotations and sinusoidal

1Fiber Reinforced Polymer
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excitation is analyzed by Yim et al. (1980).

Here, the behavior of walls or infills with top gaps is investigated against out of plane earthquake

loads. In this regard, some reinforced bars are applied at 1/4, 2/4 and 3/4 of the walls height. The

iterative procedure using rigid block concepts is performed for the analysis. Two masonry walls

with two different thicknesses, 20 or 35 cm, are considered here. It is assumed that the length and

height of the walls are 4.5 and 3 m, respectively, made by a 18 kN/m3 dense masonry material.

 

2. Analysis procedure

A developed MATLAB code (2006) is utilized for the analysis, on the adopted mathematical

model, which is briefly reviewed as follows:

The formula of motion is written for a rigid block by the length, height and thickness of l, h and

t, respectively, shown in Fig. 1, as 

 (1)

and 

 (2)

where x and y are horizontal and vertical displacements of gravity center of the block, respectively,

and 

(3)

θ is the block rotation angle,  is the absolute value of block rotation angle.  is the critical

rotation angle, calculated by

 (4)

The accelerations of the block gravity center in horizontal and vertical directions are obtained by

second order derivatives of formulas 1 and 2, as below 

 (5)

and
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Fig. 1 Models and the applied forces on a rigid block
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(6)

where, the positive and negative signs (regarding the coupled ones) refer to the cases of  and

, respectively. 

Based on equilibrium relations, the summation of all applied moments around point O is zero,

therefore 

 (7)

where,  is the horizontal acceleration of earthquake perpendicular to the wall surface, m is mass

of the block and g is natural ground acceleration.

Substituting  and  of formulas 5 and 6 into relation 7 gives the following relation (illustrated

more by Jeong et al. 1997) 

 (8)

where, in case of applying the top and bottom signs (regarding the coupled plus minus), the formula

refer to  and , respectively, and

 (9)

It can be assumed that for small rotation angles ; therefore, block period of free

vibration can be calculated as

 (10)

Since θc is a very small angle (3.81o and 6.65o for the 0.2 and 0.35 m thick wall), the influence of

the term  on the period is negligible.

Each reinforced bar is considered as a spring by the stiffness of k, composed of two parts, kb and

ka, regarding the bending and axial stiffness of bars, respectively. Deformation of a bar and wall,

caused by vibration of the wall, is shown in Fig. 2(a). 
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 Fig. 2 Deformed configuration of the wall and reinforcement 
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During an earthquake, bars and mortar are separated. In the corners, the mortar is crumbled and

put out of the joint in the area of l length. In these parts the bar can oscillate freely; however, they

remain attached in the other parts.

Bending stiffness of the bar, kb, can be calculated as follows, regarding the its deformed shape

shown in Fig. 2(b)

 (11)

where, E and I are elasticity modulus and the second moment of area of the bar, respectively.

Lateral displacement of reinforced bar (δ), shown in Fig. 2(b), is

(12)

where α is shown in Fig. 2(b). 

Assuming a uniform load (F) on the wall, caused by transversal earthquake component, gives the

bar axial load (f ) as

 (13)

Regarding that the bar has almost constant axial force of f, its elongation is

 (14)

where, A and E are area and elasticity modulus of the bar, respectively. 

Based on the geometry of the deformed configuration, Fig. 2(b), ∆l is

(15)

The force F can be determined by omitting ∆l from Eqs. (14) and (15), as

 (16)

Axial stiffness of the bars, ka, can be calculated as follows, regarding relations 12 and 16 

 (17)

Therefore, entire stiffness of a bar against block rigid body motion is

 (18)

k, kb and ka are calculated and shown in Fig. 3 for a 20 cm thick walls, assuming l = 20 cm: kb is

constant but ka rises by increasing the amplitude of vibration (δ). For normal δ, both ka and kb

should be considered in the analysis. 

Formula 8 will be improved as follows, regarding the effects of reinforced bars as shown in Fig. 4

 (19)

where, ki is the entire stiffness of ith reinforced bar (including ka and kb) connected to the block at

the height of hi. In this relation, similar to formula 8, the top and bottom signs (concerning coupled

plus/minus) refer to the cases where θ > 0 and θ < 0, respectively. 
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The block period of free vibration, for small rotation angles (θ), can be calculated as

 (20)

Relations between the natural vibration period (T) and the rotation angle (θ) are shown in Fig. 5,

for the 20 cm and 35 cm thick walls. It is assumed here that l = 10 cm and the walls have 3

horizontal reinforced bars of Φ18 and Φ20, respectively, equally spaced at the middle half of the

wall.
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2
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 Fig. 3 Comparing k, ka and kb

 Fig. 4 Models and the applied forces on a reinforced wall, considered as a rigid block

 Fig. 5 Relation between natural vibration period and rotation angle for the 20 and 35 cm thick walls
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3. Solving the equations

Eq. (19) is solved by iterative methods, based on the Taylor expansion equation as follows 

 

(21)

In order to minimize the errors, enough discretization of acceleration records is performed, similar

to other time history analyses. In which linear relationship between time and acceleration is

assumed in every time step. The calculation starts by the assumption of  = 0. 

To consider the impact mechanisms, Housner (1963) assumed a restitution coefficient, β, that

multiplies the angular velocity  if the block passes through the equilibrium position at θ = 0.

Considering the existence of angular moment conservation before and after an impact, the

restitution coefficient can be obtained through 

(22)

where,  and  are the angular velocities just before and after the impact, respectively (Pena et

al. 2007).

 

 

4. Analysis results

Two walls of 20 and 35 cm thick, by the height and length of 3 and 4.5 m respectively, are

investigated. 7 earthquake records, including Taft, Manjil, Bam, Tabas, Tarzana, Elcentro and Kobe

are considered. PGAs1 of these records are 0.5806 g, 0.5506 g, 0.5000 g, 0.4551 g, 0.4489 g,

0.4420 g and 0.3757 g, respectively (g is the natural ground acceleration). The spectra of the above

mentioned earthquakes, normalized to 1.0 g, are shown in Fig. 6.

A time-history analysis has been done for each earthquake record. Results of the 20 cm wall for

Taft earthquake is shown in Fig. 7, in which the earthquake acceleration, wall rotation angle (θ), as

well as the tensile forces of the bottom, middle and top reinforced bars (F1, F2 and F3,
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 Fig. 6 Spectra of Taft, Manjil, Bam, Tabas, Tarzana, Elcentro and Kobe earthquakes

1Peak Ground Acceleration
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respectively) are shown with respect to the time. Both negative and positive bar forces are tensile,

however the negative ones are related to the negative wall rotations.

The results of time-history analyses of the 20 cm thick wall under real records of Taft, Manjil,

Bam, Tabas, Tarzana, Elcentro and Kobe are summarized in Table 1. This table shows the PGA, the

maximum block rotation in positive and negative directions (θ + and θ −, respectively), and the

maximum tensile forces of the reinforcements (F1, F2 and F3), which connect the wall to the

Fig. 7 Time history of the horizontal ground acceleration, wall rotation and reinforced bars’ forces (F1, F2
and F3) in Taft earthquake for a 20 cm thick wall, assuming l = 20 cm 
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column at 1/4, 2/4 and 3/4 of the heights. Superscripts + or − corresponds to positive and negative

rotation of wall, respectively. In this table, PGA, rotation and forces are in g, degree and kN,

respectively. In these analyses the bars are assumed Φ18mm. 

As shown in Table 1, Taft will produce the maximum wall rotation and bar forces. For each

earthquake record, higher bar has greater tensile force, F3 > F2 > F1.

For normalized records (to PGA of 0.5 g), the analyses led to different results, shown in Table 2:

Tarzana produced the most critical case, in which the tensile force of the bar exceeded 101 kN. 

Similarly, the behavior of a 35 cm thick wall is investigated under the earthquakes, for both

natural record and normalized one (to 0.5 g). The results are presented in Table 3 and 4,

respectively. In these analyses it is assumed that the wall has 3 bars of Φ20mm, at 1/4, 2/4 and 3/4

of the wall height and l = 20 cm. 

As it can be seen, for natural and normalized earthquake records, Taft and Elcentro produced the

most critical cases, respectively, with the maximum reinforcement tensile forces of 117.28 and

115.70 kN, respectively. 

In summary, for the records of natural PGA, Taft produces the most critical conditions, with

maximum bar tensile forces of 78.25 and 117.28 kN in the 20 and 35 cm thick wall, respectively.

However for normalized records, Tarzana and Elcentro are more dangerous, producing the

maximum bar tensile forces of 101.46 and 124.70 kN in the 20 and 35 cm thick wall,

respectively.

 

 

 

Table 1 Results for a 20 cm thick wall in earthquakes of natural PGAs, assuming l = 20 cm

 Real
 Earthquake

 PGA
 (g)

 θ+

 (deg)
θ
− 

 (deg)
  
 (kN)

  
 (kN)

 
 (kN)

  
 (kN)

  
 (kN)

  
 (kN)

 TAFT  0.5806  1.13  1.19  69.97  -78.25  28.18  -31.05  8.37  -8.96

 MANJIL  0.5506  0.96  0.85  47.66  -36.00  20.32  -16.09  6.64  -5.62

 BAM  0.5000  0.81  0.79  32.62  -30.61  14.83  -14.08  5.31  -5.11

 TABAS  0.4551  0.68  0.66  22.78  -21.19  11.06  -10.43  4.27  -4.01

 TARZANA  0.4489  1.13  1.01  68.53  -52.94  27.68  -22.20  8.26  -7.07

 ELCENTRO  0.4420  1.00  1.00  52.29  -52.49  21.97  -22.04  7.02  -7.04

 KOBE  0.3757  0.93  0.81  43.84  -32.25  18.95  -14.69  6.32  -5.27

Table 2 Results for a 20 cm thick wall in earthquakes PGA of 0.5 g, assuming l = 20 cm

 Scaled
 Earthquake

 θ+

 (deg)
θ
− 

 (deg)
  
 (kN)

  
 (kN)

 
 (kN)

  
 (kN)

  
 (kN)

  
 (kN)

 TAFT  0.96  0.92  47.53  -42.69  20.27  -18.53  6.63  -6.22

 MANJIL  0.93  0.86  43.67  -36.93  18.89  -16.43  6.31  -5.71

 BAM  0.81  0.79  32.62  -30.61  14.83  -14.08  5.31  -5.11

 TABAS  0.71  0.75  24.50  -27.49  11.74  -12.89  4.47  -4.79

 TARZANA  1.32  1.21  101.46  -81.11  39.02  -32.04  10.54  -9.16

 ELCENTRO  1.03  1.03  55.66  -56.05  23.17  -23.30  7.29  -7.32

 KOBE  0.99  0.92  50.25  -42.95  21.25  -18.62  6.86  -6.24
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5. Effect of reinforcement yielding

In this part, the analysis is improved by considering the possibility of yielding for the

reinforcement, which was ignored in previous parts. 

 The results show that for a 35 cm thick wall, maximum wall rotation rises from 1.26o to 1.58o

for Taft and from 1.24o to 1.25o for Manjil record, Table 5, by regarding the yielding possibility of

reinforced bars. For both of Taft and Manjil records, the maximum bar forces will be equal to the

bar tensile strength, 94.25 kN, assuming that Fy = 300 MPa (Fy is the yielding stress of

reinforcement). For other records, the bar forces do not exceed yielding and the same results of

Table 3 will be determined again. 

Time-history of wall rotation angle in Taft earthquake, with and without considering bar yielding-

is shown in Fig. 8 as “Considering Yielding” and “Ignoring Yielding”, respectively. According to

the figure, wall rotation rises if the yielding is considered.

The results show that 20 cm thick walls can be stabilized against out of plane movement, by

supplying three bars of Φ18mm. The bars connect the wall to the adjacent elements or

perpendicular walls and are equally spaced at the middle half of the wall. For 35 cm thick walls,

Φ20mm bars should be used instead. In case of necessity the reinforcement can be replaced by

equivalent bars with the same stiffness.

 

Table 3 Results for a 35 cm thick wall in earthquakes of natural PGA, assuming l = 20 cm

 Real
 Earthquake

 PGA/g  θ+

 (deg)
θ
− 

 (deg)
  
 (kN)

  
 (kN)

 
 (kN)

  
 (kN)

  
 (kN)

  
 (kN)

 TAFT  0.5806  1.26  -1.14  117.28  -93.31  47.45  -38.99  14.13  -12.30

 Manjil  0.5506  1.24  -1.23  113.65  -110.94  46.18  -45.22  13.86  -13.66

 BAM  0.5000  0.98  -1.07  66.12  -80.75  34.50  -14.08  10.01  -11.28

 TABAS  0.4551  0.68  -0.69  31.43  -32.05  15.87  -16.12  6.39  -6.47

 TARZANA  0.4489  1.07  -1.05  79.59  -77.16  34.08  -33.20  11.18  -10.98

 ELCENTRO  0.4420  1.00  -1.00  69.20  -74.30  30.30  -32.2  10.30  -10.70

 KOBE  0.3757  1.06  -1.04  78.15  -75.88  33.56  -32.74  11.06  -10.87

Table 4 Results for a 35 cm thick wall in earthquakes of normalized PGA, assuming l = 20 cm

 Scaled
 Earthquake

 θ+

 (deg)
θ
− 

 (deg)
  
 (kN)

  
 (kN)

 
 (kN)

  
 (kN)

  
 (kN)

  
 (kN)

 TAFT  1.07  -1.07  80.84  -80.73  34.53  -34.49  11.29  -11.28

 Manjil  1.07  -1.14  81.39  -93.35  34.73  -39.00  11.33  -12.30

 BAM  0.98  -1.07  66.12  -80.75  29.18  -34.50  10.01  -8.15

 TABAS  0.83  -0.83  45.80  -46.77  21.57  -21.94  8.05  -8.15

 TARZANA  1.26  -1.30  118.01  -127.60  47.70  -51.06  14.19  -14.89

 ELCENTRO  1.30  -1.30  124.70  -115.70  50.00  -46.90  14.70  -14.00

 KOBE  1.17  -1.07  99.47  -79.70  41.18  -34.12  12.78  -11.19
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6. Effect of separation length, l

In this section the influence of the separation length, l, on walls’ seismic behavior is investigated.

In this regard, the 35 cm thick wall (by the length and height of 4.5 and 3 m, respectively) is

analyzed under Manjil, Tabas and Elcentro earthquake records, assuming l ranges of 2.5 to 22.5 cm;

the results are shown in Fig. 9, 10 and 11 respectively. The results for Manjil earthquake are

summarized in Table 6. As shown in the figures and table, the influence of the separation length on

the rotation angle or maximum tensile forces of bars seems chaotic. In the literature of the

deterministic physical and mathematical systems, chaotic is a term assigned to the motion classes

with the time history of sensitive dependence on initial conditions (Moon 2004). 

The chaotic behavior of the wall is confirmed by the results of similar analyses, for the 20 cm

thick wall, under Manjil, Tabas and Elcentro earthquake records, shown in Fig. 12, 13 and 14,

respectively. In both of the 20 or 35 cm thick walls, the variation procedures of the bar loads in

earthquakes are similar; they all rise or drop together with respect to the separation length, l.

The relation between the rotation angles (θ) and maximum tensile forces of bars (F1, F2 and F3)

is not practically linear. That is because of nonlinearities in the governing relation (Relation 19), as

well as in the equivalent spring stiffness, bars behavior (regarding post yielding) and earthquake

acceleration. 

Table 5 Results for a 35 cm thick wall in earthquakes of natural PGA, regarding yielding possibility of bars
and assuming l = 20 

 Real
 Earthquake

 PGA/g
 θ+

 (deg)
θ
− 

 (deg)
  
 (kN)

  
 (kN)

 
 (kN)

  
 (kN)

  
 (kN)

  
 (kN)

 TAFT  0.5806  1.49  -1.58  94.25  -94.25  67.7  -77.82  18.20  -20.13

 Manjil  0.5506  1.25  -1.15  94.25  -94.25  46.74  -39.45  13.98  -12.40

 BAM  0.5000  0.98  -1.07  66.12  -80.75  34.50  -14.08  10.01  -11.28

 TABAS  0.4551  0.68  -0.69  31.43  -32.05  15.87  -16.12  6.39  -6.47

 TARZANA  0.4489  1.07  -1.05  79.59  -77.16  34.08  -33.20  11.18  -10.98

 ELCENTRO  0.4420  1.00  -1.00  69.20  -74.30  30.30  -32.2  10.30  -10.70

 KOBE  0.3757  1.06  -1.04  78.15  -75.88  33.56  -32.74  11.06  -10.87
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+
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–
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+
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–
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+
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–

Fig. 8 Rotation angle of the 35 cm wall under Taft record, with and without considering the bar yielding,
assuming that l = 20 cm



346 Mohammadi Gh.M. and Yasrebi F.

Furthermore, the ratio of F1 to F2 (or F3) is a function of the maximum wall rotation angle (θmax)

as shown in Table 7 for different separation lengths, l, in the 35 cm thick wall under Manjil

earthquake. For very small θmax, the ratios depend directly on the bar height. Nevertheless, for high

Fig. 9 Influence of the separation length on the seismic behavior of the 35 cm thick wall in Manjil earthquake

Fig. 10 Influence of the separation length on the seismic behavior of the 35 cm thick wall in Tabas earthquake

Fig. 11 Influence of the separation length on the seismic behavior of the 35 cm thick wall in Elcentro
earthquake
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θmax, maximum tensile force of the top bar rises much more rapidly than those of the bottom ones,

shown in Fig. 15.

Fig. 12 Influence of the separation length on the seismic behavior of the 20 cm thick wall in Manjil
earthquake

Fig. 13 Influence of the separation length on the seismic behavior of the 20 cm thick wall in Tabas earthquake

Table 6 Influence of separation length, l, on the seismic behavior of the 35 cm thick wall in Manjil earthquake

 Separation 
Length, l (cm)

 θ+

 (deg)
θ
− 

 (deg)
  
 (kN)

  
 (kN)

 
 (kN)

  
 (kN)

  
 (kN)

  
 (kN)

 2.50  0.01  -0.01  20.00  -16.09  13.33  -10.72  6.66  -5.36

 5.00  0.05  -0.04  22.12  -18.51  14.71  -12.32  7.34  -6.15

 7.50  0.20  -0.16  38.62  -31.66  24.87  -20.59  12.17  -10.14

 10.00  0.44  -0.36  60.96  -45.02  35.11  -27.07  15.86  -12.64

 12.50  0.40  -0.38  33.65  -31.20  19.80  -18.55  9.10  -8.60

 15.00  0.57  -0.65  40.14  -50.86  21.59  -26.20  9.22  -10.74

 17.50  0.79  -0.78  55.08  -53.67  26.37  -25.81  10.01  -9.86

 20.00  1.24  -1.23  113.64  -110.68  46.17  -45.13  13.86  -13.64

 22.50  1.64  -1.67  179.58  -189.18  67.07  -70.32  16.89  -17.49

F3

+

F3

–

F2

+

F2

–

F1

+

F1

–
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Fig. 14 Influence of the separation length on the seismic behavior of the 20 cm thick wall in Elcentro
earthquake

Table 7 Maximum rotation of wall and ratio of the bars' tensile forces for the 35 cm thick wall in Manjil
earthquake 

l
(cm)

θmax

(degree)
F3/F2 F3/F1 F2/F1

2.5 0.01 1.50 3.00 2.00

5 0.05 1.50 3.01 2.00

7.5 0.20 1.55 3.17 2.04

10 0.44 1.74 3.84 2.21

12.5 0.40 1.70 3.70 2.18

15 0.65 1.94 4.74 2.44

17.5 0.79 2.09 5.50 2.63

20 1.24 2.46 8.20 3.33

22.5 1.67 2.69 10.82 4.02

Fig. 15 Ratio of bar tensile forces with respect to the wall rotation, for 35 cm thick wall under Manjil
earthquake record



Out of plane behavior of walls, using rigid block concepts 349

7. Conclusions

Out of plane behavior of walls of normal sizes is investigated in this paper, based on the rigid

block concepts. The walls are 3 m high, 4.5 m long, for which two thicknesses of 20 and 35 cm are

considered. In this regard, reinforced bars that connect the wall to the adjacent elements-columns or

perpendicular walls - are modeled as springs. The walls are analyzed for seven acceleration records,

each in two cases: with natural PGA and normalized to 0.5 g. It is shown that the wall can be

stabilized in out of plane direction during the assumed earthquakes by supplying some

reinforcement. The required reinforcement is 3Φ18 and 3Φ20 for 20 cm and 35 cm thick wall,

respectively, which are applied horizontally at the middle half of the wall by equal spacing. In

necessities, the reinforcement can be replaced by equivalent bars of the same stiffness. Furthermore,

a sensitivity analysis is performed for the influences of separation length, l. It is shown that

influence of l is chaotic. 

According to the results the wall rotation angle rises by regarding bar yielding. It is also shown

that the maximum tensile forces of bars depend on a lot of parameters, including the bar situation

and the higher bars has greater tensile forces.
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