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Abstract. The innovative intelligent fuzzy weighted input estimation method which efficiently and
robustly estimates the unknown time-varying input force in on-line is presented in this paper. The
algorithm includes the Kalman Filter (KF) and the recursive least square estimator (RLSE), which is
weighted by the fuzzy weighting factor proposed based on the fuzzy logic inference system. To directly
synthesize the Kalman filter with the estimator, this work presents an efficient robust forgetting zone,
which is capable of providing a reasonable compromise between the tracking capability and the flexibility
against noises. The capability of this inverse method are demonstrated in the input force estimation cases
of the plate structure system. The proposed algorithm is further compared by alternating bwtween the
constant and adaptive weighting factors. The results show that this method has the properties of faster
convergence in the initial response, better target tracking capability, and more effective noise and
measurement bias reduction.
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1. Introduction

The plate plays an important role in the mechanical structure as the beam does. The determination

of excitation forces is a very important task in the structure design. However, the direct

measurement approach from the excitation forces is not feasible in some practical physical and

mechanical systems. The inverse technique has been studied extensively and various techniques

have been developed. Some recent studies (Hollandsworth and Busby 1989) use modal methods to

analyze the structure and dynamic programming to perform the inverse solution. The wave

propagation response are used to spectral analysis of the structural dynamics to analytically establish

the relation between the Fourier transforms of the responses and impacting force (Martin and Doyle
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1996). The experimental results for the impact of an aluminum plate are presented, and comparisons

are made with finite element predictions and measurements from a force transducer (Doyle 1987).

Doyle showed that an objective function based on the correlation of forces could be used to

evaluate different guessed for the case of a simple beam (Doyle 1994). Doyle’s work has been

further developed and extended to include frame structures (Martin and Doyle 1996). Wang (1994)

used the weighted total acceleration method to detect the vibration force acting on the concentrated-

massed nonlinear beam. Recently, Huang (2001) adopted the conjugate gradient method (CGM) to

estimate the force of the one-dimensional mass-spring-damper structure with the time-varying

system parameters. The above researches used the batch form to process the measurement data. This

method is time-consuming and is not a on-line procedure of the unknown input estimation. 

In order to overcome these difficulties, an indirect estimation approach to the estimation of the

excitation forces is frequently employed. Input force estimation is the process of determining the

applied loadings from the measurements of the system responses. The input estimation method has

recently been applied to both heat transfer and structural dynamic problems. Tuan et al. (1996, 1997)

developed an input estimation algorithm to deal with one and two dimensional inverse heat

conduction problems. A Kalman filter method is used to estimate a time wise variation of rod force

source on the rod end with free boundaries (Ji and Liang 2000). Ma et al. (2003) first used the finite

element method (FEM) to construct the system state equations of the beam structure, and then used

the inverse method to determine the unknown excitation forces. Ma et al. (2004) presented an inverse

method to estimate the impulsive loads on the lumped-mass structure systems. An inverse method to

estimate the excitation forces from the dynamic responses of plate structure was therefore presented

(Ma et al. 2003). Liu et al. (2000) and Ji et al. (2001) used the Kalman filter with the recursive least

square method to estimate the input force of a plate. However, the plate was simplified to the system

with a single degree of freedom. Deng (2006) presented the recursion relation algorithm to determine

the input forces of beam structures and each individual node displacement.

According to the above developments, the estimator with a constant weighting factor is used to

estimate the unknown time-varying inputs. However, the optimal constant weighting factor can only

be obtained through complicated estimation process analysis (Tuan et al. 1997). In order to improve

the robustness and efficiency of the estimator, Tuan et al. (1998) presented an adaptive robust

weighted input estimation method for the one-dimensional inverse heat conduction problem. Lee et

al. (2008) utilized the adaptive weighted input estimation method to inversely solve the burst load

of the truss structure system. Chen et al. (2008) investigated the adaptive input estimation method

applied to the inverse estimation of load input in the multi-layer shearing stress structure. The input

estimates converge slowly in the initial time when the adaptive weighting function is used in the

RLSE. However, the overall tracking performance of the estimator is good when the unknown input

is time-varying regardless of the influence of the measurement noise interference.

In this paper, an intelligent fuzzy weighting function is used to replace the weighting factor, γ (k),

of the RLSE. Improving the weighting efficiency of the RLSE is essential, because the unknown

input is time-varying and changes continuously. The adaptive weighting function takes any input

variation into account. Therefore, the inverse method with quick target tracking and effective noise

reduction is developed. This inverse method presents an efficient and robust estimation procedure to

any unknown input situation. The presented work addresses an intelligent fuzzy weighted estimator

based on the fuzzy logic system. The robustness and efficiency of this method will be demonstrated

through two simulation case studies. The results are also compared with the ones using other

algorithms. The reliability, adaptivity, and robustness of this method can therefore be verified.
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2. Problem formulation

To illustrate the practicability and precision of the presented approach in estimating the unknown

input force, the numerical simulation of the plate structure is investigated in this paper. As shown in

Fig. 1, the plate is modeled as a structure system. Input estimation is based on the state-space

analysis method. In this paper, the FEM is used to construct the state-space model of the plate

structure system. The finite element model of a plate structure is considered to be a system with n

degrees of freedom. Therefore, the differential equation presenting the motion of the system in

terms of mass, stiffness and damping matrices is shown below

(1)

where M is then n × n mass matrix. C is the n × n damping coefficient matrix. K is the n × n stiffness

matrix. , , and  are the n × 1 acceleration, velocity, and displacement vectors,

respectively. F(t) is the n × 1 input force vector. The matrices, M and K, can be obtained by using the

FEM. The matrix C is a proportional damping model obtained by assembling the matrices M and K.

After converting to the state-space model, the state variables of the second order dynamic system

with n degrees of freedom are represented by a 2n × 1 state vector, i.e., . From

Eq. (1), the continuous-time state equation and measurement equation of the structure system can be

formulated as follows 
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(3)

where

MY
··

t( ) CY
·

t( ) KY t( )+ + F t( )=

Y
··

t( ) Y
·

t( ) Y t( )

X Y t( ) Y· t( )[ ]
T

=

X
·

t( ) AX t( ) BF t( )+=

Z t( ) HX t( )=

A
0n n× In n×

M
1–
K – M

1–
C–

=

B
0n n×

M
1–

=

Fig. 1 Finite element model of the plate structure system (9 elements with 16 nodes)
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A and B are both constant matrices composed of mass, damping and stiffness of the plate structure

system. X(t) is the state vector. Z(t) is the observation vector and H is the measurement matrix.

There always exists the noise turbulence in the practical environment. This is the reason that any

of the physical systems contains two portions: One is the deterministic portion, and the other is the

random portion, which is distributed around the deterministic portion. Eqs. (2) and (3) do not take

the noise turbulence into account. In order to construct the statistic model of the system state

characteristics, a noise disturbance term, which can reflect these characteristics of the state, will

need to be added to these two equations. Up to now, one of the random noise disturbances that can

be completely resolved is the Gaussian white noise, which has been statistically illustrated in full by

using the probability distribution function and the probability density function. Practically, any

function corresponding to the functions mentioned above has the same effect. The characteristic

function of the random variable is one example. Two most important characteristic values are the

mean and the variance, which represent the statistic properties of the random process (Chan et al.

1979). Taking the above consideration into account, the continuous-time state equation is to be

sampled with the sampling interval, ∆t, to obtain the discrete-time statistic model of the state

equation as shown below (Bogler 1987) 

(4)

where

 is the state vector. Φ is the state transition matrix. Γ is the input matrix. ∆t is the sampling

interval.  is the processing error vector, which is assumed as the Gaussian white noise. Note

that , and . Q is the discrete-time processing noise covariance

matrix. δkj is the Kronecker delta function. When describing the active characteristics of the

structure system, the additional term, , can be used to present the uncertainty in a numerical

manner. The uncertainty could be the random disturbance, the uncertain parameters, or the error due

to the over-simplified numerical model. 

Generally speaking, the system state can be determined by measuring the output of the system.

The measurement usually has a certain relationship with the system output. However, there is also

the noise issue with the measurement. As a result, the discrete-time statistic model of the

measurement vector can be presented below 

(5)
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where

Z(k) is the observation vector. v(k) represents the measurement noise vector and is assumed to be

the Gaussian white noise with zero mean and the variance, , where

. R is the discrete-time measurement noise covariance matrix. H is the measurement

matrix.

3. The intelligent fuzzy weighting function in the RLSE input estimation method

The input estimation method consists of two parts; one is the Kalman filter and the other is the

on-line least square algorithm. The input is the unknown time-varying input force. Using the

Kalman filter requires an exact knowledge of the process noise variance Q and the measurement

noise variance R, which depends on the sensor measurements. The Kalmen filter is used to generate

the residual innovation sequence. The on-line recursive least square algorithm is derived by

applying the residual sequence to compute the value of the input force. The detailed formulation of

this technique can also be found in the paper by Tuan et al. (1996).

The equations of the Kalman filter are as follows 

(6)

(7)

(8)

(9)

(10)

(11)

(12)

The equations of the recursive least square estimator are as follows 

(13)

(14)

(15)

(16)

(17)

where  denotes the state estimate. P is the state estimation error covariance. s(k) is the

covariance of the residual.  is the Kalman gain.  is the bias innovation produced by the

measurement noise and input disturbance.  is the estimated input vector.  is the error

covariance of the input estimation process.  is the correction gain. γ is the weighting factor.
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B(k) and M(k) are both the sensitivity matrices. From Eq. (16), the error covariance of the input

estimation is increased by the weighting factor, γ (k), which is a constant with the value within the

interval, [0, 1]. 

The intelligent fuzzy weighting factor in this research is proposed based on the fuzzy logic

inference system. The intelligent fuzzy weighting factor can be operated at each step based on the

innovation from the Kalman filter. It plays the role as an adjustable parameter to control the

bandwidth or gain magnitude of the recursive least square estimator. Furthermore, the weighting

factor γ (k) is employed to compromise between the upgrade of tracking capability and the loss of

estimation precision. The relation as the following was derived by Tuan et al. (1996)

(18)

The weighting factor, γ (k), as shown in Eq. (18) is adjusted according to the measurement noise

and input bias. In the industrial applications, the standard deviation σ is set as a constant value. The

magnitude of weighting factor is determined according to the modulus of bias innovation, .

The unknown input prompt variation will make the modulus of bias innovation larger. In the

meantime, the smaller weighting factor is obtained when the modulus of bias innovation is larger.

Therefore, the estimator accelerates the tracking speed and produces larger vibration in the

estimation process. On the contrary, the smaller variation of unknown input makes the modulus of

bias innovation smaller. In the meantime, the larger weighting factor is obtained when the modulus

of bias innovation is smaller. The estimator is unable to estimate the unknown input effectively. For

this reason, the inverse estimation method with the intelligent fuzzy weighting factor, which

efficiently and robustly estimates the time-varying unknown input, will be constructed in this

research.

The basic configuration of the fuzzy logic system considered in this paper is illustrated here. The

fuzzy logic system includes four basic components, which are the fuzzy rule base, fuzzy inference

engine, fuzzifier, and defuzzifier. The value of fuzzy logic system input, θ (k), may be chosen in the

interval, [0, 1]. 

(19)

where . ∆t is the sampling interval. The proposed intelligent fuzzy

weighting factor uses the input variable  to self-adjust the factor  of the recursive least

square estimator. Therefore, the fuzzy logic system consists of one input and one output variables.

The value of input, , may be chosen in the interval, [0, 1], and the value of output, , may

also be in the interval, [0, 1]. The fuzzy sets for  and  are labeled in the linguistic terms

of EP (extremely large positive), VP (very large positive), LP (large positive), MP (medium

positive), SP (small positive), VS (very small positive), and ZE (zero). The specific membership is

defined by using the Gaussian functions shown in Fig. 2. 

A fuzzy rule base is a collection of fuzzy IF-THEN rules: 

IF  is zero (ZE) THEN  is an extremely large positive (EP),

IF  is a very small positive (VS) THEN  is a very large positive (VP),
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IF  is a small positive (SP) THEN  is a large positive (LP),

IF  is a medium positive (MP) THEN  is a medium positive (MP),

IF  is a large positive (LP) THEN  is a small positive (SP),

IF  is a very large positive (VP) THEN  is a very small positive (VS),

IF  is an extremely large positive (EP) THEN  is zero (ZE),

where  and  are the input and output of the fuzzy logic system, respectively.

The fuzzier maps a crisp point  into a fuzzy set A in U. Therefore, the nonsingleton

fuzzier can be expressed in Wang (1994)

(20)

 decreases from 1 as  moves away from .  is a parameter characterizing the

shape of . 

The Mamdani maximum-minimum inference engine is used in this paper. The max-min-operation

rule of fuzzy implication is shown in Wang (1994) 

(21)

where c is the fuzzy rule, and d is the dimension of input variables.

The defuzzifier maps a fuzzy set B in V to a crisp point . The fuzzy logic system with the

center of gravity is defined in Wang (1994) 
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Fig. 3 Flowchart of the intelligent fuzzy weighted input estimation algorithm
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(22)

n is the number of outputs.  is the value of the lth output.  represents the membership

of  in the fuzzy set B. Substituting  of Eq. (22) in Eqs. (15) and (16) allows us to

configure an adaptive fuzzy weighting function of the recursive least square estimator (RLSE). A

flow chart of the computation for the application of the recursive input estimation algorithm is given

in Fig. 3.

4. Results and discussion

To verify the practicability and precision of the presented approach in estimating the unknown

input force, a three-dimensional example is applied to the use of the input estimation method

combined with the finite-element scheme. In this paper, the protective structure is modeled as a

simple plate structure system. The simple plate structure is subjected to input force. The input force

can be estimated by applying the dynamic responses to the proposed input estimation algorithm.

The quarter modal was simulated as the symmetrical simple plate structure with the relationship of

the length and wide of the plate structure, L = 6 m and the thickness, h = 0.1 m. The element mass

matrix Me and the element stiffness matrix Ke of the plate are shown as follows (Dawe 1984)

and

The density, ρ = 650 kg/m3. The elastic modulus of all elements, E = 3 GPa. The Poisson ratio,

ν = 0.3. The proportional damping coefficient, C = αM + βK, where α = 0.02 and β = 0.005. The

initial conditions of the error covariance are given as  for the KF and

 for the adaptive fuzzy weighted recursive least square estimator. The simulation

parameters are set as follows. The sampling interval, s and the total simulation time,

. The sensitivity matrix  is null. The weighting factor is an adaptive fuzzy weighting

function. 

Example 1: Continuous square input force

The input force is modeled by a continuous square which inputs node 16 of the plate structure.

 is shown as the following.
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  (N) (23)

First, the process noise and measurement noise are considered in the simulation process. The

process noise covariance matrix, , where . The measurement noise covariance

matrix, , where , and σ is the standard deviation of the noise. The

estimates of  using the intelligent fuzzy weighting function, the adaptive weighting function,

and the constant weighting factor, are plotted in Fig. 4. In Eqs. (15)-(17) of the recursive least

square estimator,  is the estimate of the unknown input.  is the error covariance of the

input estimation process.  is the correction gain.  is the weighting factor chosen in the

range between 0 and 1. The two functions of  are smoothing and forgetting. The forgetting

effectiveness depends on the value of .  gets larger as  gets smaller according to Eq.

(15). The forgetting effect therefore becomes more conspicuous according to Eq. (16). It should be

noted that the faster the forgetting effect is, the lower the smoothing effect will be, that is, it

introduces oscillation. The intelligent fuzzy weighting factor  is employed to compromise

between the upgrade of tracking capability and the loss of estimation precision. Fig. 5 shows the

comparison between the adaptive weighting and intelligent fuzzy weighting factors in terms of the

estimation results of Example 1 with , . The simulation results demonstrate

that the intelligent fuzzy weighted input estimator has the property of faster convergence in the

initial response. The adaptive weighted input estimator has better target tracking capability when the

unknown input is larger. However, the effectiveness to reduce the effect of noise is poor. The

intelligent fuzzy weighted input estimator has better target tracking capability and noise reduction

effectiveness overall. Fig. 6 shows the comparison between the intelligent fuzzy weighting and

constant weighting factors in terms of the estimation results of Example 1 with ,

. The simulation results demonstrate that the constant weighted input estimator with

F16 t( )
5 10

5
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3 10
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⎪
⎨
⎪
⎧

=

Q Qw I2n 2n××= Qw 10
5

=

R Rw I2n 2n××= Rw σ 2 10
5–

= =

F16 t( )
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2

10
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= =

Qw 10
5

=

Rw σ
2

10
5–
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Fig. 4 Comparison of different weighting functions
when the input is a continuous square input
force

Fig. 5 Comparison between the inverse estimation
using the adaptive, and fuzzy weighting
functions when the input is a continuous
square input force 
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γ = 0.95 has the property of faster convergence in the initial response. The constant weighted input

estimator with γ = 0.05 has better target tracking capability when the unknown input is larger.

Howerer, the constant weighted input estimator with γ = 0.05 is not effecient in reducing the noise

effect. Although the constant weighted input estimator with γ = 0.95 has more effective noise

reduction capability, it is not effective in tracking the target. In other words, the proposed method

has the property of faster convergence in the initial response, better target tracking capability and

more effective noise reduction.

Fig. 6 Comparison of the inverse estimation using
the fuzzy, and constant weighting functions
when the input is a continuous square input
force

Fig. 7 Comparison of different weighting functions
when the input is a continuous square input
force with the transient measurement bias
(15%)

Fig. 8 Comparison between the inverse estimation
using the adaptive, and fuzzy weighting
functions when the input is a continuous
square input force with the transient
measurement bias (15%)

Fig. 9 Comparison of the inverse estimation using
the fuzzy, and constant weighting functions
when the input is a continuous square input
force with the transient measurement bias
(15%)
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Moreover, the measurement bias has been taken into account during the simulation process. The

measurement bias (15%) is assumed to occur at 1.5s for 3 time steps. Fig. 7 demonstrates that the

smaller value of intelligent fuzzy weighting factor is transient due to the measurement bias. The

value of adaptive weighting factor is smaller than 0.05 and is approximated to zero when the

unknown input is large. Fig. 8 shows that the intelligent fuzzy weighted estimator has good

performance as in Fig. 5. Furthermore, the effectiveness in reducing the measurement bias effect is

better. By contrast, the adaptive weighted estimator has better target tracking capability;

nevertheless, the capability to reduce the noise and measurement bias effect is not effective. Fig. 9

shows the comparison between the intelligent fuzzy weighting and constant weighting factors in

terms of the estimation results of Example 1 with the measurement bias. The simulation results

demonstrate the influence of constant weighting factor on the estimator performance as shown in

Fig. 6. In short, the proposed method has the properties mentioned above. Besides, it can deal with

the measurement bias more effectively.

Example 2: Decaying exponential input force

A rapid release of energy occurs when the explosive detonates. In the meantime, a tremendous

input force is produced and spread out along with the vibration wave. This kind of input force has

the properties of decay and transient in existence. This is the reason that the input force is often

approximated in the form of decaying exponent. In this simulation, a decaying exponent input force

acting on node 16 of the plate has been considered. The numerical model of the input force is

shown as the following

(24)

The estimates of  using the intelligent fuzzy weighting function, the adaptive weighting

function, and the constant weighting factor with the process noise covariance matrix, ,

F16 t( ) 2.5 10
8× exp 3t–( ) t 2s≥×

0                                  0 t≤ 2s<
 N( )

⎩
⎨
⎧

=

F16 t( )
Q Qw I2n 2n××=

Fig. 10 Comparison of different weighting functions
when the input is a decaying exponential
input force

Fig. 11 Comparison between the inverse estimation
using the adaptive, and fuzzy weighting
functions when the input is a decaying
exponential input force



Intelligent fuzzy weighted input estimation method for the input force on the plate structure 13

where , and the measurement noise covariance matrix, , where

 are plotted in Fig. 10. It shows that the value of intelligent fuzzy weighting factor

is between 0.05 and 0.95. The weighting factor  is employed to compromise between the

upgrade of tracking capability and the loss of estimation precision. Fig. 11 shows the comparison

between the adaptive weighting and intelligent fuzzy weighting factors in terms of the estimation

results of Example 2. The simulation results denote that the adaptive weighted estimator has great

tracking capability, but it is not capable of reducing the effect due to the measurement noise. The

intelligent fuzzy weighted estimator has great tracking capability similar to the adaptive weighted

estimator. Besides, it is capable of reducing the effect due to the measurement noise. The overall

estimation process of the intelligent fuzzy weighted estimator is effective. Fig. 12 shows that the

constant weighted input estimator with γ = 0.95 has the property of faster convergence in the initial

response. The constant weighted input estimator with γ = 0.05 has better target tracking capability

when the unknown input is larger. Howerer, the constant weighted input estimator with γ = 0.05 is

not effecient in reducing the to noise effect. Although the constant weighted input estimator with γ =

0.95 has more effective noise reduction capability, it is not effective in tracking the target.

The above simulation results demonstrate that the proposed method performs better than other

algorithms. It is an effecient method, which shows better convergence when tracking the unknown

input in the initial stage, and reduces the influence due to the measurement noise and bias.

5. Conclusions

In this paper, an intelligent fuzzy weighted input estimation method is applied to estimate the

unknown input force in a plate structure system. The FEM is adopted to construct the state equation

of the plate structure, and the Kalman Filter is further combined with the least square algorithm to

estimate the input force. The intelligent fuzzy weighted estimator is an efficient adaptive and robust

inverse estimation method for the estimation of the unknown time-varying input with the

unpredicted modeling and measurement errors, and the transient measurement bias due to the

Qw 10
5

= R Rw I2n 2n××=
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Fig. 12 Comparison of the inverse estimation using the fuzzy, and constant weighting functions when the
input is a decaying exponential input force
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instrument. Future works of this study will address the issue of the applications in the optimal

control scope.
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