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Abstract. Vibration analysis of rotating beams is a topic of constant interest in mechanical engineering.
The differential quadrature method (DQM) is used to obtain the natural frequencies of free transverse
vibration of rotating beams. As it is known the DQM offers an accurate and useful method for solution of
differential equations. And it is an effective technique for solving this kind of problems as it is shown
comparing the obtained results with those available in the open literature and with those obtained by an
independent solution using the finite element method. The beam model is based on the Timoshenko beam
theory.
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1. Introduction 

Rotating beams are widely used in many engineering applications such as turbine blades,

helicopters rotors, aircrafts propellers and robot manipulators.

It is necessary to accurately predict the beam natural frequencies since vibrational properties in

engineering structures are often limiting factors in their performance. Many methods have been used

to obtain the free vibration characteristics of rotating beams, such as Rayleigh, Galerkin, Ritz, finite

element, modeling method, dynamic stiffness method, power series approach, differential

transformation technique, the use of Genetic Programming to create an approximate model and also

experimental approaches, Senatore (2006). Hodges and Rutkowski (1981), used the finite element

method of variable order to analyze the problem. Du et al. (1994), presented a convergent power

series expression to solve analytically for the exact natural frequencies and modal shapes of rotating

Timoshenko beams. Naguleswaran (1994), studied the dimensionless natural frequencies of a

rotating beam for different boundary conditions. He solved the mode shape equation by the
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Frobenius method and the frequency equations by trial and error. Al-Ansary (1998) used the

perturbation technique and Galerkin’s method to analyze flexural vibrations of rotating beams

considering rotary inertia. Banerjee (2000), derived the dynamic stiffness matrix of a non-uniform,

rotating, Euler-Bernoulli beam using the Frobenius method of solution in power series to model a

tapered beam assembling the dynamic stiffness matrices of uniform beams by approximating the

tapered beam as an assembly of many different uniform beams. Banerjee (2001), developed the

dynamic stiffness method for a rotating cantilever Timoshenko beam. Lin and Hsiao (2001) used a

method based on the power series solution to solve the natural frequency of the rotating

Timoshenko beam, they considered the effect of Coriolis force on the natural frequency of the

rotating beam. Chung and Yoo (2002), presented a finite element analysis for rotating cantilever

beams based on a dynamic modelling method using the stretch deformation instead of the

conventional axial deformation. Gunda et al. (2007), introduced a low degree of freedom model for

dynamic analysis of rotating tapered beams based on a numerically efficient superelement,

developed using a combination of polynomials and Fourier series as shape functions. Lee and Sheu

(2007), used the Hamilton’s principle and the consistent linearization of the fully nonlinear beam

theory to derived two coupled governing differential equations for the natural frequencies of a

rotating inclined beam and they utilized the method of Frobenius to establish the exact series

solutions of the structural system. Ouyang and Wang (2007) developed a dynamic model for the

vibration of a rotating beam subjected to axially moving forces. Singh, Mani and Ganguli (2007)

used the Genetic Programming to create an approximate model of ratoting beams. Vinod,

Gopalakrishnanand and Gangul (2007) presented a paper about spectral finite element formulation

for a rotating beam subjected to small duration impact. A new rotating beam finite element was

developed by Gunda and Ganguli (2008), in which the basis functions were obtained by the exact

solution of the governing static homogenous differential equation of a stiff string, which resulted

from an approximation in the rotating beam equation. Recently Mei presented a new approach

called differential transformation to analyze free lateral vibrations of a stiffened rotating beam. As it

was shown in his paper, Mei (2008), this technique gives accurate solutions to the vibrating

problem. In 2009, an interesting paper was presented by Kumar and Ganguli (2009), they looked

for rotating beams whose eigenpair (frequency and mode-shape) is the same as that of uniform

nonrotating beams for a particular mode.

In this study the differential quadrature method (DQM) is presented to solve the mentioned

structural problem. As it is known the differential quadrature method proposed by Bellman in the

seventies, is a technique to solve differential equations. Some of its applications can be found in the

papers by Bellman and Casti (1971), Bert and Malik (1996), Karami et al. (2003), Laura and

Gutiérrez (1993), Choi et al. (2000), Liu and Wu (2001), Shu and Chen (1999) among many others

and in treatises like as Bellman and Roth (1986), Shu (2000). 

Numerical results of the examples have been obtained for the lateral free frequencies of vibration

of a uniform beam with doubly symmetric cross-section that is attached to a rotating hub. The

Euler-Bernoulli and Timoshenko theories (Seon Han et al. 1999) are considered comparatively to

describe the lateral behavior of the beam. The accuracy with published results is very good. The

solutions presented here have been obtained by means of Mathematica, Wolfram (1996). 

On the other hand independent results have been obtained using the software (ALGOR 2007), by

the finite element method, FEM.

The authors think that an advantage of the current paper is to present an efficient and simple

model for vibration analysis of rotating beams, which requires relatively small computational effort
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than other methods. It would be helpful for the dynamic analysis of rotating beams for optimization

and control applications where low order models are useful. 

2. Governing equations 

Fig. 1 shows a cantilever beam attached at one end to a rigid hub with radius . The hub rotates

around its central axis, with a rotational speed . A Cartesian coordinate system is chosen with its

origin at the clamped end of the beam (see Fig. 1).  is the radial coordinate which axis is

considered to be coincidental with the centroidal axis of the rotating beam. The -axis is parallel to

the axis of rotation and the -axis lies in the plane of rotation. 

Only vibration in the  plane is considered and the Coriolis effects are ignored.

The flexural displacement in the  direction is denoted as  and  denotes the section rotation.

The governing differential equations of motion for free lateral vibration of a Timoshenko rotating

beam are the equations obtained by Banerjee (2001)

(1)
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 Fig. 1 Rotating cantilever beam model
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(3)

and  and  are the bending moment and the shear force

(4)

(5)

where A is the area of the cross section, I is the moment of inertia of the cross section about a

central axis parallel to , ρ is the density of the beam material, E is the Young’s modulus, G is the

shear modulus and κ is the shear factor.

Substituting Eqs. (3), (4) and (5) into Eqs. (1) and (2) yields

(6)

(7)

For free vibrations at ω frequency and assuming a simply harmonic motion of the beam, it can be

written

(8a,b)

The length scales are adimensionalized by the length of the beam so that dimensionless quantities

are given by

(9a-c)

Eqs. (6) and (7) may be expressed in dimensionless form with the choice 

(10a-c)

(11)
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expressed as follows

(13a-c)

The boundary conditions of the beam are

(14a,b)

(15a,b)

The Eq. (15) can be written as

(16a)

(16b)

3. Differential quadrature method 

In order to obtain the DQM analog equations to the governing equations of the rotating beam and

its boundary conditions, the beam domain is discretized in a grid of points (Fig. 2) using the

Chebyshev-Gauss-Lobato expression (Shu 1999) 

; (17)

where n is the number of discrete points or nodes and xi is the coordinate of node i.

The discretization of a derivative of order q at a node i of the grid, based on the quadrature laws

(Bert and Malik 1996), can be expressed by 

(18)

(19)

where the Cij are the weighting coefficients of those linear algebraic equations (Bert and Malik

1996). 

The Cij coefficients may be arranged in a matrix [C] of order n. They are obtained using

Lagrange interpolating functions (Karami et al. 2003)
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(20)

The DQM weighting coefficients of the matrix [C] can be calculated by

(21a)

(21b)

with , for  and

(22a)

(22b)

with , for .

Using the quadrature laws, (18), (19), the DQ analogs of the governing Eqs. (11), (12) of node i

become

  (23)

(24)

with  

In a similar way the DQ analogs of the boundary conditions are for i = 1

(25a)

(25b)

and for i = n
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(26b)
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the rotating beam.

The number of terms n taken in the summations had been studied for many situations and the

system has acceptable convergence by n = 21 terms. 

4. Finite element method

The independent results for the natural frequencies, were obtained by a finite element code

ALGOR. The finite element model employed in the analysis has 1000 beam elements of two nodes

in the longitudinal direction. The number of elements was proved to be enough to capture

accurately the dynamic behaviour of the rotating beam by a previous convergence analysis. This

beam model also takes into account the axial deformation induced by the centrifugal force. 

5. Numerical results

The DQ summation with n = 23 terms or more, shows none significant improvement in accuracy

over the summation with n = 21. Therefore, an approximation of twenty one nodes is used through

out this work.

The results obtained by the present procedure are compared with published results by Hodges and

Rutkowski (1981), Mei (2008), Banerjee (2001), Naguleswaran (1994) and Senatore (2006).

In Table 1 the first three natural frequency coefficients of an Euler-Bernoulli rotating beam are

given. The results correspond to four combinations of the dimensionless radius R and rotational

speeds η. It was taken  to represent an Euler-Bernoulli beam model with the present

formulation. As it is seen, all the Ω coefficients are in good agreement with those of Hodges and

Rutkowski (1981) and Mei (2008).

s ∞→

Table 1 Natural frequency coefficients of a rotating Bernoulli-Euler beam for different values of R and η   
  (a comparison of results with references Hodges and Rutkowski (1981) and Mei (2008)

R η Present study
Hodges and 

Rutkowski (1981) 
Mei (2008)

Ω1 3.5160 3.5160 3.5160

0 0 Ω2 22.0343 22.0345 22.0345

Ω3 61.6957 61.6972 61.6972

Ω1 13.1701 13.1702 --

0 12 Ω2 37.6030 37.6031 --

Ω3 79.6141 79.6145 --

Ω1 10.2366 -- 10.2368

3 4 Ω2 31.6047 -- 31.6049

Ω3 72.5825 -- 72.5831

Ω1 24.4091 -- 24.4092

1 15 Ω2 61.4370 -- 61.4371

Ω3 113.4883 -- 113.4889
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Table 2 Natural frequencies of a rotating beam. with R = 0 (comparison between theoretical DQM,
Naguleswaran (1994) and experimental results Senatore (2006) 

Theoretical results Experimental results Senatore (2006)

η
fi

 (Hz)
Present study 

 Naguleswaran  
(1994)

Two weights 
system 

Three weights 
system 

f1 26.3 26.3 28.0 29.0

1 f2 158.8 158.5 158.0 158.1

f3 442.0 442.0 440.0 441.0

f1 29.6 29.6 37.0 34.5

2 f2 162.0 161.6 163.3 161.3

f3 446.0 445.0 446.0 444.5

Table 3 Natural frequency coefficients of a rotating Timoshenko beam for various values of 1/s and η, with
E/κG = 4 and R = 0

η = 0 η = 4 η = 8 η = 12

DQM
Banerjee 
(2001)

DQM
Banerjee 
(2001)

DQM
Banerjee 
(2001)

DQM
Banerje
(2001)

0

Ω1 3.5160 3.5160 5.5850 5.5850 9.2568 9.2568 13.1701 13.1700

Ω2 22.0342 - 24.2730 - 29.9951 - 37.6028 -

Ω3 61.6953 - 63.9649 - 70.2911 - 79.6126 -

Ω4 120.8950 - 123.2546 - 130.0423 - 140.5277 -

Ω5 199.8413 - 202.2586 - 209.3207 - 220.5189 -

Ω6 298.5158 - 300.9731 - 308.2127 - 319.8658 -

0.03

Ω1 3.4799 3.4799 5.5332 5.5332 9.1549 9.1549 12.9979 12.9980

Ω2 20.5903 - 22.8621 - 28.5854 - 36.0862 -

Ω3 53.3288 - 55.7723 - 62.4421 - 71.9944 -

Ω4 95.2015 - 97.9650 - 105.7240 - 117.2672 -

Ω5 142.8889 - 145.9937 - 154.8324 - 168.2568 -

Ω6 194.0228 - 197.4923 - 207.4388 - 222.7148 -

0.06

Ω1 3.3787 3.3787 5.3954 5.3954 8.9209 8.9208 12.6724 12.6720

Ω2 17.5470 - 19.9662 - 25.8362 - 33.2672 -

Ω3 40.7447 - 43.7365 - 51.4154 - 61.6011 -

Ω4 66.3623 - 70.1298 - 79.9414 - 93.0672 -

Ω5 93.1125 - 97.6079 - 109.3074 - 124.5620 -

Ω6 119.1146 - 123.9631 - 135.3113 - 144.2550 -

0.09

Ω1 3.2302 3.2302 5.2104 5.2104 8.6588 8.6588 12.3532 12.3530

Ω2 14.5410 - 17.1973 - 23.1957 - 30.1831 -

Ω3 31.6693 - 35.3058 - 43.6601 - 53.0860 -

Ω4 48.5298 - 52.8246 - 60.9317 - 65.7861 -

Ω5 64.2692 - 67.4909 - 73.6548 - 82.8283 -

Ω6 70.9776 - 74.2543 - 81.0611 - 87.0248 -

1

s
---
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Table 2 shows a comparison between theoretical, DQM, Naguleswaran (1994), and experimental

Senatore (2006) results performed on aluminum beams with sizes 310 mm × 30 mm × 3 mm

(rectangular section with I = 6450 mm4). There is a good agreement for the second and third natural

frequencies with both simulated rotational speeds η = 1 and η = 2. The differences between

theoretical and experimental first natural frequencies are probably caused by the way the rotational

speed was simulated in the experimental procedure.

Table 4 Natural frequency coefficients of a Timoshenko beam with 
s = 60 and κ = 0.907484 (η = 0)

DQM FEM

Ω1 3.507 3.507

Ω2 21.661 21.661

Ω3 59.307 59.306

Ω4 112.709 112.707

Ω5 179.636 179.632

Ω6 257.629 257.623

Table 5 Natural frequency coefficients of a rotating Timoshenko beam with s = 60 and κ = 0.90748406 for
various values of the rotating speed η and R = 0, 1 and 2

η = 1 η = 5 η = 10 η = 15

R DQM FEM DQM FEM DQM FEM DQM FEM

0

Ω1 3.6727 3.6730 6.4338 6.4388 11.1667 11.1769 16.0768 16.0923

Ω2 21.8082 21.8083 25.0738 25.0846 33.1240 33.2691 43.4488 43.5129

Ω3 59.4534 59.4526 62.8524 62.8634 72.3310 72.3738 85.5566 85.6433

Ω4 112.8600 112.8608 116.4790 116.4938 127.0068 127.0677 142.5433 142.6687

Ω5 179.7960 179.7934 183.5970 183.6203 194.9093 195.0065 212.1742 212.3757

Ω6 257.7970 257.7923 261.7760 261.8134 273.7660 273.9218 292.4359 292.7616

1.00

Ω1 3.8798 3.8804 8.9195 8.9260 16.5502 16.5639 24.3044 24.3270

Ω2 22.0031 22.0036 28.9782 28.9956 43.8887 43.9406 60.7725 60.8675

Ω3 59.6581 59.6579 67.4510 67.4724 86.7856 86.8592 110.7750 110.9196

Ω4 113.0830 113.0817 121.6340 121.6671 144.4770 144.5949 174.7380 174.9639

Ω5 180.0290 180.0278 189.1660 189.2245 214.6540 214.8588 250.1030 250.4859

Ω6 258.0420 258.0401 267.7050 267.8016 295.3550 295.7007 335.1210 335.7619

2.00

Ω1 4.0763 4.0771 10.8350 10.8427 20.5352 20.5523 30.3287 30.3585

Ω2 22.1963 22.1971 32.3772 32.4004 52.2384 52.3058 73.8578 73.9824

Ω3 59.8620 59.8622 71.6920 71.7227 98.7175 98.8187 130.3302 130.5293

Ω4 113.3020 113.3021 126.5210 126.5714 159.5250 159.6901 200.5160 200.8254

Ω5 180.2620 180.2619 194.5290 194.6187 232.2130 232.5040 281.4570 281.9747

Ω6 258.2870 258.2876 273.4630 273.6151 314.9790 315.4739 371.3390 372.1979
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The two theoretical results (DQM and reference Naguleswaran (1994)) exhibit an excellent

agreement.

The first six dimensionless frequency coefficients of a rotating Timoshenko beam for four

rotational speeds and various values of s are tabulated in Table 3. Note that the fundamental

frequency Ω1 is in complete agreement with those of reference (Banerjee 2001) for R = 0, κ = 2/3

and E/G = 8/3. 

In Table 4 the first six natural frequencies obtained through the present analysis are compared to

those obtained by employing a finite element code Algor for η = 0, s = 60 and κ = 0.907484. The

Table 6 First six frequency coefficients for rotating beams considering Timoshenko and Euler-Bernoulli beam
theories  (R = 0 and η = 0, 1, 2 and 3)

Timoshenko Euler-Bernoulli

s = 30 s = 70

η κ = 0.84967 κ = 0.88636 κ = 0.90748 κ = 0.84967 κ = 0.88636 κ = 0.90748
Chung 
(2002)

0

Ω1 3.4798 3.4809 3.4815 3.5093 3.5095 3.5096 3.5160   3.5160

Ω2 20.5888 20.6298 20.6519 21.7448 21.7536 21.7584 22.0331 22.0345

Ω3 53.3382 53.5483 53.6626 59.8241 59.8798 59.9100 61.6878 61.6972

Ω4 95.2734 95.8385 96.1471 114.4060 114.5930 114.6940 120.8670 -

Ω5 143.1290 144.2260 144.8280 183.6600 184.1080 184.3500 199.8650 -

Ω6 194.6150 196.3940 197.3720 265.3890 266.2600 266.7340 298.5350 -

1

Ω1 3.6445 3.6456 3.6462 3.6747 3.6750 3.6750 3.6816   3.6816

Ω2 20.7373 20.7780 20.8000 21.8916 21.9004 21.9051 22.1809 22.1810

Ω3 53.4926 53.7020 53.8159 59.9701 60.0258 60.0558 61.8406 61.8450

Ω4 95.4454 96.0091 96.3170 114.5590 114.7450 114.8460 121.0470 -

Ω5 143.3200 144.4160 145.0160 183.8190 184.2660 184.5080 200.0960 -

Ω6 194.8270 196.6020 197.5790 265.5520 266.4230 266.8960 298.8600 -

2

Ω1 4.0971 4.0982 4.0988 4.1298 4.1300 4.1301 4.1373   4.1373

Ω2 21.1762 21.2163 21.2379 22.3261 22.3348 22.3395 22.6148 22.6149

Ω3 53.9528 54.1601 54.2729 60.4060 60.4613 60.4911 62.2721 62.2732

Ω4 95.9591 96.5187 96.8245 115.0160 115.2010 115.3020 121.4930 -

Ω5 143.8920 144.9810 145.5780 184.2940 184.7390 184.9810 200.5510 -

Ω6 195.4590 197.2260 198.1980 266.0410 266.9100 267.3820 299.3160 -

3

Ω1 4.7516 4.7528 4.7534 4.7887 4.7889 4.7891 4.7971   4.7973

Ω2 21.8880 21.9270 21.9481 23.0322 23.0407 23.0454 23.3201 23.3203

Ω3 54.7096 54.9137 55.0247 62.1246 61.1793 61.2089 62.9838 62.9850

Ω4 96.8077 97.3607 97.6629 115.7730 115.9570 116.0570 122.2320 -

Ω5 144.8380 145.9170 146.5090 185.0820 185.5260 185.7660 201.3060 -

Ω6 196.5060 198.2590 199.2230 266.8550 267.7200 268.1900 300.0740 -

s ∞→
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coefficients of the two sets of results, show only minor discrepancies.

In Table 5 two sets of results for the first six natural frequency coefficients of rotating beams with

s = 60 and κ = 0.907484 for a combination of R and η are compared.

The first column presents the numerical results obtained by using the DQM and the second

column provides the finite element results (FEM). Again like in Table 4, the differences between

them show no practical differences.

The next Tables 6, 7, 8 and 9 present a collection of frequency coefficients for various values of η

with R = 0. The coefficients of the last two columns of the Tables correspond to the Euler-Bernoulli

Table 7 First six frequency coefficients for rotating beams considering Timoshenko and Euler-Bernoulli beam
theories (R = 0 and η = 4, 5, 6, and 7)

Timoshenko Euler-Bernoulli

s = 30 s = 70

η κ = 0.84967 κ = 0.88636 κ = 0.90748 κ = 0.84967 κ = 0.88636 κ = 0.90748
Chung 
(2002)

4

Ω1 5.5314 5.5327 5.5335 5.5749 5.5752 5.5753 5.5851 5.5850

Ω2 22.8464 22.8841 22.9046 23.9856 23.9940 23.9985 24.2732 24.2733

Ω3 55.7489 55.9486 56.0572 62.1150 62.1690 62.1981 63.9657 63.9668

Ω4 97.9804 98.5244 98.8218 116.8230 117.0050 117.1040 123.2580 -

Ω5 146.1500 147.2140 147.7980 186.1790 186.6200 186.8590 202.3580 -

Ω6 197.9590 199.6920 200.6460 267.9880 268.8500 269.3170 301.1330 -

5

Ω1 6.3858 6.3874 6.3883 6.4375 6.4378 6.4380 6.4496 6.4495

Ω2 24.0209 24.0573 24.0770 25.1579 25.1660 25.1704 25.4459 25.4460

Ω3 57.0526 57.2470 57.3528 63.3628 63.4159 63.4446 65.2040 65.2050

Ω4 99.4626 99.9958 100.2870 118.1560 118.3370 118.4340 124.5630 -

Ω5 147.8140 148.8610 149.4360 187.5790 188.0160 188.2520 203.7010 -

Ω6 199.8060 201.5160 202.4560 269.4370 270.2930 270.7580 302.4870 -

6

Ω1 7.2846 7.2865 6.3883 7.3459 7.3463 7.3465 7.3605 7.3604

Ω2 25.3803 25.4153 24.0770 26.5192 26.5271 26.5314 26.8089 26.8089

Ω3 58.5996 58.7881 57.3528 64.8513 64.9033 64.9315 66.6829 66.6829

Ω4 101.2370 101.7580 100.2870 119.7630 119.9410 120.0370 126.1370 -

Ω5 149.8150 150.8420 149.4360 189.2720 189.7050 189.9390 205.3290 -

Ω6 202.0330 203.7150 202.4560 271.1960 272.0460 272.5070 304.1340 -

7

Ω1 8.2102 8.2124 8.2136 8.2824 8.2829 8.2831 8.2995 8.2996

Ω2 26.8948 26.9286 26.9469 28.0409 28.0487 28.0529 28.3339 28.3341

Ω3 60.3677 60.5500 60.6493 66.5619 66.6129 66.6405 68.3849 68.3860

Ω4 103.2860 103.7930 104.0700 121.6290 121.8050 121.9000 127.9700 -

Ω5 152.1350 153.1400 153.6910 191.2510 191.6790 191.9110 207.2350 -

Ω6 204.6230 206.2720 207.1800 273.2580 274.1000 274.5570 306.0680 -

s ∞→
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beam theory, the others columns contain coefficients obtained by using the Timoshenko beam

theory. As it is known the Euler-Bernoulli model tends to overestimate the natural frequencies. This

situation is increased for the natural frequencies of the higher modes. It can be stated that Euler-

Bernoulli theory’s prediction is better for slender beams.

On the other hand as Timoshenko models consider the effects of shear deformation and rotatory

inertia, its estimate of the natural frequencies improves considerably for non-slender beams and for

higher frequencies.

Table 8 First six frequency coefficients for rotating beams considering Timoshenko and Euler-Bernoulli beam
theories. (R = 0 and η = 8, 9, 10 and 11)

Timoshenko Euler-Bernoulli

s = 30 s = 70

η κ = 0.84967 κ = 0.88636 κ = 0.90748 κ = 0.84967 κ = 0.88636 κ = 0.90748
Chung 
(2002)

8

Ω1 9.1523 9.1549 9.1564 9.2365 9.2370 9.2373 9.2569   9.2568

Ω2 28.5382 28.5709 28.5886 29.6973 29.7050 29.7091 29.9952 29.9954

Ω3 62.3346 62.5105 62.6062 68.4758 68.5257 68.5527 70.2919 70.2930

Ω4 105.5870 106.0790 106.3480 123.7420 123.9140 124.0080 130.0470 -

Ω5 154.7570 155.7360 156.2740 193.5040 193.9260 194.1550 209.4080 -

Ω6 207.5570 209.1710 210.0590 275.6150 276.4480 276.9000 308.2830 -

9

Ω1 10.1049 10.1079 10.1096 10.2019 10.2025 10.2029 10.2256 10.2257

Ω2 30.2878 30.3195 30.3367 31.4658 31.4734 31.4774 31.7703 31.7705

Ω3 64.4784 64.6477 64.7400 70.5740 70.6228 70.6492 72.3857 72.3867

Ω4 108.1220 108.5980 108.8590 126.0850 126.2550 126.3470 132.3560 -

Ω5 157.6580 158.6120 159.1350 196.0200 196.4370 196.6630 211.8410 -

Ω6 210.8150 212.3910 213.2589 278.2570 279.0810 279.5280 310.7720 -

10

Ω1 11.0643 11.0678 11.0697 11.1747 11.1755 11.1760 11.2023 11.2023

Ω2 32.1249 32.1557 32.1724 33.3272 33.3348 33.3389 33.6401 33.6404

Ω3 66.7785 66.9414 67.0301 72.8379 72.8858 72.9116 74.6479 74.6493

Ω4 110.8680 111.3280 111.5800 128.6450 128.8120 128.9020 134.6479 -

Ω5 160.8198 161.7470 162.2550 198.7870 199.1980 199.4200 214.5180 -

Ω6 214.3758 215.9140 216.7600 281.1760 281.9890 282.4310 313.5200 -

11

Ω1 12.0282 12.0322 12.0344 12.1527 12.1536 12.1541 12.1843 12.1842

Ω2 34.0338 34.0639 34.0803 35.2658 35.2733 35.2774 35.5888 35.5890

Ω3 69.2160 69.3726 69.4580 75.2504 75.2972 75.3226 77.0628 77.0638

Ω4 113.8060 114.2510 114.4940 131.4060 131.5690 131.6580 137.6120 -

Ω5 164.2230 165.1210 165.6140 201.7930 202.1970 202.4160 217.4410 -

Ω6 218.2210 219.7180 220.5420 284.3610 285.1630 285.5990 316.5430 -

s ∞→
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6. Conclusions

The convergence demonstrated by the presented results and its close agreement to published

results validates the efficiency of the differential quadrature development and its implementation.

The differential quadrature method has the same advantage as the finite element method and it

needs less computer memory requirements than the FEM. In free vibration problems the DQM

matrices are simply to construct and to use, they are also easy to implement in a PC and the

computational effort can be considered trivial.

Table 9 First six frequency coefficients for rotating beams considering Timoshenko and Euler-Bernoulli beam
theories. (R = 0 and η = 12, 13, 14 and 15) 

Timoshenko Euler-Bernoulli

s = 30 s = 70

η κ = 0.84967 κ = 0.88636 κ = 0.90748 κ = 0.84967 κ = 0.88636 κ = 0.90748
Chung 
(2002)

12

Ω1 12.9954 12.9998 13.0022 13.1341 13.1352 13.1358 13.1701 13.1702

Ω2 36.0022 36.0317 36.0477 37.2683 37.2759 37.2801 37.6029 37.6031

Ω3 71.7739 71.9245 72.0066 77.7951 77.8411 77.8659 79.6134 79.6145

Ω4 116.9170 117.3460 117.5810 134.3520 134.5120 134.5990 140.5320 -

Ω5 167.8450 168.7150 169.1930 205.0240 205.4220 205.6370 220.5860 -

Ω6 222.3290 223.7840 224.5850 287.8010 288.5930 289.0230 319.8100 -

13

Ω1 13.9648 13.9697 13.9723 14.1181 14.1193 14.1200 14.1586 14.1587

Ω2 38.0198 38.0487 38.0645 39.3240 39.3318 39.3360 39.6717 39.6720

Ω3 74.4370 74.5818 74.6608 80.4574 80.5026 80.5270 82.2855 82.2866

Ω4 120.1840 120.5980 120.8240 137.4690 137.6270 137.7120 143.6280 -

Ω5 171.6680 172.5110 172.9730 208.4680 208.8590 209.0710 223.9470 -

Ω6 226.6790 228.0920 228.8700 291.4860 292.2660 292.6900 323.3180 -

14

Ω1 14.9359 14.9412 14.9441 15.1038 15.1052 15.1060 15.1493 15.1494

Ω2 40.0784 40.1070 40.1225 41.4243 41.4322 41.4364 41.7864 41.7867

Ω3 77.1919 77.3312 77.4072 83.2239 83.2684 83.2924 85.0659 85.0670

Ω4 123.5900 123.9880 124.2060 140.7440 140.8980 140.9810 146.8860 -

Ω5 175.6750 176.4890 176.9370 212.1120 212.4960 212.7040 227.5120 -

Ω6 231.2510 232.6230 233.3780 295.4040 296.1730 296.5900 327.0610 -

15

Ω1 15.9084 15.9141 15.9172 16.0909 16.0925 16.0933 16.1416 16.1416

Ω2 42.1715 42.1997 42.2151 43.5618 43.5699 43.5743 43.9396 43.9399

Ω3 80.0270 80.1610 80.2342 86.0827 86.1266 86.1503 87.9425 87.9436

Ω4 127.1200 127.5040 127.7130 144.1620 144.3130 144.3950 150.2940 -

Ω5 179.8470 180.6340 181.0660 215.9430 216.3200 216.5250 231.2700 -

Ω6 236.0280 237.3580 238.0900 299.5450 300.3020 300.7130 331.0280 -

s ∞→
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