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1. Introduction

The typical feature of laminated structures is that the variation of in-plane displacements through

the thickness shows kink at interfaces, which results in discontinuous transverse shear strain at

interfaces. However, first-order theory (Whitney 1973), Reddy’s theory (1984) and other global

higher- order theories (Kant and Swaminathan 2002, Matsunaga 2002, Murakami 1986) are unable

to satisfy this condition. Due to material constants are also different at each ply, these theories will

violate transverse shear stresses continuity conditions at interfaces. 

In view of this situation, Di Sciuva (1986) proposed a zig-zag model which can guarantee the

continuity of transverse shear stresses. Moreover, the number of unknown variables is independent

of number of layers. Cho and Oh (2004) also proposed a higher-order zig-zag model. However, the

zig-zag models (Di Sciuva 1986, Cho and Oh 2004), are still unable to accurately calculate

transverse shear stresses directly from constitutive equations. The 1,2-3 global-local higher-order

theory (Li and Liu 1997) is very accurate for the bending problems of laminates whereas it is less

accurate for the thermal expansion problems of laminated plates. To extend the capability of 1,2-3

global-local higher-order theory, Wu and Chen (2007) proposed an improved global-local higher-

order theory (GLHT-32) which considering transverse normal strain. Main aim of present work is to

study capabilities of several displacement-based lamianted beam theories to capture response details

of laminated beams under temperature load. 

2. Displacement-based theories

2.1 Global-local higher-order theory considering transverse normal strain (GLHT-32)

Displacement fields of the GLHT-32 (Wu and Chen 2007) are simply given by
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(1)

where expression of  can be found in reference (Wu and Chen 2007). 

2.2 Global-local higher-order theory discarding transverse normal strain (GLHT-30)

Displacement fields of the global-local higher-order theory (Li and Liu 1997) are simply given by

(2)

where expression of  can be found in references (Li and Liu 1997). 

2.3 Zig-zag theory (ZZTC) satisfying continuity of transverse shear stresses at interfaces 

Displacement field of the zig-zag theory (Cho and Oh 2004) can be rewritten as follows

(3)

where, expression of  can refer to reference (Cho and Oh 2004). 

2.4 Improved global displacement theory proposed by Murakami (1986)

The improved global theory MZZF obtained by adding a Murakami’s zig-zag function to global

displacement fields can be written as follows

(4)

where M(z) denotes the Murakami’s zig-zag function (Murakami 1986).

2.5 Global higher order Shear Deformation Theories (HSDT)

Displacement fields of HSDT-98 (Matsunaga 2002) can be detailedly given by

 (5)

The following higher order shear deformation theories already published in previous literature are

also used for comparison. They are
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HSDT-54 (Matsunaga 2002)

 (6)

HSDT-33 (Kant and Swaminathan 2002)

 (7)

HSDT-30 (Kant and Swaminathan 2002)

(8)

HSDT-R (Reddy 1984)

Reddy’s theory (1984) which is named as HSDT-R in present work.

(9)

2.6 First-order Shear Deformation Theories (FSDT)

First-order theory (Whitney 1973) can be written as follows

(10)

A shear correction factor of 5/6 is adopted in computed results using the first-order theory. 

3. Numerical example

Example Simply-supported beam (0o/90o/0o) subjected to temperature field T(z)sinπx/L (Kapuria

et al. 2003). Temperature profile T(z) can be obtained by solving thermal conduction equation
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Fig. 1 Temperature distribution through thickness of
laminates (a/h = 5)

Fig. 2 Comparison of transverse shear stress from
different models (a/h = 5)
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(Tungikar and Rao 1994). 

The displacements and stresses are normalized by 

 

Firstly, distribution of actual temperature fields T(z) through the thickness of beam can be found

in Fig. 1. In Fig. 2, transverse shear stresses computed directly from constitutive equations are

presented. Thereinto, transverse shear stresses calculated from ZZTC, HSDT-R and FSDT are zero

along the thickness direction. The possible reason for zero transverse shear stresses is that the

displacement fields of ZZTC, HSDT-R and FSDT lack the second component u2. 
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